Research article Special Issues

Fast algorithms for a linear system with infinitesimal generator structure of a Markovian queueing model

  • Received: 29 December 2024 Revised: 07 March 2025 Accepted: 17 March 2025 Published: 24 March 2025
  • MSC : 15A05, 15B05, 65T50

  • In this paper, we focused on solving the perturbed four-banded linear system derived from the traffic process associated with a Markovian queueing model. Utilizing the spectral decomposition of circulant and skew circulant matrices, we computed the product of Toeplitz inversion and a vector, leading to a decomposition algorithm for perturbed four-banded linear systems. This decomposed Toeplitz system features multiple right-hand terms, significantly reducing computational complexity through Toeplitz inversion. Additionally, we introduced an algorithm based on banded LU decomposition, resulting in a banded linear system with multiple right-hand terms, where the sparsity of the banded LU decomposition is pivotal. To evaluate the algorithm's performance, we presented two examples in numerical simulations.

    Citation: Jiaqi Qu, Yunlan Wei, Yanpeng Zheng, Zhaolin Jiang. Fast algorithms for a linear system with infinitesimal generator structure of a Markovian queueing model[J]. AIMS Mathematics, 2025, 10(3): 6546-6559. doi: 10.3934/math.2025299

    Related Papers:

  • In this paper, we focused on solving the perturbed four-banded linear system derived from the traffic process associated with a Markovian queueing model. Utilizing the spectral decomposition of circulant and skew circulant matrices, we computed the product of Toeplitz inversion and a vector, leading to a decomposition algorithm for perturbed four-banded linear systems. This decomposed Toeplitz system features multiple right-hand terms, significantly reducing computational complexity through Toeplitz inversion. Additionally, we introduced an algorithm based on banded LU decomposition, resulting in a banded linear system with multiple right-hand terms, where the sparsity of the banded LU decomposition is pivotal. To evaluate the algorithm's performance, we presented two examples in numerical simulations.



    加载中


    [1] G. Giambene, Queuing theory and telecommunications networks and applications, 2 Eds., New York: Springer, 2005. http://dx.doi.org/10.1007/978-1-4614-4084-0
    [2] T. Oda, Moment analysis for traffic associated with Markovian queueing systems, IEEE T. Commun., 39 (1991), 737–746. http://dx.doi.org/10.1109/26.87164 doi: 10.1109/26.87164
    [3] M. Fumiaki, An infinitely many server queue having Markov renewal arrivals and hyperexponential service times, J. Oper. Res. Soc. Jpn., 29 (2017), 338–351. http://dx.doi.org/10.2307/2582311 doi: 10.2307/2582311
    [4] C. Wen, T. Z. Huang, X. M. Gu, Z. L. Shen, H. F. Zhang, C. Liu, Multipreconditioned GMRES for simulating stochastic automata networks, Open Math., 16 (2018), 986–998. http://dx.doi.org/10.1515/math-2018-0083 doi: 10.1515/math-2018-0083
    [5] D. A. Bini, B. Meini, Effective methods for solving banded Toeplitz systems, SIAM J. Numer. Anal., 20 (1999), 700–719. http://dx.doi.org/10.1137/S0895479897324585 doi: 10.1137/S0895479897324585
    [6] D. Fischer, G. Golub, O. Hald, C. Leiva, O. Widlund, On Fourier-Toeplitz methods for separable elliptic problems, Math. Comput., 28 (1974), 349–368. http://dx.doi.org/10.2307/2005913 doi: 10.2307/2005913
    [7] A. N. Malyshev, M. Sadkane, Fast solution of unsymmetric banded Toeplitz systems by means of spectral factorizations and Woodbury's formula, Numer. Linear Algebra Appl., 21 (2014), 13–23. https://doi.org/10.1002/nla.1853 doi: 10.1002/nla.1853
    [8] Y. L. Zhao, P. Y. Zhu, X. M. Gu, X. L. Zhao, J. Cao, A limited-memory block bi-diagonal Toeplitz preconditioner for block lower triangular Toeplitz system from time-space fractional diffusion equation, J. Comput. Appl. Math., 362 (2019), 99–115. http://dx.doi.org/10.1016/j.cam.2019.05.019 doi: 10.1016/j.cam.2019.05.019
    [9] S. Serra-Capizzano, C. Tablino-Possio, Multigrid methods for multilevel circulant matrices, SIAM J. Sci. Comput., 26 (2004), 55–85. http://dx.doi.org/10.1137/S1064827501388509 doi: 10.1137/S1064827501388509
    [10] M. A. Jandron, A. A. Ruffa, J. Baglama, An asynchronous direct solver for banded linear systems, Numer. Algorithms, 76 (2017), 211–235. http://doi.org/10.1007/s11075-016-0251-3 doi: 10.1007/s11075-016-0251-3
    [11] Y. R. Fu, X. Y. Jiang, Z. L. Jiang, S. Jhang, Fast algorithms for finding the solution of CUPL-Toeplitz linear system from Markov chain, Appl. Math. Comput., 396 (2021), 125859. http://doi.org/10.1016/j.amc.2020.125859 doi: 10.1016/j.amc.2020.125859
    [12] X. Zhang, X. Y. Jiang, Z. L. Jiang, H. Byun, An improvement of methods for solving the CUPL-Toeplitz linear system, Appl. Math. Comput., 421 (2022), 126932. http://doi.org/10.1016/j.amc.2022.126932 doi: 10.1016/j.amc.2022.126932
    [13] X. Zhang, Y. P. Zheng, Z. L. Jiang, H. Byun, Numerical algorithms for corner-modified symmetric Toeplitz linear system with applications to image encryption and decryption, J. Appl. Math. Comput., 69 (2023), 1967–1987. http://doi.org/10.1007/s12190-022-01819-7 doi: 10.1007/s12190-022-01819-7
    [14] X. Zhang, Y. P. Zheng, Z. L. Jiang, H. Byun, Fast algorithms for perturbed Toeplitz-plus-Hankel system based on discrete cosine transform and their applications, Jpn. J. Ind. Appl. Math., 41 (2024), 567–583. http://doi.org/10.1007/s13160-023-00616-4 doi: 10.1007/s13160-023-00616-4
    [15] X. Zhang, Y. P. Zheng, Z. L. Jiang, Fast algorithms for the solution of perturbed symmetric Toeplitz linear system and its applications, Comput. Appl. Math., 43 (2024), 252. http://dx.doi.org/10.1007/s40314-024-02773-9 doi: 10.1007/s40314-024-02773-9
    [16] J. T. Jia, S. M. Li, On the inverse and determinant of general bordered tridiagonal matrices, Comput. Math. Appl., 69 (2015), 503–509. http://dx.doi.org/10.1016/j.camwa.2015.01.012 doi: 10.1016/j.camwa.2015.01.012
    [17] J. T. Jia, T. Sogabe, S. M. Li, A generalized symbolic Thomas algorithm for the solution of opposite-bordered tridiagonal linear systems, J. Comput. Appl. Math., 290 (2015), 423–432. http://dx.doi.org/10.1016/j.cam.2015.05.026 doi: 10.1016/j.cam.2015.05.026
    [18] J. A. Marrero, A numerical solver for general bordered tridiagonal matrix equations, Comput. Math. Appl., 72 (2016), 2731–2740. http://dx.doi.org/10.1016/j.camwa.2016.09.025 doi: 10.1016/j.camwa.2016.09.025
    [19] A. Martin, I. D. Boyd, Variant of the Thomas Algorithm for opposite-bordered tridiagonal systems of equations, Int. J. Numer. Meth. Bio., 26 (2010), 752–759. http://dx.doi.org/10.1002/CNM.1172 doi: 10.1002/CNM.1172
    [20] L. Du, T. Sogabe, S. L. Zhang, A fast algorithm for solving tridiagonal quasi-Toeplitz linear systems, Appl. Math. Lett., 75 (2018), 74–81. http://dx.doi.org/10.1016/j.aml.2017.06.016 doi: 10.1016/j.aml.2017.06.016
    [21] Y. L. Wei, Y. P. Zheng, Z. L. Jiang, S. Shon, A study of determinants and inverses for periodic tridiagonal Toeplitz matrices with perturbed corners involving Mersenne numbers, Mathematics, 7 (2019), 893. http://dx.doi.org/10.3390/math7100893 doi: 10.3390/math7100893
    [22] Y. L. Wei, X. Y. Jiang, Z. L. Jiang, S. Shon, Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices, Adv. Differ. Equ., 2019 (2019), 410. http://dx.doi.org/10.1186/s13662-019-2335-6 doi: 10.1186/s13662-019-2335-6
    [23] Y. L. Wei, X. Y. Jiang, Z. L. Jiang, S. Shon, On inverses and eigenpairs of periodic tridiagonal Toeplitz matrices with perturbed corners, J. Appl. Anal. Comput., 10 (2020), 178–191. http://dx.doi.org/10.11948/20190105 doi: 10.11948/20190105
    [24] T. Sogabe, Numerical algorithms for solving comrade linear systems based on tridiagonal solvers, Appl. Math. Comput., 198 (2008), 117–122. http://dx.doi.org/10.1016/j.amc.2007.08.029 doi: 10.1016/j.amc.2007.08.029
    [25] J. T. Jia, S. M. Li, New algorithms for numerically solving a class of bordered tridiagonal systems of linear equations, Comput. Math. Appl., 78 (2019), 144–151. http://dx.doi.org/10.1016/j.camwa.2019.02.028 doi: 10.1016/j.camwa.2019.02.028
    [26] G. Golub, C. Van Loan, Matrix computations, 3 Eds., Baltimore and London: Johns Hopkins University Press, 1996.
    [27] C. Garoni, S. Serra-Capizzano, Generalized locally Toeplitz sequences: Theory and applications, Cham: Springer, 2017.
    [28] A. Böttcher, S. M. Grudsky, Spectral properties of banded Toeplitz matrices, Philadelphia: SIAM, 2005.
    [29] M. Bogoya, S. M. Grudsky, S. Serra-Capizzano, Fast non-Hermitian Toeplitz eigenvalue computations, joining matrixless algorithms and FDE approximation matrices, SIAM J. Matrix Anal. Appl., 45 (2024), 284–305. http://doi.org/10.1137/22M1529920 doi: 10.1137/22M1529920
    [30] S. Serra-Capizzano, P. Tilli, Extreme singular values and eigenvalues of non-Hermitian block Toeplitz matrices, J. Comput. Appl. Math., 108 (1999), 113–130. http://dx.doi.org/10.1016/S0377-0427(99)00104-1 doi: 10.1016/S0377-0427(99)00104-1
    [31] M. Batista, A. A. Karawia, The use of the Sherman-Morrison-Woodbury formula to solve cyclic block tri-diagonal and cyclic block penta-diagonal linear systems of equations, Appl. Math. Comput., 210 (2009), 558–563. http://dx.doi.org/10.1016/j.amc.2009.01.003 doi: 10.1016/j.amc.2009.01.003
    [32] R. H. Chan, X. Q. Jin, An introduction to iterative Toeplitz solvers, Philadelphia: SIAM, 2007. http://dx.doi.org/10.1137/1.9780898718850
    [33] X. Q. Jin, Preconditioning techniques for Toeplitz systems, Beijing: Higher Education Press, 2010.
    [34] M. K. Ng, Iterative methods for Toeplitz systems, New York: Oxford University Press, 2004.
    [35] S. L. Lei, Y. C. Huang, Fast algorithms for high-order numerical methods for space fractional diffusion equations, Int. J. Comput. Math., 94 (2017), 1062–1078. http://dx.doi.org/10.1080/00207160.2016.1149579 doi: 10.1080/00207160.2016.1149579
    [36] R. H. Chan, A. M. Yip, M. K. Ng, The best circulant preconditioners for Hermitian Toeplitz systems, SIAM J. Numer. Anal., 38 (2000), 876–896. http://dx.doi.org/10.1137/s0036142999354083 doi: 10.1137/s0036142999354083
    [37] I. Gohberg, V. Olshevsky, Circulants, displacements and decompositions of matrices, Integr. Equat. Oper. Th., 15 (1992), 730–743. http://dx.doi.org/10.1007/BF01200697 doi: 10.1007/BF01200697
    [38] R. H. Chan, M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1996), 427–482. http://dx.doi.org/10.1137/S0036144594276474 doi: 10.1137/S0036144594276474
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(923) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog