This article investigated a class of switched impulsive fractional control systems with delays occurring at different time instants in both the state and control input. First, we analyzed the state response behavior and established sufficient conditions ensuring the system's stability over a finite time horizon. Next, we demonstrated the system's relative controllability using the fixed-point approach. Finally, a numerical simulation was presented to validate the theoretical findings.
Citation: P. K. Lakshmi Priya, K. Kaliraj, Panumart Sawangtong. Analysis of relative controllability and finite-time stability in nonlinear switched fractional impulsive systems[J]. AIMS Mathematics, 2025, 10(4): 8095-8115. doi: 10.3934/math.2025371
This article investigated a class of switched impulsive fractional control systems with delays occurring at different time instants in both the state and control input. First, we analyzed the state response behavior and established sufficient conditions ensuring the system's stability over a finite time horizon. Next, we demonstrated the system's relative controllability using the fixed-point approach. Finally, a numerical simulation was presented to validate the theoretical findings.
| [1] |
Z. Ai, L. Peng, Stabilization and robustness analysis of multi-module impulsive switched linear systems, Nonlinear Anal. Hybrid Syst., 30 (2018), 293–305. https://doi.org/10.1016/j.nahs.2018.06.001 doi: 10.1016/j.nahs.2018.06.001
|
| [2] |
V. D. Blondel, J. N. Tsitsiklis, Complexity of stability and controllability of elementary hybrid systems, Automatica, 35 (1999), 479–489. https://doi.org/10.1016/S0005-1098(98)00175-7 doi: 10.1016/S0005-1098(98)00175-7
|
| [3] |
C. Possieri, A. R. Teel, Structural properties of a class of linear hybrid systems and output feedback stabilization, IEEE Trans. Automat. Control, 62 (2017), 2704–2719. https://doi.org/10.1109/TAC.2016.2617090 doi: 10.1109/TAC.2016.2617090
|
| [4] |
Y. Shu, B. Li, Existence and uniqueness of solutions to uncertain fractional switched systems with an uncertain stock model, Chaos Solitons Fract., 155 (2022), 111746. https://doi.org/10.1016/j.chaos.2021.111746 doi: 10.1016/j.chaos.2021.111746
|
| [5] |
Z. Lv, B. Chen, Existence and uniqueness of positive solutions for a fractional switched system, Abstr. Appl. Anal., 2014 (2014), 828721. https://doi.org/10.1155/2014/828721 doi: 10.1155/2014/828721
|
| [6] |
Y. Q. Guan, L. Wang, Target controllability of multi-agent systems under fixed and switching topologies, Internat. J. Robust Nonlinear Control, 29 (2023), 2725–2741. https://doi.org/10.1002/rnc.4518 doi: 10.1002/rnc.4518
|
| [7] |
L. He, S. Banihashemi, H. Jafari, A. Babaei, Numerical treatment of a fractional order system of nonlinear stochastic delay differential equations using a computational scheme, Chaos Solitons Fract., 149 (2021), 111018. https://doi.org/10.1016/j.chaos.2021.111018 doi: 10.1016/j.chaos.2021.111018
|
| [8] |
V. S. Muni, R. K. George, Controllability of semilinear impulsive control systems with multiple delays in control, IMA J. Math. Control Inform., 36 (2019), 869–899. https://doi.org/10.1093/imamci/dny011 doi: 10.1093/imamci/dny011
|
| [9] |
T. Mur, H. R. Henriquez, Relative controllability of linear systems of fractional order with delay, Math. Control Related Fields, 5 (2015), 845–858. https://doi.org/10.3934/mcrf.2015.5.845 doi: 10.3934/mcrf.2015.5.845
|
| [10] |
M. Fe$\check{c}$kan, Y. Zhou, J. R. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017
|
| [11] |
X. Zhang, C. Li, T. Huang, Impacts of state-dependent impulses on the stability of switching Cohen-Grossberg neural networks, Adv. Differ. Equ., 2017 (2017), 316. https://doi.org/10.1186/s13662-017-1375-z doi: 10.1186/s13662-017-1375-z
|
| [12] |
Z. L. You, J. R. Wang, Stability of impulsive delay differential equations, J. Appl. Math. Comput., 56 (2018), 253–268. https://doi.org/10.1007/s12190-016-1072-1 doi: 10.1007/s12190-016-1072-1
|
| [13] |
Z. L. You, J. R. Wang, On the exponential stability of nonlinear delay system with impulses, IMA J. Math. Control Inform., 35 (2018), 773–803. https://doi.org/10.1093/imamci/dnw077 doi: 10.1093/imamci/dnw077
|
| [14] |
K. Balachandran, Y. Zhou, J. Kokila, Relative controllability of fractional dynamical systems with multiple delays in control, Comput. Math. Appl., 64 (2012), 3201–3209. https://doi.org/10.1016/j.camwa.2011.11.061. doi: 10.1016/j.camwa.2011.11.061
|
| [15] |
J. Huang, X. Ma, H. Che, Z. Han, Further results on interval observer design for discrete-time switched systems and application to circuit systems, IEEE Trans. Circuits Syst. II. Express Briefs, 67 (2020), 2542–2546. https://doi.org/10.1109/TCSII.2019.2957945 doi: 10.1109/TCSII.2019.2957945
|
| [16] |
H. P. Luo, S. Liu, Relative controllability of nonlinear switched fractional delayed systems, Commun. Nonlinear Sci. Numer. Simul., 119 (2023), 107133. https://doi.org/10.1016/j.cnsns.2023.107133 doi: 10.1016/j.cnsns.2023.107133
|
| [17] |
M. Pospisil, Relative of controllability of neutral differential equations with a delay, SIAM J. Control Optim., 55 (2017), 835–855. https://doi.org/10.1137/15M1024287 doi: 10.1137/15M1024287
|
| [18] |
S. Zhao, Z. Zhang, T. Wang, W. Yu, Controllability for a class of time-varying controlled switching impulsive systems with time delays, Appl. Math. Comput., 228 (2014), 404–410. https://doi.org/10.1016/j.amc.2013.11.103 doi: 10.1016/j.amc.2013.11.103
|
| [19] |
S. Zhao, J. Sun, A geometric approach for reachability and observability of linear switched impulsive systems, Nonlinear Anal., 72 (2010), 4221–4229. https://doi.org/10.1016/j.na.2010.01.052 doi: 10.1016/j.na.2010.01.052
|
| [20] |
D. X. Zhang, J. Y. Yan, B. Hu, Z. H. Guan, D. F. Zheng, Controllability on a class of switched time-varying systems with impulses and multiple time delays, Internat. J. Systems Sci., 53 (2022), 2261–2280. https://doi.org/10.1080/00207721.2022.2050436 doi: 10.1080/00207721.2022.2050436
|
| [21] |
H. P. Luo, S. Liu, X. W. Zhao, T. Huang, Relative controllability of nonlinear switched fractional systems, Asian J. Control, 26 (2023), 312–322. https://doi.org/10.1002/asjc.3205 doi: 10.1002/asjc.3205
|
| [22] |
H. P. Luo, S. Liu, Relative controllability of nonlinear switched fractional delayed systems, Commun. Nonlinear Sci. Numer. Simul., 119 (2023), 107133. https://doi.org/10.1016/j.cnsns.2023.107133 doi: 10.1016/j.cnsns.2023.107133
|
| [23] |
T. Kacorek, Stability of positive fractional switched continuous-time linear systems, Bull. Pol. Acad. Sci., 61 (2013), 349–352. https://doi.org/10.2478/bpasts-2013-0033 doi: 10.2478/bpasts-2013-0033
|
| [24] |
L. Xu, B. Bao, H. Hu, Stability of impulsive delayed switched systems with conformable fractional-order derivatives, Internat. J. Systems Sci., 56 (2025), 1271–1288. https://doi.org/10.1080/00207721.2024.2421454 doi: 10.1080/00207721.2024.2421454
|
| [25] |
J. Liang, B. Wu, L. Liu, Y. Wang, C. Li, Finite-time stability and finite-time boundedness of fractional order switched systems, Trans. Inst. Meas. Control, 41 (2015), 3364–3371. https://doi.org/10.1177/0142331219826333 doi: 10.1177/0142331219826333
|
| [26] |
V. Kumar, M. Kostic, A. Tridane, A. Debbouche, Controllability of switched Hilfer neutral fractional dynamic systems with impulses, IMA J. Math. Control Inform., 39 (2022), 807–836. https://doi.org/10.1093/imamci/dnac011 doi: 10.1093/imamci/dnac011
|
| [27] |
J. R. Wang, M. Fe$\tilde{c}$kan, Y. Zhou, Fractional order differential switched systems with coupled nonlocal initial and impulsive conditions, Bull. Sci. Math., 141 (2017), 727–746. https://doi.org/10.1016/j.bulsci.2017.07.007 doi: 10.1016/j.bulsci.2017.07.007
|
| [28] |
A. B. Makhlouf, D. Baleanu, Finite time stability of fractional order systems of neutral type, Fractal Fract., 6 (2022), 289. https://doi.org/10.3390/fractalfract6060289 doi: 10.3390/fractalfract6060289
|
| [29] |
A. Zada, B. Pervaiz, M. Subramanian, I. L. Popa, Finite time stability for nonsingular impulsive first order delay differential systems, Appl. Math. Comput., 421 (2022), 126943. https://doi.org/10.1016/j.amc.2022.126943 doi: 10.1016/j.amc.2022.126943
|
| [30] |
T. Feng, L. Guo, B. Wu, Y. Q. Chen, Stability analysis of switched fractional-order continuous-time systems, Nonlinear Dyn., 102 (2020), 2467–2478. https://doi.org/10.1007/s11071-020-06074-8 doi: 10.1007/s11071-020-06074-8
|
| [31] |
J. Huang, D. Luo, Relatively exact controllability of fractional stochatic delay system driven by L$\tilde{e}$vy noise, Math. Methods Appl. Sci., 46 (2023), 11188–11211. https://doi.org/10.1002/mma.9175 doi: 10.1002/mma.9175
|
| [32] |
A. M. Elshenhab, X. T. Wang, F. Mofarreh, O. Bazighifan, Exact solutions and finite time stability of linear conformable fractional systems with pure delay, Comput. Modell. Eng. Sci., 134 (2022), 927–940. https://doi.org/10.32604/cmes.2022.021512 doi: 10.32604/cmes.2022.021512
|
| [33] |
A. M. Elshenhab, X. T. Wang, Representation of solutions for linear fractional systems with pure delay and multiple delays, Math. Methods Appl. Sci., 44 (2021), 12835–12850. https://doi.org/10.1002/mma.7585 doi: 10.1002/mma.7585
|
| [34] |
J. Cerm$\grave{a}$k, J. Horni$\tilde{c}ek$, T. Kisela, Stability regions for fractional differential systems with a time delay, Commun. Nonlinear Sci. Numer. Simul., 31 (2016), 108–123. https://doi.org/10.1016/j.cnsns.2015.07.008 doi: 10.1016/j.cnsns.2015.07.008
|
| [35] |
V. Kumar, M. Malik, D. Baleanu, Results on Hilfer fractional switched dynamical systems with non-instantaneous impulses, Paramana J. Phys., 96 (2022), 172. https://doi.org/10.1007/s12043-022-02411-1 doi: 10.1007/s12043-022-02411-1
|
| [36] |
X. Liu, S. Zhong, X. Ding, Robust exponential stability of impulsive switched systems with switching delays: A Razumikhin approach, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1805–1812. https://doi.org/10.1016/j.cnsns.2011.09.013 doi: 10.1016/j.cnsns.2011.09.013
|
| [37] |
Q. Meng, H. Yang, B. Jiang, Small-time local controllability of switched nonlinear systems, IEEE Trans. Automat. Control, 66 (2021), 5422–5428. https://doi.org/10.1109/TAC.2020.3044898 doi: 10.1109/TAC.2020.3044898
|
| [38] |
W. Ren, J. Xiong, Stability analysis of stochastic impulsive switched systems with deterministic state-dependent impulses and switches, SIAM J. Control Optim., 59 (2021), 2068–2092. https://doi.org/10.1137/20M1353460 doi: 10.1137/20M1353460
|
| [39] |
J. Yan, B. Hu, Z. H. Guan, Controllability of nonlinear impulsive and switching systems with input delay, IEEE Trans. Automat. Control, 68 (2023), 1184–1191. https://doi.org/10.1109/TAC.2022.3149876 doi: 10.1109/TAC.2022.3149876
|
| [40] |
M. Li, J. Wang, Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., 324 (2018), 254–265. https://doi.org/10.1016/j.amc.2017.11.063 doi: 10.1016/j.amc.2017.11.063
|
| [41] |
H. Ye, J. Gao, Y. Ding, A generalized gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075–1081. https://doi.org/10.1016/j.jmaa.2006.05.061 doi: 10.1016/j.jmaa.2006.05.061
|
| [42] | D. R. Smart, Fixed point theorems, Cambridge University Press, 1974. |