We explicitly solve the following second-order system of difference equations:
$ \begin{equation*} x_{n+1} = \frac{ax_{n}y_{n-1}}{y_{n}-\beta y_{n-1}-\gamma}+b x_n+c, \, y_{n+1} = \frac{\alpha y_{n}x_{n-1}}{x_{n}-bx_{n-1}-c}+\beta y_n+\gamma, \end{equation*} $
where $ n\in\mathbb{N}_0 $, $ a $, $ \alpha $, and the initial conditions $ x_{-1} $, $ y_{-1} $, $ x_0 $, and $ y_0 $ are nonzero real numbers, while the remaining parameters $ b $, $ c $, $ \beta $, and $ \gamma $ are real numbers. A detailed analysis of the solutions of our system when $ \alpha = a $ with respect to the form, the periodicity and the limiting behavior is presented. To support and illustrate our theoretical results, numerical examples are provided. Our study, considerably generalizes some existing results in the literature.
Citation: Nouressadat Touafek, Jawharah Ghuwayzi AL-Juaid. On a second-order system of difference equations: expressions and behavior of the solutions[J]. AIMS Mathematics, 2025, 10(11): 28077-28099. doi: 10.3934/math.20251234
We explicitly solve the following second-order system of difference equations:
$ \begin{equation*} x_{n+1} = \frac{ax_{n}y_{n-1}}{y_{n}-\beta y_{n-1}-\gamma}+b x_n+c, \, y_{n+1} = \frac{\alpha y_{n}x_{n-1}}{x_{n}-bx_{n-1}-c}+\beta y_n+\gamma, \end{equation*} $
where $ n\in\mathbb{N}_0 $, $ a $, $ \alpha $, and the initial conditions $ x_{-1} $, $ y_{-1} $, $ x_0 $, and $ y_0 $ are nonzero real numbers, while the remaining parameters $ b $, $ c $, $ \beta $, and $ \gamma $ are real numbers. A detailed analysis of the solutions of our system when $ \alpha = a $ with respect to the form, the periodicity and the limiting behavior is presented. To support and illustrate our theoretical results, numerical examples are provided. Our study, considerably generalizes some existing results in the literature.
| [1] |
M. Gümüş, R. Abo-Zeid, An explicit formula and forbidden set for a higher order difference equation, J. Appl. Math. Comput., 63 (2020), 133–142. https://doi.org/10.1007/s12190-019-01311-9 doi: 10.1007/s12190-019-01311-9
|
| [2] |
Y. Halim, A. Khelifa, M. Berkal, A. Bouchair, On a solvable system of $p$ difference equations of higher order, Period. Math. Hung., 85 (2022), 109–127. https://doi.org/10.1007/s10998-021-00421-x doi: 10.1007/s10998-021-00421-x
|
| [3] |
J. Kubayi, M. Folly-Gbetoula, A detailed study of a class of recurrence equations with a generalized order, J. Math. Computer Sci., 32 (2024), 318–331. https://doi.org/10.22436/jmcs.032.04.03 doi: 10.22436/jmcs.032.04.03
|
| [4] |
Y. Long, X. Pang, Q. Zhang, Codimension-one and codimension-two bifurcations of a discrete Leslie-Gower type predator-prey model, Discrete Cont. Dyn.-B, 30 (2025), 1357–1389. https://doi.org/10.3934/dcdsb.2024132 doi: 10.3934/dcdsb.2024132
|
| [5] |
Q. Din, U. Saeed, Stability, discretization, and bifurcation analysis for a chemical reaction system, MATCH Commun. Math. Comput. Chem., 90 (2023), 151–174. https://doi.org/10.46793/match.90-1.151D doi: 10.46793/match.90-1.151D
|
| [6] |
F. Alsharif, R. Ahmed, I. Alraddadi, M. Alsubhi, Md. Uddin, A study of stability and bifurcation in a discretized predator-prey model with holling type Ⅲ response and prey refuge via piecewise constant argument method, Complexity, 2025 (2025), 4542190. https://doi.org/10.1155/cplx/4542190 doi: 10.1155/cplx/4542190
|
| [7] |
M. Almatrafi, M. Berkal, M. Hamada, Qualitative behavior of a discrete-time predator-prey model with Holling-type Ⅲ functional response and Gompertz growth of prey, Math. Method. Appl. Sci., 48 (2025), 13100–13112. https://doi.org/10.1002/mma.11087 doi: 10.1002/mma.11087
|
| [8] |
N. Haddad, N. Touafek, J. Rabago, Well-defined solutions of a system of difference equations, J. Appl. Math. Comput., 56 (2018), 439–458. https://doi.org/10.1007/s12190-017-1081-8 doi: 10.1007/s12190-017-1081-8
|
| [9] | E. Elabbasy, H. Elmatwally, E. Elsayed, Qualitative behavior of higher order difference equation, Soochow Journal of Mathematics, 33 (2007), 861–873. |
| [10] |
Y. Yazlik, M. Kara, On a solvable system of difference equations of higher-order with periodic coefficients, Commun. Fac. Sci. Univ., 68 (2019), 1675–1693. https://doi.org/10.31801/cfsuasmas.548262 doi: 10.31801/cfsuasmas.548262
|
| [11] |
M. Kara, N. Touafek, Y. Yazlik, Well-defined solutions of a three-dimensional system of difference equations, Gazi Univ. J. Sci., 33 (2020), 767–778. https://doi.org/10.35378/gujs.641441 doi: 10.35378/gujs.641441
|
| [12] |
K. Al-Basyouni, E. Elsayed, On some solvable systems of some rational difference equations of third order, Mathematics, 11 (2023), 1047. https://doi.org/10.3390/math11041047 doi: 10.3390/math11041047
|
| [13] | S. Elaydi, An introduction to difference equations, New York: Springer, 2005. https://doi.org/10.1007/0-387-27602-5 |