Research article

On the equilibrium strategy of linear-quadratic time-inconsistent control problems

  • Received: 08 October 2024 Revised: 11 February 2025 Accepted: 14 February 2025 Published: 11 March 2025
  • MSC : 49K15, 49N10, 91B50

  • The paper investigates the open-loop equilibrium strategy for linear-quadratic time-inconsistent control problems. It derives an equilibrium maximum principle for this strategy and establishes the equivalence among the open-loop equilibrium strategy, two-point boundary value problems, and the equilibrium Riccati equation. Additionally, examples are provided to illustrate the essential differences among the open-loop equilibrium strategy, the closed-loop equilibrium strategy, and the optimal control.

    Citation: Wei Ji. On the equilibrium strategy of linear-quadratic time-inconsistent control problems[J]. AIMS Mathematics, 2025, 10(3): 5480-5494. doi: 10.3934/math.2025253

    Related Papers:

  • The paper investigates the open-loop equilibrium strategy for linear-quadratic time-inconsistent control problems. It derives an equilibrium maximum principle for this strategy and establishes the equivalence among the open-loop equilibrium strategy, two-point boundary value problems, and the equilibrium Riccati equation. Additionally, examples are provided to illustrate the essential differences among the open-loop equilibrium strategy, the closed-loop equilibrium strategy, and the optimal control.



    加载中


    [1] D. Hume, A treatise of human nature, Oxford University press, 2000.
    [2] A. Smith, The theory of moral sentiments, Penguin, 2010.
    [3] R. H. Strotz, Myopia and inconsistency in dynamic utility maximization, Rev. Econ. Stud., 23 (1955), 165–180. https://doi.org/10.2307/2295722 doi: 10.2307/2295722
    [4] T. Bj$\ddot{\text{o}}$rk, A. Murgoci, A theory of Markovian time-inconsistent stochastic control in discrete time, Finance Stoch., 18 (2014), 545–592. https://doi.org/10.1007/s00780-014-0234-y doi: 10.1007/s00780-014-0234-y
    [5] T. Bj$\ddot{\text{o}}$rk, M. Khapko, A. Murgoci, Time inconsistent stochastic control in continuous time: theory and examples, 2016, arXiv: 1612.03650.
    [6] T. Bj$\ddot{\text{o}}$rk, M. Khapko, A. Murgoci, On time-inconsistent stochastic control in continuous time, Finance Stoch., 21 (2017), 331–360. https://doi.org/10.1007/s00780-017-0327-5 doi: 10.1007/s00780-017-0327-5
    [7] I. Ekeland, A. Lazrak, Being serious about non-commitment: subgame perfect equilibrium in continuous time, 2006, arXiv: math/0604264.
    [8] I. Ekeland, O. Mbodji, T. A. Pirvu, Time-consistent portfolio management, SIAM J. Financ. Math., 3 (2012), 1–32. https://doi.org/10.1137/100810034 doi: 10.1137/100810034
    [9] Q. M. Wei, J. M. Yong, Z. Y. Yu, Time-inconsistent recursive stochastic optimal control problems, SIAM J. Control Optim., 55 (2017), 4156–4201. https://doi.org/10.1137/16M1079415 doi: 10.1137/16M1079415
    [10] W. Yan, J. M. Yong, Time-inconsistent optimal control problems and related issues, In: Modeling, stochastic control, optimization, and applications, Cham: Springer, 2019,533–569. https://doi.org/10.1007/978-3-030-25498-8_22
    [11] J. M. Yong, Time-inconsistent optimal control problems and the equilibrium HJB equation, Math. Control Related Fields, 2 (2012), 271–329. https://doi.org/10.3934/mcrf.2012.2.271 doi: 10.3934/mcrf.2012.2.271
    [12] J. M. Yong, Deterministic time-inconsistent optimal control problems–an essentially cooperative approach, Acta Math. Appl. Sin. Engl. Ser., 28 (2012), 1–30. https://doi.org/10.1007/s10255-012-0120-3 doi: 10.1007/s10255-012-0120-3
    [13] J. M. Yong, Linear-quadratic optimal control problems for mean-field stochastic differential equations–time consistent solutions, Trans. Amer. Math. Soc., 369 (2017), 5467–5523. https://doi.org/10.1090/tran/6502 doi: 10.1090/tran/6502
    [14] F. F. Dou, Q. L$\ddot{\text{u}}$, Time-inconsistent linear quadratic optimal control problems for stochastic evolution equations, SIAM J. Control Optim., 58 (2020), 485–509. https://doi.org/10.1137/19M1250339 doi: 10.1137/19M1250339
    [15] Q. L$\ddot{\text{u}}$, B. W. Ma, Time-inconsistent stochastic linear-quadratic control problem with indefinite control weigh costs, Sci. China Math., 67 (2024), 211–236. https://doi.org/10.1007/s11425-022-2106-6 doi: 10.1007/s11425-022-2106-6
    [16] Y. Hu, H. Q. Jin, X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM J. Control Optim., 50 (2012), 1548–1572. https://doi.org/10.1137/110853960 doi: 10.1137/110853960
    [17] Y. Hu, H. Q. Jin, X. Y. Zhou, Time-inconsistent stochastic linear-quadratic control: characterization and uniqueness of equilibrium, SIAM J. Control Optim., 55 (2017), 1261–1279. https://doi.org/10.1137/15M1019040 doi: 10.1137/15M1019040
    [18] Y. H. Ni, X. Li, J. F. Zhang, M. Krstic, Mixed equilibrium solution of time-inconsistent stochastic linear-quadratic problem, SIAM J. Control Optim., 57 (2019), 533–569. https://doi.org/10.1137/18M1177068 doi: 10.1137/18M1177068
    [19] H. Y. Cai, D. H. Chen, Y. F. Peng, W. Wei, On the time-inconsistent deterministic linear-quadratic control, SIAM J. Control Optim., 60 (2022), 968–991. https://doi.org/10.1137/21M1419611 doi: 10.1137/21M1419611
    [20] Y. F. Peng, W. Wei, Solutions to equilibrium HJB equations for time-inconsistent deterministic linear quadratic control: characterization and uniqueness, 2023, arXiv: 2308.13850.
    [21] W. Ji, Optimal control problems with time inconsistency, Electron. Res. Arch., 31 (2023), 492–508. https://doi.org/ 10.3934/era.2023024 doi: 10.3934/era.2023024
    [22] W. Ji, Closed-loop and open-loop equilibrium of a class time-inconsistent linear-quadratic differential games, Int. J. Game Theory, 53 (2024), 635–651. https://doi.org/10.1007/s00182-024-00895-2 doi: 10.1007/s00182-024-00895-2
    [23] J. R. Sun, X. Li, J. M. Yong, Open-loop and closed-loop solvabilities for stochastic linear quadratic optimal control problems, SIAM J. Control Optim., 54 (2016), 2274–2308. https://doi.org/10.1137/15M103532X doi: 10.1137/15M103532X
    [24] J. R. Sun, J. Xiong, J. M. Yong, Indefinite stochastic linear-quadratic optimal control problems with random coefficients: closed-loop representation of open-loop optimal controls, Ann. Appl. Probab., 31 (2021), 460–499. https://doi.org/10.1214/20-AAP1595 doi: 10.1214/20-AAP1595
    [25] J. R. Sun, J. M. Yong, Stochastic linear-quadratic optimal control problems–recent developments, Annu. Rev. Control, 56 (2023), 10089. https://doi.org/10.1016/j.arcontrol.2023.100899 doi: 10.1016/j.arcontrol.2023.100899
    [26] J. M. Yong, X. Y. Zhou, Stochastic controls: Hamiltonian systems and HJB equations, New York: Springer, 1999. https://doi.org/10.1007/978-1-4612-1466-3
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1245) PDF downloads(67) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog