This study investigates the stochastic nonlinear Schrödinger equation with a delta potential ($ \delta $-NLSE), a model capturing the combined effects of nonlinear dispersion, localized defects, and environmental randomness. Analytical solutions are constructed using unified solver techniques to evaluate the influence of noise intensity and potential strength on wave propagation and solitary-wave formation. The solitary waves in the stochastic $ \delta $-NLSE reveal how randomness and defect-induced localization interact, resulting in novel phenomena such as stochastic modification of transmission and reflection coefficients, noise-stabilized limit states, and random soliton diffusion. The issue is significant because real-world media are rarely homogeneous or noise-free, and understanding how randomness interacts with localized singularities remains a challenge in both theory and practice. The proposed stochastic solutions are ground-breaking and highly relevant for modeling complex physical processes in nonlinear wave theory, quantum mechanics, water waves, nonlinear optics, and Bose-Einstein condensates, where localized impurities or interfaces strongly affect wave propagation.
Citation: H. S. Alayachi. Closed-form solutions of stochastic solitary waves for certain type of nonlinear Schrödinger equation[J]. AIMS Mathematics, 2025, 10(12): 30718-30731. doi: 10.3934/math.20251348
This study investigates the stochastic nonlinear Schrödinger equation with a delta potential ($ \delta $-NLSE), a model capturing the combined effects of nonlinear dispersion, localized defects, and environmental randomness. Analytical solutions are constructed using unified solver techniques to evaluate the influence of noise intensity and potential strength on wave propagation and solitary-wave formation. The solitary waves in the stochastic $ \delta $-NLSE reveal how randomness and defect-induced localization interact, resulting in novel phenomena such as stochastic modification of transmission and reflection coefficients, noise-stabilized limit states, and random soliton diffusion. The issue is significant because real-world media are rarely homogeneous or noise-free, and understanding how randomness interacts with localized singularities remains a challenge in both theory and practice. The proposed stochastic solutions are ground-breaking and highly relevant for modeling complex physical processes in nonlinear wave theory, quantum mechanics, water waves, nonlinear optics, and Bose-Einstein condensates, where localized impurities or interfaces strongly affect wave propagation.
| [1] |
S. Zhang, X. Zheng, N-soliton solutions and nonlinear dynamics for two generalized Broer-Kaup systems, Nonlinear Dynam., 107 (2022), 1179–1193. https://doi.org/10.1007/s11071-021-07030-w doi: 10.1007/s11071-021-07030-w
|
| [2] |
X. Yang, H. Zhang, J. Tang, The OSC solver for the fourth-order sub-diffusion equation with weakly singular solutions, Comput. Math. Appl., 82 (2021), 1–12. https://doi.org/10.1016/j.camwa.2020.11.015 doi: 10.1016/j.camwa.2020.11.015
|
| [3] |
G. D. McDonald, C. C. N. Kuhn, K. S. Hardman, S. Bennetts, P. J. Everitt, P. A. Altin, et al., Bright solitonic matter-wave interferometer, Phys. Rev. Lett., 113 (2014), 013002. https://doi.org/10.1103/PhysRevLett.113.013002 doi: 10.1103/PhysRevLett.113.013002
|
| [4] |
M. A. E. Abdelrahman, G. Alshreef, Closed-form solutions to the new coupled Konno–Oono equation and the Kaup-Newell model equation in magnetic field with novel statistic application, Eur. Phys. J. Plus, 136 (2021), 1–10. https://doi.org/10.1140/epjp/s13360-021-01472-2 doi: 10.1140/epjp/s13360-021-01472-2
|
| [5] |
Y. Li, Z. Rui, B. Hu, Monotone iterative and quasilinearization method for a nonlinear integral impulsive differential equation, AIMS Math., 10 (2025), 21–37. https://doi.org/10.3934/math.2025002 doi: 10.3934/math.2025002
|
| [6] |
X. Liu, L. Zhao, J. Jin, A noise-tolerant fuzzy-type zeroing neural network for robust synchronization of chaotic systems, Concurr. Comp.-Pract. E., 36 (2024), e8218. https://doi.org/10.1002/cpe.8218 doi: 10.1002/cpe.8218
|
| [7] |
G. Arora, R. Rani, H. Emadifar, Soliton: A dispersion-less solution with existence and its types, Heliyon, 8 (2022), e12122. https://doi.org/10.1016/j.heliyon.2022.e12122 doi: 10.1016/j.heliyon.2022.e12122
|
| [8] |
H. G. Abdelwahed, E. K. ElShewy, M. A. E. Abdelrahman, A. A. El-Rahman, Positron nonextensivity contributions on the rational solitonic, periodic, dissipative structures for MKP equation described critical plasmas, Adv. Space Res., 67 (2021), 3260–3266. https://doi.org/10.1016/j.asr.2021.02.015 doi: 10.1016/j.asr.2021.02.015
|
| [9] | S. Turitsyn, A. Mikhailov, Applications of solitons, Elsevier, 2002, 1741–1753. |
| [10] | G. J. Lord, C. E. Powell, T. Shardlow, An introduction to computational stochastic PDEs, Cambridge University Press, 2014. |
| [11] | F. Flandoli, Random perturbation of PDEs and fluid dynamic models, Springer, 2011. |
| [12] |
G. Y. Zhang, L. L. Ma, E. Lin, Z. Y. Wang, J. T. Pan, J. Yang, et al., Periodically-modulated unipolar and bipolar orders in nematic fluids towards miniaturized nonlinear vectorial optics, Nat. Commun., 16 (2025), 9419. https://doi.org/10.1038/s41467-025-64463-2 doi: 10.1038/s41467-025-64463-2
|
| [13] |
A. J. Majda, I. Timofeyev, E. V. Eijnden, A mathematical framework for stochastic climate models, Commun. Pure Appl. Math., 54 (2001), 891–974. https://doi.org/10.1002/cpa.1014 doi: 10.1002/cpa.1014
|
| [14] |
S. Zhang, Exact solutions of Wick-type stochastic KdV equation, Can. J. Phys., 90 (2012), 181–186. https://doi.org/10.1139/p2012-002 doi: 10.1139/p2012-002
|
| [15] |
V. V. Piterbarg, Stochastic volatility model with time-dependent skew, Appl. Math. Finance, 12 (2005), 147–185. https://doi.org/10.1080/1350486042000297225 doi: 10.1080/1350486042000297225
|
| [16] | I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, 2 Eds., Springer-Verlag, Berlin, 1991. |
| [17] | J. M. Steele, Stochastic calculus and financial applications, Springer, 2001. |
| [18] |
K. A. Alsatami, Analysis of solitary wave behavior under stochastic noise in the generalized schamel equation, Sci. Rep., 15 (2025), 19157. https://doi.org/10.1038/s41598-025-04696-9 doi: 10.1038/s41598-025-04696-9
|
| [19] |
M. A. E. Abdelrahman, M. A. Sohaly, The development of the deterministic nonlinear PDEs in particle physics to stochastic case, Results Phys., 9 (2018), 344–350. https://doi.org/10.1016/j.rinp.2018.02.032 doi: 10.1016/j.rinp.2018.02.032
|
| [20] |
M. Al Nuwairan, B. Almutairi, A. Aldhafeeri, Dynamical behavior of solitary waves for the space-fractional stochastic regularized long wave equation via two distinct approaches, Mathematics, 13 (2025), 2193. https://doi.org/10.3390/math13132193 doi: 10.3390/math13132193
|
| [21] |
H. M. Baskonus, T. A. Sulaiman, H. Bulut, T. Aktürk, Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrödinger equation with $\delta$-potential, Superlattice. Microst., 115 (2018), 19–29. https://doi.org/10.1016/j.spmi.2018.01.008 doi: 10.1016/j.spmi.2018.01.008
|
| [22] |
R. H. Goodman, P. J. Holmes, M. I. Weinstein, Strong NLS soliton-defect interactions, Physica D, 192 (2004), 215–248. https://doi.org/10.1016/j.physd.2004.01.021 doi: 10.1016/j.physd.2004.01.021
|
| [23] |
J. I. Segata, Final state problem for the cubic nonlinear Schrödinger equation with repulsive delta potential, Commun. Part. Diff. Eq., 40 (2015), 309–328. https://doi.org/10.1080/03605302.2014.930753 doi: 10.1080/03605302.2014.930753
|
| [24] | B. $\varnothing $ksendal, Stochastic differential equations: An introduction with applications, 6 Eds., Springer-Verlag, 2003. |
| [25] |
H. U. Rehman, R. Akber, A. M. Wazwaz, H. M. Alshehri, M. S. Osman, Analysis of Brownian motion in stochastic Schrödinger wave equation using Sardar sub-equation method, Optik, 289 (2023), 171305. https://doi.org/10.1016/j.ijleo.2023.171305 doi: 10.1016/j.ijleo.2023.171305
|
| [26] |
M. N. Rafiq, M. H. Rafiq, H. Alsaud, New insights into the diversity of stochastic solutions and dynamical analysis for the complex cubic NLSE with $\delta$-potential through Brownian process, Commun. Theor. Phys., 77 (2025), 075001. https://doi.org/10.1088/1572-9494/adaddd doi: 10.1088/1572-9494/adaddd
|
| [27] |
A. Almuneef, Z. alqahtani, E. K. Elshewy, M. A. E. Abdelrahman, Investigation of new techniques for energy and its applications, AIP Adv., 15 (2025), 025205. https://doi.org/10.1063/5.0250300 doi: 10.1063/5.0250300
|
| [28] |
H. A. Alkhidhr, Y. Omar, Constructions of solitary wave solutions for huge family of NPDEs with three applications, PLoS One, 20 (2025), e0318220. https://doi.org/10.1371/journal.pone.0318220 doi: 10.1371/journal.pone.0318220
|