Studying the synchronization of neural networks is crucial for understanding brain function and diagnosing neurological disorders. However, most existing research focuses on integer-order systems and overlooks the effects of time-delay coupling. To address this, this paper was devoted to investigating the synchronization behaviors of time-delay coupled fractional-order FitzHugh–Nagumo networks. The sufficient conditions for the synchronization of two coupled neurons were derived using the Lyapunov stability criterion. Furthermore, the synchronization factor was utilized to elucidate the combined effects of coupling strength and time delay, as well as the influence of time delay on fractional-order dynamics. The analysis began with two coupled systems, and the results were then extended to networks with a larger number of nodes. Numerical examples were presented to illustrate the obtained results.
Citation: Canhong Long, Zuozhi Liu, Can Ma. Synchronization dynamics in fractional-order FitzHugh–Nagumo neural networks with time-delayed coupling[J]. AIMS Mathematics, 2025, 10(4): 8673-8687. doi: 10.3934/math.2025397
Studying the synchronization of neural networks is crucial for understanding brain function and diagnosing neurological disorders. However, most existing research focuses on integer-order systems and overlooks the effects of time-delay coupling. To address this, this paper was devoted to investigating the synchronization behaviors of time-delay coupled fractional-order FitzHugh–Nagumo networks. The sufficient conditions for the synchronization of two coupled neurons were derived using the Lyapunov stability criterion. Furthermore, the synchronization factor was utilized to elucidate the combined effects of coupling strength and time delay, as well as the influence of time delay on fractional-order dynamics. The analysis began with two coupled systems, and the results were then extended to networks with a larger number of nodes. Numerical examples were presented to illustrate the obtained results.
| [1] |
E. Antoniou, P. Bozios, V. Christou, K. D. Tzimourta, K. G. Kalafatakis, M. Tsipouras, et al., EEG-based eye movement recognition using brain–computer interface and random forests, Sensors-Basel., 21 (2021), 2339. https://doi.org/10.3390/s21072339 doi: 10.3390/s21072339
|
| [2] |
F. Goetze, P. Y. Lai, Dynamics of synaptically coupled FitzHugh–Nagumo neurons, Chinese. J. Phys., 77 (2022), 1365–1380. https://doi.org/10.1016/j.cjph.2021.08.019 doi: 10.1016/j.cjph.2021.08.019
|
| [3] |
Y. Humeau, D. Choquet, The next generation of approaches to investigate the link between synaptic plasticity and learning, Nat. Neurosci., 22 (2019), 1536–1543. https://doi.org/10.1038/s41593-019-0480-6 doi: 10.1038/s41593-019-0480-6
|
| [4] |
A. L. Hodgkin, A. F. Huxley, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo, J. Manip. Physiol. Ther., 116 (1952), 449. https://doi.org/10.1113/jphysiol.1952.sp004717 doi: 10.1113/jphysiol.1952.sp004717
|
| [5] |
R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane, B. Math. Biol., 17 (1955), 257–278. https://doi.org/10.1007/BF02477753 doi: 10.1007/BF02477753
|
| [6] |
C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber, Biophys. J., 35 (1981), 193–213. https://doi.org/10.1016/S0006-3495(81)84782-0 doi: 10.1016/S0006-3495(81)84782-0
|
| [7] |
G. B. Ermentrout, N. Kopell, Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math., 46 (1986), 233–253. https://doi.org/10.1137/0146017 doi: 10.1137/0146017
|
| [8] |
B. Ermentrout, Type Ⅰ membranes, phase resetting curves, and synchrony, Neural. Comput., 8 (1996), 979–1001. https://doi.org/10.1162/neco.1996.8.5.979 doi: 10.1162/neco.1996.8.5.979
|
| [9] |
Z. Tang, H. Wang, W. Zhu, K. Sun, Dynamics and synchronization of fractional-order Rulkov neuron coupled with discrete fracmemristor, Chaos. Soliton. Fract., 192 (2025), 116012. https://doi.org/10.1016/j.chaos.2025.116012 doi: 10.1016/j.chaos.2025.116012
|
| [10] |
L. Shangerganesh, P. T. Sowndarrajan, An optimal control problem of nonlocal pyragas feedback controllers for convective FitzHugh–Nagumo equations with time-delay, SIAM J. Control. Optim., 58 (2020), 3613–3631. https://doi.org/10.1137/18M122248X doi: 10.1137/18M122248X
|
| [11] |
Z. T. Njitacke, J. Awrejcewicz, B. Ramakrishnan, K. Rajagopal, J. Kengne, Hamiltonian energy computation and complex behavior of a small heterogeneous network of three neurons: circuit implementation, Nonlinear. Dynam., 107 (2022), 2867–2886. https://doi.org/10.1007/s11071-021-07109-4 doi: 10.1007/s11071-021-07109-4
|
| [12] |
H. Jahanshahi, E. Zambrano-Serrano, S. Bekiros, Z. Wei, C. Volos, O. Castillo, et al., On the dynamical investigation and synchronization of variable-order fractional neural networks: The Hopfield-like neural network model, Eur. Phys. J-Spec. Top., 231 (2022), 1757–1769. https://doi.org/10.1140/epjs/s11734-022-00450-8 doi: 10.1140/epjs/s11734-022-00450-8
|
| [13] |
W. Singer, Neuronal synchrony: a versatile code for the definition of relations? Neuron, 24 (1999), 49–65. https://doi.org/10.1016/S0896-6273(00)80821-1 doi: 10.1016/S0896-6273(00)80821-1
|
| [14] |
P. J. Uhlhaas, W. Singer, What do disturbances in neural synchrony tell us about autism? Biol. Psychiat., 62 (2007), 190–191. https://doi.org/10.1016/j.biopsych.2007.05.023 doi: 10.1016/j.biopsych.2007.05.023
|
| [15] |
G. Northoff, V. Lamme, Neural signs and mechanisms of consciousness: Is there a potential convergence of theories of consciousness in sight? Neurosci. Biobehav. R., 118 (2020), 568–587. https://doi.org/10.1016/j.neubiorev.2020.07.019 doi: 10.1016/j.neubiorev.2020.07.019
|
| [16] | P. A. Tass, Phase resetting in medicine and biology: Stochastic modelling and data analysis, Springer Science & Business Media, 2007. https://doi.org/10.1007/978-3-540-38161-7 |
| [17] |
P. Jiruska, M. De Curtis, J. G. Jefferys, C. A. Schevon, S. J. Schiff, K. Schindler, Synchronization and desynchronization in epilepsy: Controversies and hypotheses, J. Physiol-London., 591 (2013), 787–797. https://doi.org/10.1016/S0896-6273(00)80821-1 doi: 10.1016/S0896-6273(00)80821-1
|
| [18] |
Y. Song, J. Xu, Inphase and antiphase synchronization in a delay-coupled system with applications to a delay-coupled FitzHugh–Nagumo system, IEEE T. Neur. Net. Lear., 23 (2012), 1659–1670. https://doi.org/10.1109/TNNLS.2012.2209459 doi: 10.1109/TNNLS.2012.2209459
|
| [19] |
D. Fan, X. Song, F. Liao, Synchronization of coupled FitzHugh–Nagumo neurons using self-feedback time delay, Int. J. Bifurcat. Chaos., 28 (2018), 1850031. https://doi.org/10.1142/S0218127418500311 doi: 10.1142/S0218127418500311
|
| [20] |
S. A. Plotnikov, A. L. Fradkov, On synchronization in heterogeneous FitzHugh–Nagumo networks, Chaos. Soliton. Fract., 121 (2019), 85–91. https://doi.org/10.1016/j.chaos.2019.02.006 doi: 10.1016/j.chaos.2019.02.006
|
| [21] |
Z. T. Njitacke, J. Awrejcewicz, A. N. K. Telem, T. F. Fozin, J. Kengne, Complex dynamics of coupled neurons through a memristive synapse: Extreme multistability and its control with selection of the desired state, IEEE T. Circuits-II., 70 (2022), 791–795. https://doi.org/10.1109/TCSII.2022.3172141 doi: 10.1109/TCSII.2022.3172141
|
| [22] |
D. Yu, L. Lu, G. Wang, L. Yang, Y. Jia, Synchronization mode transition induced by bounded noise in multiple time-delays coupled FitzHugh–Nagumo model, Chaos. Soliton. Fract., 147 (2021), 111000. https://doi.org/10.1016/j.chaos.2021.111000 doi: 10.1016/j.chaos.2021.111000
|
| [23] |
Z. T. Njitacke, B. N. Koumetio, B. Ramakrishnan, G. D. Leutcho, T. F. Fozin, N. Tsafack, et al., Hamiltonian energy and coexistence of hidden firing patterns from bidirectional coupling between two different neurons, Cogn. Neurodynamics., (2021), 1–18. https://doi.org/10.1007/s11571-021-09747-1 doi: 10.1007/s11571-021-09747-1
|
| [24] |
Z. Yao, K. Sun, S. He, Synchronization mode transition induced by bounded noise in multiple time-delays coupled FitzHugh–Nagumo model, Cogn. Neurodynamics., 18 (2024), 701–713. https://doi.org/10.1007/s11571-023-10023-7 doi: 10.1007/s11571-023-10023-7
|
| [25] |
S. A. Plotnikov, J. Lehnert, A. L. Fradkov, E. Schöll, Adaptive control of synchronization in delay-coupled heterogeneous networks of FitzHugh–Nagumo nodes, Int. J. Bifurcat. Chaos., 26 (2016), 1650058. https://doi.org/10.1142/S0218127416500589 doi: 10.1142/S0218127416500589
|
| [26] |
S. Gao, J. Shen, X. Hu, Dynamics of delayed and diffusive FitzHugh–Nagumo network, Eur. Phys. J. Spec. Top., (2024), 1–18. https://doi.org/10.1140/epjs/s11734-024-01193-4 doi: 10.1140/epjs/s11734-024-01193-4
|
| [27] |
B. Zhen, Z. Li, Z. Song, Influence of time delay in signal transmission on synchronization between two coupled FitzHugh-Nagumo neurons, Appl. Sci-Basel., 9 (2019), 2159. https://doi.org/10.3390/app9102159 doi: 10.3390/app9102159
|
| [28] |
M. Dhamala, V. K. Jirsa, M. Ding, Enhancement of neural synchrony by time delay, Phys. Rev. Lett., 92 (2004), 074104. https://doi.org/10.1103/PhysRevLett.92.074104 doi: 10.1103/PhysRevLett.92.074104
|
| [29] |
L. Yu, Y. Yu, Energy‐efficient neural information processing in individual neurons and neuronal networks, J. Neurosci. Res., 95 (2017), 2253–2266. https://doi.org/10.1002/jnr.24131 doi: 10.1002/jnr.24131
|
| [30] |
R. Mukhtar, C. Y. Chang, M. A. Z. Raja, N. I. Chaudhary, M. J. A. A. Raja, C. M. Shu, Design of fractional innate immune response to nonlinear Parkinson's disease model with therapeutic intervention: Intelligent machine predictive exogenous networks, Chaos. Soliton. Fract., 191 (2025), 115947. https://doi.org/10.1016/j.chaos.2024.115947 doi: 10.1016/j.chaos.2024.115947
|
| [31] |
N. I. Chaudhary, M. A. Z. Raja, Z. A. Khan, A. Mehmood, S. M. Shah, Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems, Chaos. Soliton. Fract., 157 (2022), 111913. https://doi.org/10.1016/j.chaos.2022.111913 doi: 10.1016/j.chaos.2022.111913
|
| [32] |
N. I. Chaudhary, Z. A. Khan, M. A. Z. Raja, I. I. Chaudhary, Enhanced fractional adaptive processing paradigm for power signal estimation, Math. Method. Appl. Sci., 46 (2023), 7013–7028. https://doi.org/10.1002/mma.8951 doi: 10.1002/mma.8951
|
| [33] |
R. Mukhtar, C. Y. Chang, M. A. Z. Raja, N. I. Chaudhary, C. M. Shu, Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks, Chaos. Soliton. Fract., 180 (2024), 114557. https://doi.org/10.1016/j.chaos.2024.114557 doi: 10.1016/j.chaos.2024.114557
|
| [34] |
A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0 doi: 10.1016/S0304-0208(06)80001-0
|
| [35] |
N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2951–2957. https://doi.org/10.1016/j.chaos.2024.115947 doi: 10.1016/j.chaos.2024.115947
|
| [36] |
S. Liang, R. Wu, L. Chen, Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay, Physica. A., 444 (2016), 49–62. https://doi.org/10.1016/j.physa.2015.10.011 doi: 10.1016/j.physa.2015.10.011
|