
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(11): 28077–28099.
DOI:10.3934/math.20251234
Received: 16 September 2025
Revised: 10 November 2025
Accepted: 24 November 2025
Published: 28 November 2025

Research article

On a second-order system of difference equations: expressions and behavior
of the solutions

Nouressadat Touafek1,∗ and Jawharah Ghuwayzi AL-Juaid2

1 LMAM Laboratory, Faculty of Exact Sciences and Informatics, University of Jijel, Jijel 18000,
Algeria

2 Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099,
Taif 21944, Saudi Arabia

* Correspondence: Email: touafek@univ-jijel.dz.

Abstract: We explicitly solve the following second-order system of difference equations:

xn+1 =
axnyn−1

yn − βyn−1 − γ
+ bxn + c, yn+1 =

αynxn−1

xn − bxn−1 − c
+ βyn + γ,

where n ∈ N0, a, α, and the initial conditions x−1, y−1, x0, and y0 are nonzero real numbers, while
the remaining parameters b, c, β, and γ are real numbers. A detailed analysis of the solutions of our
system when α = a with respect to the form, the periodicity and the limiting behavior is presented. To
support and illustrate our theoretical results, numerical examples are provided. Our study, considerably
generalizes some existing results in the literature.
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1. Introduction and some preliminary results

The search for closed formulas of the solutions of difference equations and systems, especially
for those which are nonlinear, is a topic of a major interest for many researchers, and this can be
justified by the fact that such type of equations and systems have the advantage of providing explicit
formulas of the solutions, and this permits us to understand their behavior; for example, one can consult
references [1–3].

When the difference equation or the system under study models a real phenomena, then knowing
the form of the solutions, allow us, among other to achieve the following:
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• Determine the conditions under which the phenomena presents repeated patterns so we can predict
its behavior;
• Study the limiting behavior of the solutions; this is crucial because it indicates if the phenomena

grow with oscillation, divergence, or convergence to the equilibrium point.

In the literature, we find many studies that use difference equations to conduct in-depth analyzes of
real models from different branches of modern science. For example, in [4], using the forward Euler
scheme, the authors studied a discrete-time Leslie-Gower type predator-prey model of ratio-dependent
functional response and Michalis-Menten function prey harvesting. In [5], using a non-standard
finite difference scheme, the authors investigated the stability and carried out a bifurcation analysis
of a chemical reaction system. For readers interested in more applications of difference equations in
studying concrete discrete models, we refer to the contributions of [6, 7].

Consider the following second-order rational system of difference equations:

xn+1 =
axnyn−1

yn − βyn−1 − γ
+ bxn + c, yn+1 =

αynxn−1

xn − bxn−1 − c
+ βyn + γ, (1.1)

where n ∈ N0, a, α, and the initial values x−1, y−1, x0, and y0 are nonzero real numbers, while the
remaining parameters b, c, β, and γ are real numbers.

Our aim is to solve system (1.1) explicitly, and then, by using the obtained formulas, we derive
explicit forms for the solutions of the system

xn+1 =
axnyn−1

yn − βyn−1 − γ
+ bxn + c, yn+1 =

aynxn−1

xn − bxn−1 − c
+ βyn + γ, (1.2)

when α = a. We then provide detailed results on the periodicity and limiting behavior for the solutions
of (1.2).

Taking b = β = 0 in (1.1), we get the following system:

xn+1 =
axnyn−1

yn − γ
+ c, yn+1 =

αynxn−1

xn − c
+ γ, n ∈ N0. (1.3)

Haddad et al. [8] showed the solvability of (1.3) and investigated the periodic nature and the limiting
behavior of its solutions. Therefore, (1.1) is a generalization of (1.3). The study in [8] was motivated
by the following difference equation:

xn+1 =
xnxn−1

xn − 1
+ 1, n ∈ N0,

which was solved in [9]. Later, following the methods in [8], Yazlik et al. [10] extended (1.3) to

xn+1 =
anxn−k+1yn−k

yn − γn
+ cn+1, yn+1 =

αnyn−k+1xn−k

xn − cn
+ γn+1, n, ∈ N0, (1.4)

where k ∈ N, (an)n∈N0 , (αn)n∈N0 , (cn)n∈N0 , (γn)n∈N0 are two periodic sequences of real numbers. More
works related to the above-mentioned contributions can be found in [11, 12].

We note that if an n0 ∈ N0 exists such that the denominator

yn0 − βyn0−1 − γ = 0,
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and,
xn0 − bxn0−1 − c = 0,

then xn0+1 is not defined, and respectively, yn0+1 is not defined. Based on this, we introduce the following
definition:

Definition 1.1. We say that a solution {(xn, yn)}+∞n=−1 of the system (1.1) is well-defined if

(xn − bxn−1 − c) (yn − βyn−1 − γ) , 0, n ∈ N0.

From here on, we admit that a solution of (1.1) is a well-defined solution. In the following result,
we prove xn.yn , 0, n = −1, 0, ..., and this explains our choice for the initial values to be nonzero.

Lemma 1.1. Every solution {(xn, yn)}+∞n=−1 of system (1.1), satisfies

xn.yn , 0, n ≥ −1.

Proof. Assume that n0 ≥ −1 exists such that xn0 = 0. From (1.1), we get

yn0+2 =
αyn0+1 xn0

xn0+1 − bxn0 − c
+ βyn0+1 + γ = βyn0+1 + γ.

We have

xn0+3 =
axn0+2yn0+1

yn0+2−βyn0+1−γ
+bxn0+2+c=

axn0+2yn0+1

βyn0+1+γ−βyn0+1−γ
+bxn0+2+c=

axn0+2yn0+1

0
+bxn0+2+c.

Therefore, xn0+3 is not defined. Similarly, n0 ≥ −1 exists such that yn0 = 0, we get yn0+3 is not
defined. �

Let us recall the following known result.

Lemma 1.2. [13] Consider the following first-order difference equation:

sn+1 = Ansn + Bn, n ∈ N0,

where s0 and the terms of the sequences (An)n∈N0 and (Bn)n∈N0 are real numbers. In this case

sn =

 n−1∏
i=0

Ai

 s0 +

n−1∑
j=0

 n−1∏
i= j+1

Ai

 B j, n ∈ N0,

with the convention
l∏

i=k

(ei) = 1,
l∑

i=k

(ei) = 0, l < k.

If An = A, Bn = B, then for n ∈ N0, we have

sn = s0An + B
(

An − 1
A − 1

)
, A , 1, sn = s0 + Bn, A = 1.

In the following, we justify the choice of the parameters a and α to be non-zero.
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Lemma 1.3. (1) If a = α = 0, the system (1.1) will be

xn+1 = bxn + c, yn+1 = βyn + γ, n ∈ N0,

and we have

xn = x0bn + c
(
bn − 1
b − 1

)
, b , 1, xn = x0 + cn, b = 1, n ∈ N0,

yn = y0β
n + γ

(
βn − 1
β − 1

)
, β , 1, yn = y0 + γn, b = 1, n ∈ N0.

(2) If a = 0, α , 0, the system (1.1) will be

xn+1 = bxn + c, yn+1 =
αynxn−1

xn − bxn−1 − c
+ βyn + γ, n ∈ N0,

and we get

xn = x0bn + c
(
bn − 1
b − 1

)
, b , 1, xn = x0 + cn, b = 1, n ∈ N0.

However, the yn-component of the solution is not defined for n ≥ 2.
(3) If a , 0, α = 0, the system (1.1) will be

xn+1 =
axnyn−1

yn − βyn−1 − γ
+ bxn + c, yn+1 = βyn + γ, n ∈ N0,

and we get

yn = y0β
n + γ

(
βn − 1
β − 1

)
, β , 1, yn = y0 + γn, β = 1, n ∈ N0.

However, the xn-component of the solution is not defined for n ≥ 2.

Proof. (1) If a = α = 0, then from (1.1), we get

xn+1 = bxn + c, yn+1 = βyn + γ, n ∈ N0.

Using Lemma 1.2, for n ∈ N0,we get

xn = x0bn + c
(
bn − 1
b − 1

)
, b , 1, xn = x0 + cn, b = 1,

yn = y0β
n + γ

(
βn − 1
β − 1

)
, β , 1, yn = y0 + γn, b = 1.

(2) If a = 0, α , 0, then from (1.1), we have

xn+1 = bxn + c, yn+1 =
αynxn−1

xn − bxn−1 − c
+ βyn + γ, n ∈ N0.

From Lemma 1.2, for n ∈ N0, we get

xn = x0bn + c
(
bn − 1
b − 1

)
, b , 1, xn = x0 + cn, b = 1.
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Thus the xn-component of the solution is defined. We will show that the yn-component of the
solution is not defined for n ≥ 2.
If we let n0 ≥ 1, we find the denominator

xn0 − bxn0−1 − c = 0,

so
yn0+1 =

ayn0 xn0−1

0
+ βyn0 + γ

will be not defined. In fact, we not the following.

• If b = 1
xn0 − bxn0−1 − c = x0 + cn0 − (x0 + c(n0 − 1)) − c = 0.

• If b , 1

xn0 − bxn0−1 − c = x0bn0 + c
(
bn0 − 1
b − 1

)
− b

(
x0bn0−1 + c

(
bn0−1 − 1

b − 1

))
− c = 0.

(3) If a , 0 and α = 0, then from (1.1), we get

xn+1 =
axnyn−1

yn − βyn−1 − γ
+ bxn + c, yn+1 = βyn + γ, n ∈ N0.

From Lemma 1.2, we get, for n ∈ N0

yn = y0β
n + γ

(
βn − 1
β − 1

)
, β , 1, yn = y0 + γn, β = 1.

Thus the yn-component of the solution is defined. We will show that the xn-component of the
solution is not defined for n ≥ 2.
Let n0 ≥ 1, we find the denominator

yn0 − βyn0−1 − γ = 0,

so
xn0+1 =

αxn0yn0−1

0
+ bxn0 + c

will be not defined. In fact, we note the following

• If β = 1
yn0 − βyn0−1 − γ = y0 + γn0 − (y0 + γ(n0 − 1)) − γ = 0.

• If β , 1

yn0 − βyn0−1 − γ = y0β
n0 + γ

(
βn0 − 1
β − 1

)
− β

(
y0β

n0−1 + γ

(
βn0−1 − 1
β − 1

))
− γ = 0.

�

In the rest of this work, we consider only the case aα , 0.

AIMS Mathematics Volume 10, Issue 11, 28077–28099.



28082

2. Expressions of the solutions for the system (1.1)

In this part, we show how to solve explicitly the system (1.1). For this, we need first to transform our
system to an equivalent solvable system, and then we use the formulas of the solutions the equivalent
system to obtain some first-order linear difference equations which are solvable using Lemma 1.2.

From (1.1), we obtain

xn+1 − bxn − c
xn

=
ayn−1

yn − βyn−1 − γ
,

yn+1 − βyn − γ

yn
=

αxn−1

xn − bxn−1 − c
. (2.1)

Let
un =

xn − bxn−1 − c
xn−1

, vn =
yn − βyn−1 − γ

yn−1
, n ∈ N0. (2.2)

From (2.1), we obtain
un+1 =

a
vn
, vn+1 =

α

un
, n ∈ N0. (2.3)

It is not hard to see from (2.3) that

u2n = u0

(a
α

)n
, u2n+1 =

a
v0

(a
α

)n
, v2n = v0

(
α

a

)n
, v2n+1 =

α

u0

(
α

a

)n
, n ∈ N0. (2.4)

Using (2.2), we get
xn = (b + un)xn−1 + c, n ∈ N0, (2.5)

yn = (β + vn)yn−1 + γ, n ∈ N0. (2.6)

Depending on the parity of n, from (2.5) and (2.6), we obtain

x2n = (b + u2n)x2n−1 + c, x2n+1 = (b + u2n+1)x2n + c, n ∈ N0, (2.7)

y2n = (β + v2n)y2n−1 + γ, y2n+1 = (β + v2n+1)y2n + γ, n ∈ N0. (2.8)

Now replacing by (2.4) in (2.7) and (2.8), we get

x2n = (b + u0

(a
α

)n
)x2n−1 + c, n ∈ N0, (2.9)

x2n+1 = (b +
a
v0

(a
α

)n
)x2n + c, n ∈ N0, (2.10)

y2n = (β + v0

(
α

a

)n
)y2n−1 + γ, n ∈ N0, (2.11)

y2n+1 = (β +
α

u0

(
α

a

)n
)y2n + γ, n ∈ N0. (2.12)

It follows from (2.9)–(2.12) that

x2n+2 =

(
b +

a
v0

(a
α

)n
) (

b + u0

(a
α

)n+1
)

x2n + c
(
b + u0

(a
α

)n+1
+ 1

)
, n ∈ N0, (2.13)

x2n+1 =

(
b +

a
v0

(a
α

)n
) (

b + u0

(a
α

)n)
x2n−1 + c

(
b +

a
v0

(a
α

)n
+ 1

)
, n ∈ N0, (2.14)
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y2n+2 =

(
β +

α

u0

(
α

a

)n
) (
β + v0

(
α

a

)n+1
)

y2n + γ

(
β + v0

(
α

a

)n+1
+ 1

)
, n ∈ N0, (2.15)

y2n+1 =

(
β +

α

u0

(
α

a

)n
) (
β + v0

(
α

a

)n)
y2n−1 + γ

(
β +

α

u0

(
α

a

)n
+ 1

)
, n ∈ N0. (2.16)

Putting
wn = x2n, zn = x2n−1, rn = y2n, tn = y2n−1, n ∈ N0. (2.17)

Then Eqs (2.13) and (2.16) become the following non-autonomous first-order linear difference
equations:

wn+1 =

(
b +

a
v0

(a
α

)n
) (

b + u0

(a
α

)n+1
)

wn + c
(
b + u0

(a
α

)n+1
+ 1

)
, n ∈ N0, (2.18)

zn+1 =

(
b +

a
v0

(a
α

)n
) (

b + u0

(a
α

)n)
zn−1 + c

(
b +

a
v0

(a
α

)n
+ 1

)
, n ∈ N0, (2.19)

rn+1 =

(
β +

α

u0

(
α

a

)n
) (
β + v0

(
α

a

)n+1
)

rn + γ

(
β + v0

(
α

a

)n+1
+ 1

)
, n ∈ N0, (2.20)

tn+1 =

(
β +

α

u0

(
α

a

)n
) (
β + v0

(
α

a

)n)
tn−1 + γ

(
β +

α

u0

(
α

a

)n
+ 1

)
, n ∈ N0. (2.21)

Using Lemma 1.2, we get the solutions of (2.18) and (2.21) as follows:

wn =w0

n−1∏
i=0

(
b+

a
v0

(a
α

)i
) (

b+u0

(a
α

)i+1
)
+c

n−1∑
j=0

 n−1∏
i= j+1

(
b+

a
v0

(a
α

)i
) (

b + u0

(a
α

)i+1
) (b+u0

(a
α

) j+1
+1

)
,

zn = z0

n−1∏
i=0

(
b +

a
v0

(a
α

)i
) (

b + u0

(a
α

)i
)

+ c
n−1∑
j=0

 n−1∏
i= j+1

(
b +

a
v0

(a
α

)i
) (

b + u0

(a
α

)i
) (b +

a
v0

(a
α

) j
+ 1

)
,

rn =r0

n−1∏
i=0

(
β+

α

u0

(
α

a

)i
) (
β+v0

(
α

a

)i+1
)
+γ

n−1∑
j=0

 n−1∏
i= j+1

(
β+

α

u0

(
α

a

)i
) (
β+v0

(
α

a

)i+1
) (β+v0

(
α

a

) j+1
+1

)
,

tn = t0

n−1∏
i=0

(
β +

α

u0

(
α

a

)i
) (
β + v0

(
α

a

)i
)

+ γ

n−1∑
j=0

 n−1∏
i= j+1

(
β +

α

u0

(
α

a

)i
) (
β + v0

(
α

a

)i
) (β +

α

u0

(
α

a

) j
+ 1

)
.

Now, using the fact that wn = x2n, zn = x2n−1, rn = y2n, and tn = y2n−1, we get

x2n = x0

n−1∏
i=0

(
b+

a
v0

(a
α

)i
) (

b+u0

(a
α

)i+1
)
+c

n−1∑
j=0

 n−1∏
i= j+1

(
b+

a
v0

(a
α

)i
) (

b+u0

(a
α

)i+1
) (b+u0

(a
α

) j+1
+1

)
,
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x2n−1 = x−1

n−1∏
i=0

(
b+

a
v0

(a
α

)i
) (

b+u0

(a
α

)i
)
+c

n−1∑
j=0

 n−1∏
i= j+1

(
b+

a
v0

(a
α

)i
) (

b+u0

(a
α

)i
) (b+

a
v0

(a
α

) j
+1

)
,

y2n =y0

n−1∏
i=0

(
β+

α

u0

(
α

a

)i
) (
β+v0

(
α

a

)i+1
)
+γ

n−1∑
j=0

 n−1∏
i= j+1

(
β+

α

u0

(
α

a

)i
) (
β+v0

(
α

a

)i+1
) (β+v0

(
α

a

) j+1
+1

)
,

y2n−1 =y−1

n−1∏
i=0

(
β+

α

u0

(
α

a

)i
) (
β+v0

(
α

a

)i
)
+γ

n−1∑
j=0

 n−1∏
i= j+1

(
β+

α

u0

(
α

a

)i
) (
β+v0

(
α

a

)i
) (β+

α

u0

(
α

a

) j
+1

)
.

From the calculations above, we have the following result.

Theorem 2.1. The form of every solution {(xn, yn)}+∞n=−1 of (1.1) is given, for all n ∈ N0, by the following
formulas:

x2n = x0

n−1∏
i=0

(
b+

a
v0

(a
α

)i
) (

b+u0

(a
α

)i+1
)
+c

n−1∑
j=0

 n−1∏
i= j+1

(
b+

a
v0

(a
α

)i
) (

b+u0

(a
α

)i+1
) (b+u0

(a
α

) j+1
+1

)
,

x2n−1 = x−1

n−1∏
i=0

(
b+

a
v0

(a
α

)i
) (

b+u0

(a
α

)i
)
+c

n−1∑
j=0

 n−1∏
i= j+1

(
b+

a
v0

(a
α

)i
) (

b+u0

(a
α

)i
) (b+

a
v0

(a
α

) j
+1

)
,

y2n =y0

n−1∏
i=0

(
β+

α

u0

(
α

a

)i
) (
β+v0

(
α

a

)i+1
)
+γ

n−1∑
j=0

 n−1∏
i= j+1

(
β+

α

u0

(
α

a

)i
) (
β+v0

(
α

a

)i+1
) (β+v0

(
α

a

) j+1
+1

)
,

y2n−1 =y−1

n−1∏
i=0

(
β+

α

u0

(
α

a

)i
) (
β+v0

(
α

a

)i
)
+γ

n−1∑
j=0

 n−1∏
i= j+1

(
β+

α

u0

(
α

a

)i
) (
β+v0

(
α

a

)i
) (β+

α

u0

(
α

a

) j
+1

)
,

where
u0 =

x0 − bx−1 − c
x−1

, v0 =
y0 − βy−1 − γ

y−1
.

3. The case α = a

In this case the system (1.1) takes the form

xn+1 =
axnyn−1

yn − βyn−1 − γ
+ bxn + c, yn+1 =

aynxn−1

xn − bxn−1 − c
+ βyn + γ, n ∈ N0. (3.1)

We use the formulas of the solutions of (3.1) to analyze their periodicity and limiting behavior.

Theorem 3.1. For every solution {(xn, yn)}+∞n=−1 of (3.1), we have the following.
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• If p , 1

x2n−1 = x−1 pn + c
(
b +

a
v0

+ 1
) (

pn − 1
p − 1

)
, x2n = x0 pn + c (b + u0 + 1)

(
pn − 1
p − 1

)
, n ∈ N.

• If p = 1

x2n−1 = x−1 + c
(
b +

a
v0

+ 1
)

n, x2n = x0 + c (b + u0 + 1) n, n ∈ N0.

• If q , 1

y2n−1 = y−1qn + c
(
β +

a
u0

+ 1
) (

qn − 1
q − 1

)
, y2n = y0qn + γ (β + v0 + 1)

(
qn − 1
q − 1

)
, n ∈ N.

• If q = 1

y2n−1 = y−1 + γ

(
β +

a
u0

+ 1
)

n, y2n = y0 + γ (β + v0 + 1) n, n ∈ N0.

where

p = (b + u0)
(
b +

a
v0

)
, q = (β + v0)

(
β +

a
u0

)
,

u0 =
x0 − bx−1 − c

x−1
, v0 =

y0 − βy−1 − γ

y−1
.

Proof. Taking α = a in Theorem 2.1, we get

x2n = x0

n−1∏
i=0

(
b +

a
v0

)
(b + u0) + c

n−1∑
j=0

 n−1∏
i= j+1

(
b +

a
v0

)
(b + u0)

 (b + u0 + 1) , (3.2)

x2n−1 = x−1

n−1∏
i=0

(
b +

a
v0

)
(b + u0) + c

n−1∑
j=0

 n−1∏
i= j+1

(
b +

a
v0

)
(b + u0)

 (b +
a
v0

+ 1
)
, (3.3)

y2n = y0

n−1∏
i=0

(
β +

a
u0

)
(β + v0) + γ

n−1∑
j=0

 n−1∏
i= j+1

(
β +

a
u0

)
(β + v0)

 (β + v0 + 1) , (3.4)

y2n−1 = y−1

n−1∏
i=0

(
β +

α

u0

)
(β + v0) + γ

n−1∑
j=0

 n−1∏
i= j+1

(
β +

a
u0

)
(β + v0)

 (β +
a
u0

+ 1
)
. (3.5)

Let

p = (b + u0)
(
b +

a
v0

)
, q = (β + v0)

(
β +

a
u0

)
.

From (3.2)–(3.5), for n ∈ N, we obtain

x2n−1 = x−1 pn + c
(
b +

a
v0

+ 1
) (

1 + p + ... + pn−1
)
, (3.6)

x2n = x0 pn + c (b + u0 + 1)
(
1 + p + ... + pn−1

)
, (3.7)
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y2n−1 = y−1qn + γ

(
β +

a
u0

+ 1
) (

1 + q + ... + qn−1
)
, (3.8)

y2n = y0qn + γ (β + v0 + 1)
(
1 + q + ... + qn−1

)
. (3.9)

From (3.6) and (3.7), we get

x2n−1 = x−1 pn + c
(
b +

a
v0

+ 1
) (

pn − 1
p − 1

)
, x2n = x0 pn + c (b + u0 + 1)

(
pn − 1
p − 1

)
, n ∈ N,

if p , 1, and

x2n = x0 + c (b + u0 + 1) n, x2n−1 = x−1 + c
(
b +

a
v0

+ 1
)

n, n ∈ N, (3.10)

if p = 1. The formulas in (3.10) are also correct for n = 0. Similarly, from (3.8) and (3.9), we obtain

y2n−1 = y−1qn + c
(
β +

a
u0

+ 1
) (

qn − 1
q − 1

)
, y2n = y0qn + γ (β + v0 + 1)

(
qn − 1
q − 1

)
, n ∈ N,

if q , 1, and

y2n−1 = y−1 + γ

(
β +

a
u0

+ 1
)

n, y2n = y0 + γ (β + v0 + 1) n, n ∈ N0,

if q = 1. �

The subsequent statements follow directly from Theorem 3.1, so their proofs will be omitted.

Lemma 3.1. Let {(xn, yn)}+∞n=−1 be a solution of (3.1).

(1) Assume that (b + u0)
(
b + a

v0

)
= 1 and (β + v0)

(
β + a

u0

)
= 1. The following then hold.

• If cγ
(
b + a

v0
+ 1

)
(b + u0 + 1)

(
β + a

u0
+ 1

)
(β + v0 + 1) , 0, we get

lim
n→+∞

|x2n−1| = lim
n→+∞

|x2n| = lim
n→+∞

|y2n−1| = lim
n→+∞

|y2n| = +∞,

that is, the solution is unbounded.
• If cγ = 0 or

(
b + a

v0
+ 1

)
(b + u0 + 1)

(
β + a

u0
+ 1

)
(β + v0 + 1) = 0, we get

x2n−1 = x−1, x2n = x0, y2n−1 = y−1, y2n = y0, n ∈ N0,

and the solution will be periodic of period two, provided that (x−1 − x0)(y−1 − y0) , 0.

(2) Assume that (b + u0)
(
b + a

v0

)
, 1 and (β + v0)

(
β + a

u0

)
, 1. In this case, if x0 +

c(b+u0+1)
p−1 , x−1 +

c
(
b+ a

v0
+1

)
p−1 , y0 +

γ(β+v0+1)
q−1 , y−1 +

γ
(
β+ a

u0
+1

)
q−1 are zero, we get

x2n−1 =
c
(
b + a

v0
+ 1

)
1 − p

, x2n =
c (b + u0 + 1)

1 − p
, n ∈ N,

y2n−1 =
γ
(
β + a

u0
+ 1

)
1 − q

, y2n =
γ (β + v0 + 1)

1 − q
, n ∈ N,

that is, the solution is eventually periodic of period two provided that u0v0 , a.
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(3) Assume that x0 +
c(b+u0+1)

p−1 , x−1 +
c
(
b+ a

v0
+1

)
p−1 , y0 +

γ(β+v0+1)
q−1 , and y−1 +

γ
(
β+ a

u0
+1

)
q−1 are nonzero. The

following then hold.

• If | (b + u0)
(
b + a

v0

)
| > 1, and | (β + v0)

(
β + a

u0

)
| > 1, we get

lim
n→+∞

|x2n−1| = lim
n→+∞

|x2n| = lim
n→+∞

|y2n−1| = lim
n→+∞

|y2n| = +∞,

that is, the solution is unbounded.
• If | (b + u0)

(
b + a

v0

)
| < 1 and | (β + v0)

(
β + a

u0

)
| < 1, we get

lim
n→+∞

x2n−1 =
c
(
b + a

v0
+ 1

)
1 − p

, lim
n→+∞

x2n =
c (b + u0 + 1)

1 − p

lim
n→+∞

y2n−1 =
γ
(
β + a

u0
+ 1

)
1 − q

, lim
n→+∞

y2n =
γ (β + v0 + 1)

1 − q
,

that is, the solution converge to a two-period solution.

In what follows, we look for the form and the periodicity of the solutions of some specific cases of
the system (3.1).

Theorem 3.2. Assume that

(b + u0)
(
b +

a
v0

)
= (β + v0)

(
β +

a
u0

)
= −1.

Thus, every solution of (3.1) takes the form

x4n−1 = x−1, x4n = x0, x4n+1 = −x−1 + c
(
b +

a
v0

+ 1
)
, x4n+2 = −x0 + c (b + u0 + 1) , n ∈ N0, (3.11)

y4n−1 = y−1, y4n = y0, y4n+1 = −y−1 + γ

(
β +

a
u0

+ 1
)
, y4n+2 = −y0 + γ (β + v0 + 1) , n ∈ N0. (3.12)

Moreover, we have the following statements.

(1) Assume that

x−1, x0, −x−1 + c
(
b +

a
v0

+ 1
)
, −x0 + c (b + u0 + 1)

are pairwise different, and

y−1, y0, −y−1 + γ

(
β +

a
u0

+ 1
)
, −y0 + γ (β + v0 + 1)

are pairwise different, then the solution is periodic of period four.
(2) Assume that

x−1 =
c
2

(
b +

a
v0

+ 1
)
, x0 =

c
2

(b + u0 + 1) , y−1 =
γ

2

(
β +

a
u0

+ 1
)
, y0 =

γ

2
(β + v0 + 1) ,

then the solution takes the form

x2n−1 = x−1, x2n = x0, y2n−1 = y−1, y2n = y0, n ∈ N0. (3.13)

and it is periodic of period two, provided that (x−1 − x0)(y−1 − y0) , 0.
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Proof. From the assumption, we have p = q = −1, so by replacement in the formulas of of the solutions
given in Theorem 3.1, we obtain

x2n−1 = x−1(−1)n + c
(
b +

a
v0

+ 1
) (

(−1)n − 1
−1 − 1

)
, n ∈ N,

x2n = x0(−1)n + c (b + u0 + 1)
(
(−1)n − 1
−1 − 1

)
, n ∈ N,

y2n−1 = y−1(−1)n + γ

(
β +

a
u0

+ 1
) (

(−1)n − 1
−1 − 1

)
, n ∈ N,

y2n = y0(−1)n + γ (β + v0 + 1)
(
(−1)n − 1
−1 − 1

)
, n ∈ N.

Therefore, we get
x4n−1 = x−1, x4n = x0, n ∈ N, (3.14)

x4n+1 = −x−1 + c
(
b +

a
v0

+ 1
)
, x4n+2 = −x0 + c (b + u0 + 1) , n ∈ N0,

y4n−1 = y−1, y4n = y0, n ∈ N, (3.15)

y4n+1 = −y−1 + γ

(
β +

a
u0

+ 1
)
, y4n+2 = −y0 + γ (β + v0 + 1) , n ∈ N0.

The formulas in (3.14) and (3.15) are also correct for n = 0.
Now, it is clear that if

x−1, x0, −x−1 + c
(
b +

a
v0

+ 1
)
, −x0 + c (b + u0 + 1)

are pairwise different, and

y−1, y0, −y−1 + γ

(
β +

a
u0

+ 1
)
, −y0 + γ (β + v0 + 1)

are pairwise different, the solution will be periodic of period four and takes the form (x−1, y−1), (x0, y0, ),(
−x−1 + c

(
b + a

v0
+ 1

)
,−y−1 + γ

(
β + a

u0
+ 1

))
, (−x0 + c (b + u0 + 1) ,−y0 + γ (β + v0 + 1)), (x−1, y−1),

(x0, y0, ) , · · · .
Moreover, we have

x−1 =
c
2

(
b +

a
v0

+ 1
)
⇔ x−1 = −x−1 + c

(
b +

a
v0

+ 1
)
,

x0 =
c
2

(b + u0 + 1)⇔ x0 = −x0 + c (b + u0 + 1) ,

y−1 =
γ

2

(
β +

a
u0

+ 1
)
⇔ y−1 = −y−1 + γ

(
β +

a
u0

+ 1
)
,

and
y0 =

γ

2
(β + v0 + 1)⇔ y0 = −y0 + γ (β + v0 + 1) .
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Therefore, if

x−1 =
c
2

(
b +

a
v0

+ 1
)
, x0 =

c
2

(b + u0 + 1) , y−1 =
γ

2

(
β +

a
u0

+ 1
)
, y0 =

γ

2
(β + v0 + 1) ,

we get

x4n+1 = x4n−1 = x−1, x4n+2 = x4n = x0, y4n+1 = y4n−1 = y−1, y4n+2 = y4n = y0, n ∈ N0,

and the solution takes the form

x2n−1 = x−1, x2n = x0, y2n−1 = y−1, y2n = y0, n ∈ N0.

and it is periodic of period two, provided that (x−1 − x0)(y−1 − y0) , 0. �

Theorem 3.3. Let {(xn, yn)}+∞n=−1 be a solution of (3.1).

(b + u0)
(
b +

a
v0

)
= (β + v0)

(
β +

a
u0

)
= 0.

The following statements are true.

(1) If b + u0 = 0, b + a
v0

= 0, β + v0 = 0, and β + a
u0

= 0, then

xn = c, yn = γ, n ∈ N, (3.16)

with c = x0 and γ = y0.
(2) If b + u0 = 0, b + a

v0
, 0, β + v0 = 0, and β + a

u0
= 0, then

x2n = c, x2n−1 = c
(
b +

a
v0

+ 1
)
, yn = γ, n ∈ N, (3.17)

with c = x0 and γ = y0.
(3) If b + u0 = 0, b + a

v0
= 0, β + v0 , 0, and β + a

u0
= 0, then

xn = c, y2n = γ (β + v0 + 1) , y2n−1 = γ, n ∈ N, (3.18)

with c = x0.
(4) If b + u0 = 0, b + a

v0
, 0, β + v0 , 0, and β + a

u0
= 0, then

x2n = c, x2n−1 = c
(
b +

a
v0

+ 1
)
, y2n = γ (β + v0 + 1) , y2n−1 = γ, n ∈ N, (3.19)

with c = x0, and the solution is eventually periodic of period two.
(5) If b + u0 = 0, b + a

v0
= 0, β + v0 = 0, and β + a

u0
, 0, then

xn = c, y2n−1 = γ

(
β +

a
u0

+ 1
)
, y2n = γ, n ∈ N, (3.20)

with c = x0 and γ = y0.
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(6) If b + u0 = 0, b + a
v0
, 0, β + v0 = 0, and β + a

u0
, 0, then

x2n = c, x2n−1 = c
(
b +

a
v0

+ 1
)
, y2n−1 = γ

(
β +

a
u0

+ 1
)
, y2n = γ, n ∈ N, (3.21)

with c = x0, and γ = y0, and the solution is eventually periodic of period two.
(7) If b + u0 , 0, b + a

v0
= 0, β + v0 = 0, and β + a

u0
= 0, then

x2n−1 = c, x2n = c (b + u0 + 1) , yn = γ, n ∈ N, (3.22)

with γ = y0.
(8) If b + u0 , 0, b + a

v0
= 0, β + v0 = 0, and β + a

u0
, 0, then

x2n−1 = c, x2n = c (b + u0 + 1) , y2n−1 = γ

(
β +

a
u0

+ 1
)
, y2n = γ, n ∈ N, (3.23)

with γ = y0, and the solution is eventually periodic of period two.
(9) If b + u0 , 0, b + a

v0
= 0, β + v0 , 0, and β + a

u0
= 0, then

x2n−1 = c, x2n = c (b + u0 + 1) , y2n = γ (β + v0 + 1) , y2n−1 = γ, n ∈ N, (3.24)

and the solution is eventually periodic of period two.

Proof. From the assumption, we have p = q = 0, so by replacment in the formulas of of the solutions
given in Theorem 3.1, we obtain

x2n = c (b + u0 + 1) , x2n−1 = c
(
b +

a
v0

+ 1
)
, n ∈ N, (3.25)

y2n = γ (β + v0 + 1) , y2n−1 = γ

(
β +

a
u0

+ 1
)
, n ∈ N. (3.26)

We have the following situations.

• Case 1: If we assume that b + u0 = 0, b + a
v0
, 0, from (3.25), we obtain

x2n = c, x2n−1 = c
(
b +

a
v0

+ 1
)
, n ∈ N.

• Case 2: If we assume that b + u0 , 0, b + a
v0

= 0, from (3.25), we obtain

x2n = c(b + u0 + 1), x2n−1 = c, n ∈ N.

• Case 3: If we assume that b + u0 = b + a
v0

= 0, from (3.25), we get

x2n = c, x2n−1 = c, n ∈ N.

That is
xn = c, n ∈ N.
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• Case 4: If we assume that β + v0 = 0, and β + a
u0
, 0, from (3.26), we obtain

y2n = γ, y2n−1 = γ

(
β +

a
u0

+ 1
)
, n ∈ N.

• Case 5: If we assume that β + v0 , 0, and β + a
u0

= 0, from (3.26), we obtain

y2n = γ(β + v0 + 1), y2n−1 = γ, n ∈ N.

• Case 6: If we assume that β + v0 = β + a
u0

= 0, from (3.26), we obtain

y2n = γ, y2n−1 = γ, n ∈ N0.

That is

yn = γ, n ∈ N.

Combining all possible situations in these cases and accounting for the fact that b + u0 = 0 ⇔ c = x0

and β + v0 = 0⇔ γ = y0, we get the formulas given in (3.16)–(3.24). �

4. Numerical examples

Here, we provide some numerical examples with their graphical representations to support and
illustrate our results on the periodicity, convergence, and divergence behavior of the solutions of (3.1).

Example 4.1. Consider the system (3.1) with the parameters a = 3
2 , b = 1, β = 1

2 , c = 3, and γ = 1, we
have

xn+1 =

3
2 xnyn−1

yn −
1
2yn−1 − 1

+ xn + 3, yn+1 =

3
2ynxn−1

xn − xn−1 − 3
+

1
2

yn + 1. (4.1)

Let the initial values be as follows: x−1 = 1, y−1 = −4, x0 = 5, and y0 = 3. It is not hard to see that

(b + u0)
(
b +

a
v0

)
= (β + v0)

(
β +

a
u0

)
= 1,

and the solution takes the form

x4n−1 = 1, x4n = 5, x4n+1 =
1
2
, x4n+2 = 4,

y4n−1 = −4, y4n = 3, y4n+1 = 7, y4n+2 = −1.

That is the solution is periodic of period four, as stated in Case 1 of Theorem 3.2. The graphical
representations of the solution are given in Figures 1 and 2.
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Figure 1. The graphic of the xn-component of the solution of the system (4.1).

Figure 2. The graphic of the yn-component of the solution of the system (4.1).

Example 4.2. Consider the system (3.1) with the parameters a = 9, b = 1, β = 2, c = 4, and γ = 6;
that is

xn+1 =
9xnyn−1

yn − 2yn−1 − 6
+ xn + 4, yn+1 =

9ynxn−1

xn − xn−1 − 4
+ 2yn + 6, (4.2)

with the initial values x−1 = 8, y−1 = 5, x0 = 4, and y0 = 6. We have

b + u0 = 0, β + v0 = 0, b +
a
v0

= −
7
2
, β +

a
u0

= −7,

and the solution takes the form

x2n = 4, y2n = 6, n ∈ N0, x2n−1 = −10, y2n−1 = −36, n ∈ N.

That is the solution is eventually periodic of period two, as stated in Case 6 of Theorem 3.3. The plots
of the solution are given in Figures 3 and 4.
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Figure 3. The graphic of the xn-component of the solution of the system (4.2).

Figure 4. The graphic of the yn-component of the solution of the system (4.2).

Example 4.3. Consider the system (3.1) with the parameters a = 3, b = 3
11 , β = 11, c = 5, and γ = 1;

that is

xn+1 =
3xnyn−1

yn − 11yn−1 − 1
+

3
11

xn + 5, yn+1 =
3ynxn−1

xn −
3

11 xn−1 − 5
+ 11yn + 1, (4.3)

with the initial values x−1 = 7, y−1 = 2, x0 = 2, and y0 = 1. We have

b + u0 = −
3
7
, b +

a
v0

= 0, β + v0 = 0, β +
a
u0

=
121
18

,

and the solution takes the form

y2n = 1, n ∈ N0, x2n =
20
7
, x2n−1 = 5, y2n−1 =

139
18

, n ∈ N.

That is, the solution is eventually periodic of period two, as stated in Case 8 of Theorem 3.3. The plots
of the solution are given in Figures 5 and 6.
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Figure 5. The graphic of the xn-component of the solution of the system (4.3).

Figure 6. The graphic of the yn-component of the solution of the system (4.3).

Example 4.4. Consider the system (3.1) with the parameters a = 7, b = 3
11 , β = 3

4 , c = 2, and γ = 1
2 ;

that is

xn+1 =
7xnyn−1

yn −
3
4yn−1 −

1
2

+
3

11
xn + 2, yn+1 =

7ynxn−1

xn −
3
11 xn−1 − 2

+
3
4

yn +
1
2
, (4.4)

and let the initial values be as follows: x−1 = 15, y−1 = 19, x0 = 5
2 , and y0 = 1. It is not hard to see that

(b + u0)
(
b +

a
v0

)
= −

47
150

, (β + v0)
(
β +

a
u0

)
= −

9003
12008

,

and the solution converge to a two-period solution as follows:

lim
n→+∞

x2n+1 = −12.57360, lim
n→+∞

x2n = 1.57360, lim
n→+∞

y2n+1 = −7.85555, lim
n→+∞

y2n = 0.29327,

as stated in Case 3 of Lemma 3.1. The graphical representations of the solution are given in Figures 7–
10.
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Figure 7. The plot of x2n of the solution of the system (4.4).

Figure 8. The plot of x2n+1 of the solution of the system (4.4).

Figure 9. The plot of y2n of the solution of the system (4.4).
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Figure 10. The plot of y2n+1 of the solution of the system (4.4).

Example 4.5. Consider the system (3.1) with the parameters a = 3, b = 7
3 , β = 3

2 , c = 3
4 , and γ = 2;

that is

xn+1 =
3xnyn−1

yn −
3
2yn−1 − 2

+
7
3

xn +
3
4
, yn+1 =

3ynxn−1

xn −
7
3 xn−1 −

3
4

+
3
2

yn + 2, (4.5)

and let the initial values be as follows: x−1 = 21
4 , y−1 = 5

2 , x0 = 7, and y0 = 5. We have

(b + u0)
(
b +

a
v0

)
= −

575
63

, (β + v0)
(
β +

a
u0

)
= −

27
20
,

and

lim
n→+∞

|x2n| = lim
n→+∞

|x2n+1| = lim
n→+∞

|y2n| = lim
n→+∞

|y2n+1| = +∞

as stated in Case 3 of Lemma 3.1. The graphical representations of the solution are given in
Figures 11–14.

Figure 11. The plot of |x2n| of the solution of the system (4.5).
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Figure 12. The plot of |x2n+1| of the solution of the system (4.5).

Figure 13. The plot of |y2n| of the solution of the system (4.5).

Figure 14. The plot of |y2n+1| of the solution of the system (4.5).
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5. Conclusions and remarks

We solved system (1.1) explicitly, and from the formulas of its solutions, we deduce those of
(3.1). Moreover, we analyzed in details the periodicity and limiting behavior of the solutions of
some particular cases of (3.1). To support our results on the system (3.1), numerical examples are
provided with their graphical representations to illustrate the periodicity, convergence, or divergence
of the solutions. We note that if we choose

α = a, β = b, γ = c, y−1 = x−1, y0 = x0, (5.1)

we get
yn = xn, n = −1, 0, .... (5.2)

that is, the systems (1.1) and (3.1) will be the following difference equations:

xn+1 =
axnxn−1

xn − bxn−1 − c
+ bxn + c. (5.3)

Consequently, the results on the form, the periodicity, and the limiting behavior of the solutions of (5.3)
can be deduced from Theorems 3.1–3.3 and Lemma 3.1. For example, it follows from Theorem 3.1
that every solution {xn}

+∞
n=−1 of (5.3) takes the form

x2n = x0 pn + c (b + u0 + 1)
(

pn − 1
p − 1

)
, x2n−1 = x−1 pn + c

(
b +

a
u0

+ 1
) (

pn − 1
p − 1

)
,

if p , 1, and

x2n = x0 + c (b + u0 + 1) n, x2n−1 = x−1 + c
(
b +

a
u0

+ 1
)

n,

if p = 1, where p = (b + u0)
(
b + a

u0

)
and u0 = x0−bx−1−c

x−1
.
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