In reliability and survival analysis, the hazard rate is a key statistical measure that quantifies the instantaneous risk of an event occurring at a given time. Detecting a change point in the hazard rate is particularly important in biomedical and reliability studies, as it may indicate a shift in the underlying failure mechanism or disease progression. This paper addresses the estimation of hazard rate change points under the contaminated Birnbaum-Saunders model, a positively skewed lifetime distribution originally derived from material fatigue theory but now widely applied in diverse fields. Several estimation methods were considered, and their performance was compared in terms of estimation efficiency and robustness when the data are subject to contamination. To assess finite-sample properties, extensive Monte Carlo simulations were carried out, highlighting the strengths and limitations of each estimator under varying contamination levels. In addition to the simulation study, the proposed methods were applied to a real biomedical dataset involving the survival times of guinea pigs (cavia corcellus) injected with different dosages of Mycobacterium tuberculosis, the pathogen that causes tuberculosis. The application demonstrates the practical value of the comparative results and provides insight into disease progression under varying infection intensities. Overall, the study contributes to the literature by offering both methodological evaluation and an applied perspective on change point estimation in hazard rates.
Citation: Farouq Mohammad A. Alam. Change point estimation of hazard rates in contaminated Birnbaum-Saunders models with an application to tuberculosis survival data[J]. AIMS Mathematics, 2025, 10(11): 26106-26131. doi: 10.3934/math.20251149
In reliability and survival analysis, the hazard rate is a key statistical measure that quantifies the instantaneous risk of an event occurring at a given time. Detecting a change point in the hazard rate is particularly important in biomedical and reliability studies, as it may indicate a shift in the underlying failure mechanism or disease progression. This paper addresses the estimation of hazard rate change points under the contaminated Birnbaum-Saunders model, a positively skewed lifetime distribution originally derived from material fatigue theory but now widely applied in diverse fields. Several estimation methods were considered, and their performance was compared in terms of estimation efficiency and robustness when the data are subject to contamination. To assess finite-sample properties, extensive Monte Carlo simulations were carried out, highlighting the strengths and limitations of each estimator under varying contamination levels. In addition to the simulation study, the proposed methods were applied to a real biomedical dataset involving the survival times of guinea pigs (cavia corcellus) injected with different dosages of Mycobacterium tuberculosis, the pathogen that causes tuberculosis. The application demonstrates the practical value of the comparative results and provides insight into disease progression under varying infection intensities. Overall, the study contributes to the literature by offering both methodological evaluation and an applied perspective on change point estimation in hazard rates.
| [1] |
D. Kundu, N. Kannan, N. Balakrishnan, On the hazard function of Birnbaum-Saunders distribution and associated inference, Comput. Stat. Data Anal., 52 (2008), 2692–2702. https://doi.org/10.1016/j.csda.2007.09.021 doi: 10.1016/j.csda.2007.09.021
|
| [2] | M. Bebbington, C. D. Lai, R. Zitikis, A proof of the shape of the Birnbaum-Saunders hazard rate function, Math. Sci., 33 (2008), 49–56. |
| [3] |
C. Azevedo, V. Leiva, E. Athayde, N. Balakrishnan, Shape and change point analyses of the Birnbaum-Saunders-t hazard rate and associated estimation, Comput. Stat. Data Anal., 56 (2012), 3887–3897. https://doi.org/10.1016/j.csda.2012.05.007 doi: 10.1016/j.csda.2012.05.007
|
| [4] |
F. M. A. Alam, A. Mansour Almalki, The hazard rate function of the logistic Birnbaum-Saunders distribution: Behavior, associated inference, and application, J. King Saud Univ. Sci., 33 (2021), 101580. https://doi.org/10.1016/j.jksus.2021.101580 doi: 10.1016/j.jksus.2021.101580
|
| [5] |
R. D. Gupta, D. Kundu, Generalized exponential distribution: Different method of estimations, J. Stat. Comput. Simul., 69 (2001), 315–337. https://doi.org/10.1080/00949650108812098 doi: 10.1080/00949650108812098
|
| [6] |
M. R. Alkasasbeh, M. Z. Raqab, Estimation of the generalized logistic distribution parameters: Comparative study, Stat. Methodol., 6 (2009), 262–279. https://doi.org/10.1016/j.stamet.2008.10.001 doi: 10.1016/j.stamet.2008.10.001
|
| [7] |
J. Mazucheli, F. Louzada, M. E. Ghitany, Comparison of estimation methods for the parameters of the weighted Lindley distribution, Appl. Math. Comput., 220 (2013), 463–471. https://doi.org/10.1016/j.amc.2013.05.082 doi: 10.1016/j.amc.2013.05.082
|
| [8] |
A. P. J. do Espirito Santo, J. Mazucheli, Comparison of estimation methods for the Marshall-Olkin extended Lindley distribution, J. Stat. Comput. Simul., 85 (2015), 3437–3450. https://doi.org/10.1080/00949655.2014.977904 doi: 10.1080/00949655.2014.977904
|
| [9] |
F. M. A. Alam, F. Khalawi, A. M. Daghistani, Modeling fatigue data of complex metallic alloys using a generalized Student's t-Birnbaum-Saunders family of lifetime models: A comparative study with applications, Crystals, 15 (2025), 575. https://doi.org/10.3390/cryst15060575 doi: 10.3390/cryst15060575
|
| [10] | C. Lawson, J. B. Keats, D. C, Montgomery. Comparison of robust and least-squares regression in computer-generated probability plots, IEEE T. Reliab., 46 (1997), 108–115. https://doi.org/10.1109/24.589935 |
| [11] |
K. Boudt, D. Caliskan, C. Croux, Robust explicit estimators of Weibull parameters, Metrika, 73 (2011), 187–209. https://doi.org/10.1007/s00184-009-0272-1 doi: 10.1007/s00184-009-0272-1
|
| [12] |
C. Agostinelli, A. Marazzi, V. J. Yohai, Robust estimators of the generalized log-gamma distribution, Technometrics, 56 (2014), 92–101. https://doi.org/10.1080/00401706.2013.818578 doi: 10.1080/00401706.2013.818578
|
| [13] |
M. Wang, C. Park, X. Sun, Simple robust parameter estimation for the Birnbaum-Saunders distribution, J. Stat. Distrib. Appl., 2 (2015), 14. https://doi.org/10.1186/s40488-015-0038-4 doi: 10.1186/s40488-015-0038-4
|
| [14] |
N. Balakrishnan, D. Kundu, Birnbaum-Saunders distribution: A review of models, analysis, and applications, Appl. Stoch. Model. Bus., 35 (2019), 4–49. https://doi.org/10.1002/asmb.2348 doi: 10.1002/asmb.2348
|
| [15] |
Z. W. Birnbaum, S. C. Saunders, A new family of life distributions, J. Appl. Probab., 6 (1969), 319–327. https://doi.org/10.2307/3212003 doi: 10.2307/3212003
|
| [16] |
Z. W. Birnbaum, S. C. Saunders, Estimation for a family of life distributions with applications to fatigue, J. Appl. Probab., 6 (1969), 328–347. https://doi.org/10.2307/3212004 doi: 10.2307/3212004
|
| [17] |
A. Desmond, Stochastic models of failure in random environments, Can. J. Stat., 13 (1985), 171–-183. https://doi.org/10.2307/3315148 doi: 10.2307/3315148
|
| [18] |
J. A. Diáz-Garciá, V. Leiva-Sánchez, A new family of life distributions based on the elliptically contoured distributions, J. Stat. Plan. Infer., 128 (2005), 445–457. https://doi.org/10.1016/j.jspi.2003.11.007 doi: 10.1016/j.jspi.2003.11.007
|
| [19] |
J. A. Diáz-Garciá, V. Leiva-Sánchez, Erratum to "A new family of life distributions based on the elliptically contoured distributions": [J. Statist. Plann. Inference, 128 (2), (2005) 445-457], J. Stat. Plan. Infer., 137 (2007), 1512–1513. https://doi.org/10.1016/j.jspi.2006.06.040 doi: 10.1016/j.jspi.2006.06.040
|
| [20] |
H. K. T. Ng, D. Kundu, N. Balakrishnan, Modified moment estimation for the two-parameter Birnbaum-Saunders distribution, Comput. Stat. Data Anal., 43 (2003), 283–298. https://doi.org/10.1016/S0167-9473(02)00254-2 doi: 10.1016/S0167-9473(02)00254-2
|
| [21] |
H. K. T. Ng, D. Kundu, N. Balakrishnan, Point and interval estimation for the two-parameter Birnbaum-Saunders distribution based on Type-Ⅱ censored samples, Comput. Stat. Data Anal., 50 (2006), 3222–3242. https://doi.org/10.1016/j.csda.2005.06.002 doi: 10.1016/j.csda.2005.06.002
|
| [22] |
D. Kundu, N. Balakrishnan, A. Jamalizadeh, Bivariate Birnbaum-Saunders distribution and associated inference, J. Multivar. Anal., 101 (2010), 113–125. https://doi.org/10.1016/j.jmva.2009.05.005 doi: 10.1016/j.jmva.2009.05.005
|
| [23] |
D. Kundu, N. Balakrishnan, A. Jamalizadeh, Generalized multivariate Birnbaum-Saunders distributions and related inferential issues, J. Multivar. Anal., 116 (2013), 230–244. https://doi.org/10.1016/j.jmva.2012.10.017 doi: 10.1016/j.jmva.2012.10.017
|
| [24] |
A. J. Lemonte, G. Martínez-Florez, G. Moreno-Arenas, Multivariate Birnbaum-Saunders distribution: Properties and associated inference, J. Stat. Comput. Simul., 85 (2015), 374–392. https://doi.org/10.1080/00949655.2013.823964 doi: 10.1080/00949655.2013.823964
|
| [25] |
R. G. Aykroyd, V. Leiva, C. Marchant, Multivariate Birnbaum-Saunders distributions: Modelling and applications, Risks, 6 (2018), 21. https://doi.org/10.3390/risks6010021 doi: 10.3390/risks6010021
|
| [26] |
M. Bourguignon, L. L. Ho, F. H. Fernandes, Control charts for monitoring the median parameter of Birnbaum-Saunders distribution, Qual. Reliab. Eng. Int., 36 (2020), 1333–1363. https://doi.org/10.1002/qre.2632 doi: 10.1002/qre.2632
|
| [27] |
H. Hassani, M. Kalantari, M. R. Entezarian, A new five-parameter Birnbaum-Saunders distribution for modeling bicoid gene expression data, Math. Biosci., 319 (2020), 108275. https://doi.org/10.1016/j.mbs.2019.108275 doi: 10.1016/j.mbs.2019.108275
|
| [28] |
G. Kannan, P. Jeyadurga, S. Balamurali, Economic design of repetitive group sampling plan based on truncated life test under Birnbaum-Saunders distribution, Commun. Stat. Simul. C., 51 (2022), 7334–7350. https://doi.org/10.1080/03610918.2020.1831538 doi: 10.1080/03610918.2020.1831538
|
| [29] |
Y. Liu, H. Wang, X. Ma, A novel random-effect Birnbaum-Saunders distribution for reliability assessment considering accelerated mechanism equivalence, Qual. Technol. Quant. M., 22 (2025), 752–778. https://doi.org/10.1080/16843703.2024.2400434 doi: 10.1080/16843703.2024.2400434
|
| [30] |
O. M. Bdair, Inference for two-parameter Birnbaum-Saunders distribution based on Type-Ⅱ censored data with application to the fatigue life of aluminum coupon cuts, Mathematics, 13 (2025), 590. https://doi.org/10.3390/math13040590 doi: 10.3390/math13040590
|
| [31] |
A. O. Langlands, S. J. Pocock, G. R. Kerr, S. M. Gore, Long-term survival of patients with breast cancer: A study of the curability of the disease, Br. Med. J., 2 (1979), 1247–1251. https://doi.org/10.1136/bmj.2.6200.1247 doi: 10.1136/bmj.2.6200.1247
|
| [32] | N. L. Johnson, S. Kotz, N. Balakrishnan, Continuous univariate distributions, Volume 2, John Wiley & Sons, 1995. |
| [33] |
X. Zhu, N. Balakrishnan, Birnbaum-Saunders distribution based on Laplace kernel and some properties and inferential issues, Stat. Prob. Lett., 101 (2015), 1–10. https://doi.org/10.1016/j.spl.2015.02.007 doi: 10.1016/j.spl.2015.02.007
|
| [34] |
M. Engelhardt, L. J. Bain, F. T. Wright, Inferences on the parameters of the Birnbaum-Saunders fatigue life distribution based on maximum likelihood estimation, Technometrics, 23 (1981), 251–256. https://doi.org/10.2307/1267788 doi: 10.2307/1267788
|
| [35] |
N. Balakrishnan, X. Zhu, On the existence and uniqueness of the maximum likelihood estimates of the parameters of Birnbaum-Saunders distribution based on Type-Ⅰ, Type-Ⅱ and hybrid censored samples, Statistics, 48 (2014), 1013–1032. https://doi.org/10.1080/02331888.2013.800069 doi: 10.1080/02331888.2013.800069
|
| [36] |
J. J. Swain, S. Venkatraman, J. R. Wilson, Least-squares estimation of distribution functions in johnson's translation system, J. Stat. Comput. Simul., 29 (1988), 271–297. https://doi.org/10.1080/00949658808811068 doi: 10.1080/00949658808811068
|
| [37] | B. C. Arnold, N. Balakrishnan, H. N. Nagaraja, A first course in order statistics, Society for Industrial and Applied Mathematics, 2008. |
| [38] | J. H. K. Kao, Computer methods for estimating Weibull parameters in reliability studies, IRE T. Reliab. Qual. Contr., PGRQC-13 (1958), 15–22. https://doi.org/10.1109/IRE-PGRQC.1958.5007164 |
| [39] |
J. H. K. Kao, A graphical estimation of mixed Weibull parameters in life-testing of electron tubes, Technometrics, 1 (1959), 389–407. https://doi.org/10.1080/00401706.1959.10489870 doi: 10.1080/00401706.1959.10489870
|
| [40] |
H. Al-Mofleh, A. Z. Afify, N. A. Ibrahim, A new extended two-parameter distribution: Properties, estimation methods, and applications in medicine and geology, Mathematics, 8 (2020), 1578. https://doi.org/10.3390/math8091578 doi: 10.3390/math8091578
|
| [41] | R. C. H. Cheng, N. A. K. Amin, Maximum product-of-spacings estimation with applications to the lognormal distribution, 1979. |
| [42] |
R. C. H. Cheng, N. A. K. Amin, Estimating parameters in continuous univariate distributions with a shifted origin, J. R. Stat. Soc. B, 45 (1983), 394–403. https://doi.org/10.1111/j.2517-6161.1983.tb01268.x doi: 10.1111/j.2517-6161.1983.tb01268.x
|
| [43] | B. Ranneby, The maximum spacing method. An estimation method related to the maximum likelihood method, Scand. J. Stat., 11 (1984), 93–112. |
| [44] |
K. Ghosh, S. R. Jammalamadaka, A general estimation method using spacings, J. Stat. Plan. Infer., 93 (2001), 71–82. https://doi.org/10.1016/S0378-3758(00)00160-9 doi: 10.1016/S0378-3758(00)00160-9
|
| [45] | R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2016. |
| [46] |
P. Murage, J. Mungátu, E. Odero, Optimal threshold determination for the maximum product of spacing methodology with ties for extreme events, Open J. Model. Simul., 7 (2019), 149–168. https://doi.org/10.4236/ojmsi.2019.73008 doi: 10.4236/ojmsi.2019.73008
|
| [47] |
S. Bennett, Log-logistic regression models for survival data, Appl. Statist., 32 (1983), 165–171. https://doi.org/10.2307/2347295 doi: 10.2307/2347295
|
| [48] |
R. C. Gupta, N. Kannan, A. Raychaudhuri, Analysis of lognormal survival data, Math. Biosci., 139 (1997), 103–115. https://doi.org/10.1016/s0025-5564(96)00133-2 doi: 10.1016/s0025-5564(96)00133-2
|