In the present paper, we investigate a dependent risk model perturbed by a mixed-exponential jump-diffusion process, in which the claim inter-arrival times and claim sizes are dependent through Farlie-Gumbel-Morgenstern (FGM) copula. The expected discounted penalty (EDP) functions are studied when ruin is caused by a claim or the jump-diffusion process. The Laplace transforms satisfied by the EDP functions are obtained, then we give the corresponding defective renewal equations. The analytical expressions for the EDP functions are derived when the claim sizes follow exponential distributions, and a numerical example for the ruin probabilities are also provided.
Citation: Zhipeng Liu, Cailing Li, Zhenhua Bao. On a dependent risk model perturbed by mixed-exponential jump-diffusion processes[J]. AIMS Mathematics, 2025, 10(4): 9882-9899. doi: 10.3934/math.2025452
In the present paper, we investigate a dependent risk model perturbed by a mixed-exponential jump-diffusion process, in which the claim inter-arrival times and claim sizes are dependent through Farlie-Gumbel-Morgenstern (FGM) copula. The expected discounted penalty (EDP) functions are studied when ruin is caused by a claim or the jump-diffusion process. The Laplace transforms satisfied by the EDP functions are obtained, then we give the corresponding defective renewal equations. The analytical expressions for the EDP functions are derived when the claim sizes follow exponential distributions, and a numerical example for the ruin probabilities are also provided.
| [1] |
S. Kou, A jump diffusion model for option pricing, Manage. Sci., 48 (2002), 1086–1101. https://doi.org/10.1287/mnsc.48.8.1086.166 doi: 10.1287/mnsc.48.8.1086.166
|
| [2] |
S. Kou, H. Wang, First passage times of a jump diffusion process, Adv. Appl. Probab., 35 (2003), 504–531. https://doi.org/10.1239/aap/1051201658 doi: 10.1239/aap/1051201658
|
| [3] |
H. Gao, C. Yin, Discounted densities of overshoot and undershoot for Lévy processes with applications in finance, Probab. Eng. Inf. Sci., 38 (2024), 644–667. https://doi.org/10.1017/S0269964824000032 doi: 10.1017/S0269964824000032
|
| [4] |
L. Alili, A. E. Kyprianou, Some remarks on first passage of Levy processes, the American put and pasting principles, Ann. Appl. Probab., 15 (2005), 2062–2080. https://doi.org/10.1214/105051605000000377 doi: 10.1214/105051605000000377
|
| [5] |
N. Cai, S. Kou, Option pricing under a mixedexponential jump diffusion model, Manage. Sci., 57 (2011), 2067–2081. http://dx.doi.org/10.1287/mnsc.1110.1393 doi: 10.1287/mnsc.1110.1393
|
| [6] |
H. U. Gerber, An extension of the renewal equation and its application in the collective theory of risk, Skand. Aktuarietidskrif, 1970 (1970), 205–210. https://doi.org/10.1080/03461238.1970.10405664 doi: 10.1080/03461238.1970.10405664
|
| [7] |
F. Dufresne, H. U. Gerber, Risk theory for the compound Poisson process that is perturbed by diffusion, Insur. Math. Econ., 10 (1991), 51–59. https://doi.org/10.1016/0167-6687(91)90023-Q doi: 10.1016/0167-6687(91)90023-Q
|
| [8] |
C. C. L. Tsai, On the discounted distribution functions of the surplus process perturbed by diffusion, Insur. Math. Econ., 28 (2001), 401–419. https://doi.org/10.1016/S0167-6687(01)00067-1 doi: 10.1016/S0167-6687(01)00067-1
|
| [9] |
C. C. L. Tsai, On the expectations of the present values of the time of ruin perturbed by diffusion, Insur. Math. Econ., 32 (2003), 413–429. https://doi.org/10.1016/S0167-6687(03)00130-6 doi: 10.1016/S0167-6687(03)00130-6
|
| [10] |
Z. Zhang, H. Yang, Gerber-Shiu analysis in a perturbed risk model with dependence between claim sizes and interclaim times, J. Comput. Appl. Math., 235 (2011), 1189–1204. https://doi.org/10.1016/j.cam.2010.08.003 doi: 10.1016/j.cam.2010.08.003
|
| [11] |
F. Ad$\acute{e}$kambi, E. Takouda, On the discounted penalty function in a perturbed Erlang renewal risk model with dependence, Methodol. Comput. Appl. Probab., 24 (2022), 481–513. https://doi.org/10.1007/s11009-022-09944-3 doi: 10.1007/s11009-022-09944-3
|
| [12] |
Y. Aït-Sahalia, J. Jacod, Testing for jumps in a discretely observed process, Ann. Stat., 37 (2009), 184–222. https://doi.org/10.1214/07-AOS568 doi: 10.1214/07-AOS568
|
| [13] |
Y. Chi, Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance, Insur. Math. Econ., 46 (2010), 385–396. https://doi.org/10.1016/j.insmatheco.2009.12.004 doi: 10.1016/j.insmatheco.2009.12.004
|
| [14] |
Y. Chi, X. Lin, On the threshold dividend strategy for a generalized jump-diffusion risk model, Insur. Math. Econ., 48 (2011), 326–337. https://doi.org/10.1016/j.insmatheco.2010.11.006 doi: 10.1016/j.insmatheco.2010.11.006
|
| [15] |
C. Yin, Y. Shen, Y. Wen, Exit problems for jump processes with applications to dividend problems, J. Comput. Appl. Math., 245 (2013), 30–52. https://doi.org/10.1016/j.cam.2012.12.004 doi: 10.1016/j.cam.2012.12.004
|
| [16] |
C. Yin, Y. Wen, Z. Zong, Y. Shen, The first passage time problem for mixed-exponential jump processes with applications in insurance and finance, Abstr. Appl. Anal., 2014 (2014), 571724. https://doi.org/10.1155/2014/571724 doi: 10.1155/2014/571724
|
| [17] |
Z. Zhang, H. Yang, H. Yang, On a Sparre Andersen risk model with time-dependent claim Sizes and jump-diffusion perturbation, Methodol. Comput. Appl. Probab., 14 (2012), 973–995. https://doi.org/10.1007/s11009-011-9215-1 doi: 10.1007/s11009-011-9215-1
|
| [18] |
M. Boudreault, H. Cossette, D. Landriault, E. Marceau, On a risk model with dependence between interclaim arrivals and claim sizes, Scand. Actuar. J., 2006 (2006), 265–285. https://doi.org/10.1080/03461230600992266 doi: 10.1080/03461230600992266
|
| [19] |
S. Chadjiconstantinidis, S. Vrontos, On a renewal risk process with dependence under a Farlie-GumbelMorgenstern copula, Scand. Actuar. J., 2014 (2012), 125–158. https://doi.org/10.1080/03461238.2012.663730 doi: 10.1080/03461238.2012.663730
|
| [20] |
J. Xie, W. Zou, On the expected discounted penalty function for a risk model with dependence under a multi-layer dividend strategy, Commun. Stat.-Theor. M., 46 (2017), 1898–1915. https://doi.org/10.1080/03610926.2015.1030424 doi: 10.1080/03610926.2015.1030424
|
| [21] |
H. U. Gerber, E. S. W. Shiu, On the time value of ruin, N. Am. Actuar. J., 2 (1998), 48–72. https://doi.org/10.1080/10920277.1998.10595671 doi: 10.1080/10920277.1998.10595671
|
| [22] |
Y. He, R. Kawai, Y. Shimizu, K. Yamazaki, The Gerber-Shiu discounted penalty function: A review from practical perspectives, Insur. Math. Econ., 109 (2023), 1–28. https://doi.org/10.1016/j.insmatheco.2022.12.003 doi: 10.1016/j.insmatheco.2022.12.003
|
| [23] |
D. C. M. Dickson, C. Hipp, On the time to ruin for Erlang(2) risk processes, Insur. Math. Econ., 29 (2001), 333–344. https://doi.org/10.1016/S0167-6687(01)00091-9 doi: 10.1016/S0167-6687(01)00091-9
|
| [24] |
S. Li, J. Garrido, On ruin for the Erlang(n) risk process, Insur. Math. Econ., 34 (2004), 391–408. https://doi.org/10.1016/j.insmatheco.2004.01.002 doi: 10.1016/j.insmatheco.2004.01.002
|