This research explored a significant and specific case in the definition of neutrosophic sets (N sets), where truth and falsehood degrees were dependent, representing $ \mathfrak{q} $-Rung orthopair fuzzy ($ \mathfrak{q} $-ROF) values, while indeterminacy acted independently. Based on this assertion, a new hybrid model called the $ \mathfrak{q} $-Rung simplified neutrosophic set ($ \mathfrak{q} $-RSN) set was proposed. This model extended the capabilities of existing frameworks such as the simplified intuitionistic neutrosophic set (Simplified IN) set and Pythagorean neutrosophic set (PyN) set, while simultaneously harnessing the advantages of both N sets and $ \mathfrak{q} $-ROF sets. To lay the foundation, we established the formal definition of the $ \mathfrak{q} $-RSN set and outlined its algebraic operations. The properties of these operations were provided, accompanied by their respective proofs. Moving forward, we introduced a method for comparing $ \mathfrak{q} $-RSN numbers, employing the score function (SF) and accuracy function (AF) as effective tools. To enable the aggregation of $ \mathfrak{q} $-RSN numbers, we proposed two types of operators: $ \mathfrak{q} $-RSN weighted averaging operators ($ \mathfrak{q} $-RSNWAOs) and $ \mathfrak{q} $-RSN weighted geometric operators ($ \mathfrak{q} $-RSNWGOs). We established and validated the desirable properties of these operators, including idempotency, boundedness, and monotonicity. Expanding on the proposed aggregation operators (AOs), we presented an algorithmic approach for multi-criteria decision making (MCDM) and provide a practical implementation to showcase the effectiveness of the algorithm. Within the given MCDM problem context, we employed the proposed $ \mathfrak{q} $-RSNWAOs, $ \mathfrak{q} $-RSNWGOs, and SFs to ensure a comprehensive evaluation. Additionally, we conducted a sensitivity analysis of the problem parameters to examine the behavior of the optimal solution. Furthermore, we conducted a comparative examination, pitting the proposed method against other related methods. The results obtained from this comparative examination demonstrated a clear and significant superiority of the proposed method over the alternatives.
Citation: Ashraf Al-Quran, Faisal Al-Sharqi, Abdelhamid Mohammed Djaouti. $ \mathfrak{q} $-Rung simplified neutrosophic set: A generalization of intuitionistic, Pythagorean and Fermatean neutrosophic sets[J]. AIMS Mathematics, 2025, 10(4): 8615-8646. doi: 10.3934/math.2025395
This research explored a significant and specific case in the definition of neutrosophic sets (N sets), where truth and falsehood degrees were dependent, representing $ \mathfrak{q} $-Rung orthopair fuzzy ($ \mathfrak{q} $-ROF) values, while indeterminacy acted independently. Based on this assertion, a new hybrid model called the $ \mathfrak{q} $-Rung simplified neutrosophic set ($ \mathfrak{q} $-RSN) set was proposed. This model extended the capabilities of existing frameworks such as the simplified intuitionistic neutrosophic set (Simplified IN) set and Pythagorean neutrosophic set (PyN) set, while simultaneously harnessing the advantages of both N sets and $ \mathfrak{q} $-ROF sets. To lay the foundation, we established the formal definition of the $ \mathfrak{q} $-RSN set and outlined its algebraic operations. The properties of these operations were provided, accompanied by their respective proofs. Moving forward, we introduced a method for comparing $ \mathfrak{q} $-RSN numbers, employing the score function (SF) and accuracy function (AF) as effective tools. To enable the aggregation of $ \mathfrak{q} $-RSN numbers, we proposed two types of operators: $ \mathfrak{q} $-RSN weighted averaging operators ($ \mathfrak{q} $-RSNWAOs) and $ \mathfrak{q} $-RSN weighted geometric operators ($ \mathfrak{q} $-RSNWGOs). We established and validated the desirable properties of these operators, including idempotency, boundedness, and monotonicity. Expanding on the proposed aggregation operators (AOs), we presented an algorithmic approach for multi-criteria decision making (MCDM) and provide a practical implementation to showcase the effectiveness of the algorithm. Within the given MCDM problem context, we employed the proposed $ \mathfrak{q} $-RSNWAOs, $ \mathfrak{q} $-RSNWGOs, and SFs to ensure a comprehensive evaluation. Additionally, we conducted a sensitivity analysis of the problem parameters to examine the behavior of the optimal solution. Furthermore, we conducted a comparative examination, pitting the proposed method against other related methods. The results obtained from this comparative examination demonstrated a clear and significant superiority of the proposed method over the alternatives.
| [1] | F. Smarandache, Neutrosophy: Neutrosophic probability, set, and logic: Analytic synthesis & synthetic analysis, Rehoboth, NM: American Research Press, 1998. |
| [2] | H. B. Wang, F. Smarandache, Y. Q. Zhang, R. Sunderraman, Single valued neutrosophic sets, Hanko, Finland: North-European Scientific Publishers, 4 (2010), 410–413. |
| [3] |
J. Ye, A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets, J. Intell. Fuzzy Syst., 26 (2014), 2459–2466. https://doi.org/10.3233/IFS-130916 doi: 10.3233/IFS-130916
|
| [4] |
J. Peng, J. Q. Wang, J. Wang, H. Zhang, X. Chen, Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems, Int. J. Syst. Sci., 47 (2016), 2342–2358. https://doi.org/10.1080/00207721.2014.994050 doi: 10.1080/00207721.2014.994050
|
| [5] |
R. Mishra, P. Rani, R. S. Prajapati, Multi-criteria weighted aggregated sum product assessment method for sustainable biomass crop selection problem using single-valued neutrosophic sets, Appl. Soft Comput., 113 (2021), 108038. https://doi.org/10.1016/j.asoc.2021.108038 doi: 10.1016/j.asoc.2021.108038
|
| [6] |
M. Ali, F. Smarandache, Complex neutrosophic set, Neural Comput. Appl., 28 (2017), 1817–1834. https://doi.org/10.1007/s00521-015-2154-y doi: 10.1007/s00521-015-2154-y
|
| [7] |
A. Al-Quran, A. Ahmad, F. Al-Sharqi, A. Lutfi, Q-complex neutrosophic set, Int. J. Neutrosophic Sci., 20 (2023), 8–19. https://doi.org/10.54216/IJNS.200201 doi: 10.54216/IJNS.200201
|
| [8] |
J. Qiu, L. Jiang, H. Fan, P. Li, C. You, Dynamic nonlinear simplified neutrosophic sets for multiple-attribute group decision making, Heliyon, 10 (2024), e27493. https://doi.org/10.1016/j.heliyon.2024.e27493 doi: 10.1016/j.heliyon.2024.e27493
|
| [9] |
J. Ye, Entropy measures of simplified neutrosophic sets and their decision-making approach with positive and negative arguments, J. Manag. Anal., 8 (2021), 252–266. https://doi.org/10.1080/23270012.2021.1885513 doi: 10.1080/23270012.2021.1885513
|
| [10] |
J. Ye, S. Du, R. Yong, F. Zhang, Arccosine and arctangent similarity measures of refined simplified neutrosophic indeterminate sets and their multicriteria decision-making method, J. Intell. Fuzzy Syst., 40 (2021), 9159–9171. https://doi.org/10.3233/JIFS-201571 doi: 10.3233/JIFS-201571
|
| [11] | P. K. Maji, Neutrosophic soft set, Ann. Fuzzy Math. Inform., 5 (2013), 157–168. |
| [12] | S. Alkhazaleh, Neutrosophic vague set theory, Crit. Rev., 10 (2015), 29–39. |
| [13] | M. Bhowmik, M. Pal, Intuitionistic neutrosophic set, J. Inform. Comput. Sci., 4 (2009), 142–152. |
| [14] | V. Chinnadurai, A. Bobin, Simplified intuitionistic neutrosophic soft set and its application on diagnosing psychological disorder by using similarity measure, Appl. Appl. Math., 16 (2021), 34. |
| [15] | R. Jansi, K. Mohana, F. Smarandache, Correlation measure for Pythagorean neutrosophic sets with T and F as dependent neutrosophic components, Neutrosophic Sets Sy., 30 (2019), 202–212. |
| [16] | R. Radha, A. S. A. Mary, R. Prema, S. Broumi, Neutrosophic Pythagorean sets with dependent neutrosophic Pythagorean components and its improved correlation coefficients, Neutrosophic Sets Sy., 46 (2021), 77–86. |
| [17] | R. Imran, K. Ullah, Z. Ali, M. Akram, A multi-criteria group decision-making approach for robot selection using interval-valued intuitionistic fuzzy information and aczel-alsina bonferroni means, Spectr. Decis. Mak. Appl., 1 (2024), 1–32. |
| [18] |
M. Riaz, H. M. A. Farid, S. Ashraf, H. Kamacı, Single-valued neutrosophic fairly aggregation operators with multi-criteria decision-making, Comput. Appl. Math., 42 (2023), 104. https://doi.org/10.1007/s40314-023-02233-w doi: 10.1007/s40314-023-02233-w
|
| [19] |
H. M. A. Farid, M. Riaz, Single-valued neutrosophic dynamic aggregation information with time sequence preference for IoT technology in supply chain management, Eng. Appl. Artif. Intell., 126 (2023), 106940. https://doi.org/10.1016/j.engappai.2023.106940 doi: 10.1016/j.engappai.2023.106940
|
| [20] |
H. Garg, Linguistic single-valued neutrosophic power aggregation operators and their applications to group decision-making problems, IEEE-CAA J. Automatic., 7 (2020), 546–558. https://doi.org/10.1109/JAS.2019.1911522 doi: 10.1109/JAS.2019.1911522
|
| [21] |
C. Liu, Y. Luo, Power aggregation operators of simplified neutrosophic sets and their use in multi-attribute group decision making, IEEE-CAA J. Automatic., 6 (2019), 575–583. https://doi.org/10.1109/JAS.2017.7510424 doi: 10.1109/JAS.2017.7510424
|
| [22] |
R. Yong, J. Ye, S. Du, A. Zhu, Y. Zhang, Aczel-Alsina weighted aggregation operators of simplified neutrosophic numbers and its application in multiple attribute decision making, Comput. Model. Eng. Sci., 132 (2022), 569–584. https://doi.org/10.32604/cmes.2022.019509 doi: 10.32604/cmes.2022.019509
|
| [23] |
R. Sahin, H. Zhang, Induced simplified neutrosophic correlated aggregation operators for multi-criteria group decision-making. J. Exp. Theor. Artif. In., 30 (2018), 279–292. https://doi.org/10.1080/0952813X.2018.1430857 doi: 10.1080/0952813X.2018.1430857
|
| [24] | X. Lu, T. Zhang, Y. Fang, J. Ye, Einstein aggregation operators of simplified neutrosophic indeterminate elements and their decision-making method, Neutrosophic Sets Syst., 47 (2021), 12–25. |
| [25] | D. Shigui, R. Yong, J. Ye, Subtraction operational aggregation operators of simplified neutrosophic numbers and their multi-attribute decision making approach, Neutrosophic Sets Sy., 33 (2020), 157–168. |
| [26] |
C. Jana, M. A. Pal, Robust single-valued neutrosophic soft aggregation operators in multi-criteria decision making, Symmetry, 11 (2019), 110. https://doi.org/10.3390/sym11010110 doi: 10.3390/sym11010110
|
| [27] |
F. Al-Sharqi, M. U. Romdhini, A. Al-Quran, Group decision-making based on aggregation operator and score function of Q-neutrosophic soft matrix, J. Intell. Fuzzy Sy., 45 (2023), 305–321. https://doi.org/10.3233/JIFS-224552 doi: 10.3233/JIFS-224552
|
| [28] | F. Al-Sharqi, A. Al-Quran, Z. M. Rodzi, Multi-attribute group decision-making based on aggregation operator and score function of bipolar neutrosophic hypersoft environment, Neutrosophic Sets Sy., 61 (2023), 465–492. |
| [29] |
H. Hashim, H. Garg, A. Al-Quran, N. A. Awang, L. Abdullah, Heronian mean operators considering Shapley fuzzy measure under interval neutrosophic vague environment for an investment decision, Int. J. Fuzzy Syst., 24 (2022), 2068–2091. https://doi.org/10.1007/s40815-021-01247-y doi: 10.1007/s40815-021-01247-y
|
| [30] | H. Hashim, L. Abdullah, A. Al-Quran, A. Awang, Entropy measures for interval neutrosophic vague sets and their application in decision making, Neutrosophic Sets Sy., 45 (2021), 74–95. |
| [31] |
A. Al-Quran, H. Hashim, L. Abdullah, A hybrid approach of interval neutrosophic vague sets and DEMATEL with new linguistic variable, Symmetry, 12 (2020), 275. https://doi.org/10.3390/sym12020275 doi: 10.3390/sym12020275
|
| [32] |
M. Unver, E. Türkarslan, N. Elik, M. Olgun, J. Ye, Intuitionistic fuzzy-valued neutrosophic multi-sets and numerical applications to classification, Complex Intell. Syst., 8 (2022), 1703–1721. https://doi.org/10.1007/s40747-021-00621-5 doi: 10.1007/s40747-021-00621-5
|
| [33] | S. Broumi, F. Smarandache, Intuitionistic neutrosophic soft set, J. Inform. Comput. Sci., 8 (2013), 130–140. |
| [34] |
M. Akram, A. Luqman, Intuitionistic single-valued neutrosophic hypergraphs, Opsearch, 54 (2017), 799–815. https://doi.org/10.1007/s12597-017-0306-9 doi: 10.1007/s12597-017-0306-9
|
| [35] |
M. Akram, M. Sitara, Certain concepts in intuitionistic neutrosophic graph structures, Information, 8 (2017), 154. https://doi.org/10.3390/info8040154 doi: 10.3390/info8040154
|
| [36] |
S. S. Hussain, I. Rosyida, H. Rashmanlou, F. Mofidnakhaei, Interval intuitionistic neutrosophic sets with its applications to interval intuitionistic neutrosophic graphs and climatic analysis, Comput. Appl. Math., 40 (2021), 121. https://doi.org/10.1007/s40314-021-01504-8 doi: 10.1007/s40314-021-01504-8
|
| [37] | P. Chellamani, D. Ajay, Pythagorean neutrosophic Dombi fuzzy graphs with an application to MCDM, Neutrosophic Sets Sy., 47 (2021), 411–431. |
| [38] |
J. N. Ismail, Z. Rodzi, F. Al-Sharqi, A. Al-Quran, H. Hashim, N. H. Sulaiman, Algebraic operations on Pythagorean neutrosophic sets: Extending applicability and decision-making capabilities, Int. J. Neutrosophic Sci., 21 (2023), 127–134. https://doi.org/10.54216/IJNS.210412 doi: 10.54216/IJNS.210412
|
| [39] | J. N. Ismail, Z. Rodzi, H. Hashim, N. H. Sulaiman, F. Al-Sharqi, A. Al-Quran, et al., Enhancing decision accuracy in DEMATEL using Bonferroni mean aggregation under Pythagorean neutrosophic environment, J. Fuzzy. Ext. Appl., 4 (2023), 281–298. |
| [40] |
M. Palanikumar, K. Arulmozhi, C. Jana, Multiple attribute decision-making approach for Pythagorean neutrosophic normal interval-valued fuzzy aggregation operators, Comput. Appl. Math., 41 (2022). https://doi.org/10.1007/s40314-022-01791-9 doi: 10.1007/s40314-022-01791-9
|
| [41] |
M. Asif, U. Ishtiaq, I. K. Argyros, Hamacher aggregation operators for pythagorean fuzzy set and its application in multi-attribute decision-making problem, Spectr. Oper. Res., 2 (2025), 27–40. https://doi.org/10.31181/sor2120258 doi: 10.31181/sor2120258
|
| [42] | M. Palanikumar, K. Arulmozhi, T. Gunasekar, Possibility Pythagorean neutrosophic soft set and its application of decision making, J. Int. Math. Virtual Inst., 12 (2022), 159–174. |
| [43] |
S. Petchimuthu, M. F. Banu, C. Mahendiran, T. Premala, Power and energy transformation: Multi-criteria decision-making utilizing complex q-rung picture fuzzy generalized power prioritized Yager operators, Spectr. Oper. Res., 2 (2025), 219–258. https://doi.org/10.31181/sor21202525 doi: 10.31181/sor21202525
|
| [44] |
Z. Ali, Fairly aggregation operators based on complex p, q-rung orthopair fuzzy sets and their application in decision-making problems, Spectr. Oper. Res., 2 (2025), 113–131. https://doi.org/10.31181/sor21202514 doi: 10.31181/sor21202514
|
| [45] | M. Palanikumar, K. Arulmozhi, MCGDM based on TOPSIS and VIKOR using Pythagorean neutrosophic soft with aggregation operators, Neutrosophic Sets Sy., 51 (2022), 539–555. |
| [46] |
S. A. Razak, Z. M. Rodzi, N. Ahmad, A. G. Ahmad, Exploring the boundaries of uncertainty: Interval valued Pythagorean neutrosophic set and their properties, Malays. J. Fundam. Appl. Sci., 20 (2024), 813–824. https://doi.org/10.11113/mjfas.v20n4.3482 doi: 10.11113/mjfas.v20n4.3482
|
| [47] |
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
|
| [48] | R. R. Yager, Pythagorean fuzzy subsets, In: 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Canada: IEEE, 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
| [49] |
R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. https://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
|
| [50] |
P. D. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making, Int. J. Intell. Syst., 33 (2017), 259–280. https://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
|
| [51] |
M. R. Seikh, U. Mandal, q-Rung orthopair fuzzy Archimedean aggregation operators: Application in the site selection for software operating units, Symmetry, 15 (2023), 1680. https://doi.org/10.3390/sym15091680 doi: 10.3390/sym15091680
|
| [52] |
Y. Du, X. Du, Y. Li, J. Cui, F. Hou, Complex q-rung orthopair fuzzy Frank aggregation operators and their application to multi-attribute decision making, Soft Comput., 26 (2022), 11973–12008. https://doi.org/10.1007/s00500-022-07465-2 doi: 10.1007/s00500-022-07465-2
|
| [53] |
H. M. A. Farid, M. Riaz, V. Simic, X. Peng, q-Rung orthopair fuzzy dynamic aggregation operators with time sequence preference for dynamic decision-making, PeerJ Comput. Sci., 10 (2024). https://doi.org/10.7717/peerj-cs.1742 doi: 10.7717/peerj-cs.1742
|
| [54] |
H. M. A. Farid, M. Riaz, q-Rung orthopair fuzzy Aczel-Alsina aggregation operators with multi-criteria decision-making, Eng. Appl. Artif. Intell., 122 (2023), 106105. https://doi.org/10.1016/j.engappai.2023.106105 doi: 10.1016/j.engappai.2023.106105
|
| [55] |
A. P. Darko, D. Liang, Some q-rung orthopair fuzzy Hamacher aggregation operators and their application to multiple attribute group decision making with modified EDAS method, Eng. Appl. Artif. Intell., 87 (2020), 103259. https://doi.org/10.1016/j.engappai.2019.103259 doi: 10.1016/j.engappai.2019.103259
|
| [56] |
M. R. Seikh, U. Mandal, q-Rung orthopair fuzzy Frank aggregation operators and its application in multiple attribute decision-making with unknown attribute weights, Granul. Comput., 7 (2022), 709–730. https://doi.org/10.1007/s41066-021-00290-2 doi: 10.1007/s41066-021-00290-2
|
| [57] |
A. F. Alrasheedi, J. Kim, R. Kausar, q-Rung orthopair fuzzy information aggregation and their application towards material selection, AIMS Math., 8 (2023), 18780–18808. https://doi.org/10.3934/math.2023956 doi: 10.3934/math.2023956
|
| [58] |
T. Senapati, G. Chen, I. Ullah, M. S. A. Khan, F. Hussain, A novel approach towards multiattribute decision making using q-rung orthopair fuzzy Dombi-Archimedean aggregation operators, Heliyon, 10 (2024), e27969. https://doi.org/10.1016/j.heliyon.2024.e27969 doi: 10.1016/j.heliyon.2024.e27969
|
| [59] |
M. Unver, E. Turkarslan, N. Elik, M. Olgun, J. Ye, Intuitionistic fuzzy-valued neutrosophic multi-sets and numerical applications to classification, Complex Intell. Syst., 8 (2022), 1703–1721. https://doi.org/10.1007/s40747-021-00621-5 doi: 10.1007/s40747-021-00621-5
|
| [60] |
Y. Al-Qudah, N. Hassan, Complex multi-fuzzy soft set: Its entropy and similarity measure, IEEE Access, 6 (2018), 65002–65017. https://doi.org/10.1109/ACCESS.2018.2877921 doi: 10.1109/ACCESS.2018.2877921
|
| [61] |
D. J. Martina, G. Deepa, Some algebraic properties on rough neutrosophic matrix and its application to multi-criteria decision-making, AIMS Math., 11 (2023), 24132–24152. https://doi.org/10.3934/math.20231230 doi: 10.3934/math.20231230
|
| [62] |
N. A. Khalid, M. Saeed, An approach for hybridizing N-subalgebra with quantified neutrosophic set using G-algebra, Neutrosophic Syst. Appl., 25 (2025), 14–29. https://doi.org/10.61356/j.nswa.2025.25411 doi: 10.61356/j.nswa.2025.25411
|
| [63] |
A. Bataihah, A. Hazaymeh, Quasi contractions and fixed point theorems in the context of neutrosophic fuzzy metric spaces, Eur. J. Pure Appl. Math., 18 (2025), 5785. https://doi.org/10.29020/nybg.ejpam.v18i1.5785 doi: 10.29020/nybg.ejpam.v18i1.5785
|
| [64] |
Y. Saber, F. Alsharari, F. Smarandache, An introduction to single-valued neutrosophic soft topological structure, Soft Comput., 26 (2022), 7107–7122. https://doi.org/10.1007/s00500-022-07150-4 doi: 10.1007/s00500-022-07150-4
|
| [65] |
M. U. Romdhini, F. Al-Sharqi, A. Nawawi, A. Al-Quran, H. Rashmanlou, Signless Laplacian energy of interval-valued fuzzy graph and its applications, Sains Malays., 52 (2023), 2127–2137. https://doi.org/10.17576/jsm-2023-5207-18 doi: 10.17576/jsm-2023-5207-18
|