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Abstract: In reliability and survival analysis, the hazard rate is a key statistical measure that
quantifies the instantaneous risk of an event occurring at a given time. Detecting a change point in
the hazard rate is particularly important in biomedical and reliability studies, as it may indicate a
shift in the underlying failure mechanism or disease progression. This paper addresses the estimation
of hazard rate change points under the contaminated Birnbaum-Saunders model, a positively skewed
lifetime distribution originally derived from material fatigue theory but now widely applied in diverse
fields. Several estimation methods were considered, and their performance was compared in terms
of estimation efficiency and robustness when the data are subject to contamination. To assess finite-
sample properties, extensive Monte Carlo simulations were carried out, highlighting the strengths and
limitations of each estimator under varying contamination levels. In addition to the simulation study,
the proposed methods were applied to a real biomedical dataset involving the survival times of guinea
pigs (cavia corcellus) injected with different dosages of Mycobacterium tuberculosis, the pathogen
that causes tuberculosis. The application demonstrates the practical value of the comparative results
and provides insight into disease progression under varying infection intensities. Overall, the study
contributes to the literature by offering both methodological evaluation and an applied perspective on
change point estimation in hazard rates.
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1. Introduction

Determining the change point of a hazard rate, that is, the peak point of the hazard function, is
of practical importance in reliability and biomedical studies. By approximating such an instant of
change, researchers can implement appropriate interventions for the phenomenon under study. For
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instance, suppose that medical scientists begin administering a treatment for a specific disease. Once
they identify the time at which the hazard rate starts to decline, they may reduce or discontinue the
dosage, thereby lowering treatment costs while maintaining effectiveness. Relevant research articles
include the following. The change point of the hazard function of the Birnbaum-Saunders (BS)
distribution was discussed in [1]. They verified that the hazard function is unimodal for all values of the
shape parameter; see also [2] in this regard. They further explained different approaches to obtain the
change point, conducted assessments via Monte Carlo simulations, and analyzed data to illustrate their
findings. In [3], the change point of the hazard function was studied in the case of the Student’s #-BS
distribution, a special case of the generalized BS distribution that also generalizes both the Cauchy BS
distribution and the conventional BS distribution. They carried out numerical applications to evaluate
the efficiency of the change point estimation using several methods and presented empirical results.
More recently, [4] investigated the behavior of the hazard rate function of the logistic BS distribution
and developed associated inference procedures.

To estimate the hazard rate or one of its characteristics (such as the change point), it is first
necessary to estimate the underlying model parameters using an appropriate statistical method. The
maximum likelihood framework is most commonly employed for this purpose. However, in the
statistical literature, a variety of alternative estimation methods have been proposed, some of which
may outperform the maximum likelihood estimator (MLE) under certain conditions, particularly in
the presence of data contamination (i.e., outliers or extreme observations). As a result, numerous
researchers have undertaken comparative studies to examine, through numerical investigations, the
relative performance of different estimation approaches from various perspectives and circumstances;
see, for example, [5-9], among other contributions cited in these studies. In practice, the efficiency of
estimation is strongly influenced by the quality of the data. A dataset free from contamination (i.e.,
outliers or extreme observations) is always preferred, as it ensures the highest possible estimation
efficiency. However, in most scientific studies, there is no guarantee that the collected data are
uncontaminated. Frequentist estimation methods, such as maximum likelihood, are well known to
lack robustness in the presence of outliers, since the distortions caused by such observations can
substantially degrade the performance of estimators. A simple illustration is the comparison between
the maximum likelihood estimator of the scale parameter in the exponential distribution and the
nonparametric estimator of the same parameter based on the median, where the latter is more robust
to contamination. These challenges have motivated many researchers to propose alternative estimation
techniques for a wide range of distributions; see, for example, [10—13], among other studies.

This paper investigates the performance of nine frequentist estimation methods for the change point
of the BS hazard rate and examines their robustness in the presence of data contamination. Here, data
contamination refers to the occurrence of outliers, extreme values, or both. The BS distribution is
a lifetime model, that is, a probability distribution with positive support commonly used to fit time-
to-event data in reliability and survival studies. A positive continuous random variable 7 is said to
follow a BS distribution with shape parameter @ and scale parameter 8 (denoted as 7' ~ BS(«, §)) if its
cumulative distribution function (CDF) is given by

\/g—\/g]) t>0,a>0,8>0, (1.1)

where ®(-) denotes the standard normal CDF. Accordingly, the probability density function (PDF) and

1
a

F(t:a,p) = CI)(
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hazard function (HF) of the BS distribution are expressed as

o= Ee 2 )

fEap) s Vi Ve VB VE))
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respectively, where r > 0, @ > 0, 8 > 0, and ¢(-) is the standard normal PDF.
Using Eq (1.1), the quantile function of the BS distribution can be written as

2
O(u;a,B) = g [acp-‘(u) + A4+ {oz(D“(u)}z] , (1.4)

where 0 < u < 1, > 0,8 > 0, and ®~!(-) denotes the standard normal quantile function. This
quantile function is useful for simulating random variates from the BS distribution and for deriving its
distributional properties (e.g., moments and median); see, for example, [14].

The BS distribution has a close relationship with the normal distribution and possesses several
desirable features. Since its introduction by [15,16] over five decades ago, it has attracted considerable
attention. Extensive research has been devoted to its physical interpretations [17], generalizations
[18,19], inferential procedures [20,21], and multivariate extensions [22-25]. Comprehensive reviews
can be found in [14], while some recent applications were documented in [26-30]. The PDF and HF
of the BS distribution are unimodal for all parameter values; see Figures 1 and 2. In the literature, HFs
are often assumed to be constant (as in the exponential distribution) or monotonic (as in the Weibull
distribution). In practice, however, the HF can be non-monotonic, as is the case for the BS distribution.
A unimodal HF increases up to a certain time point, known as the change point, and subsequently
decreases, eventually stabilizing. For example, in a study on breast cancer recovery, [31] observed
a unimodal HF, where the highest mortality rate occurred approximately three years after diagnosis,
after which the mortality rate declined gradually. Three well-known distributions with unimodal HFs
are the log-normal, inverse Gaussian, and BS distributions. It is noteworthy that the BS hazard curve
converges to a positive constant, unlike the log-normal and inverse Gaussian distributions, for which
the HF tends to zero; see [32].

This paper investigates the performance of nine frequentist estimation methods for the change
point of the BS hazard rate and examines their robustness in the presence of data contamination (i.e.,
occurrence of outliers, extreme values, or both). The estimators considered for the model parameters
include the modified moments estimators (MMEs), maximum likelihood estimators (MLESs), three
least-squares-based estimators, the maximum product of spacings estimators (MPSEs), and three
minimum-distance-based estimators. The objective of this study is to explore and identify the most
effective estimation method among these alternatives, as this topic is of considerable interest to applied
statisticians and reliability engineers. It is worth noting that although some of these methods may
outperform MLEs and MPSEs in finite samples, they may not necessarily possess favorable asymptotic
or distributional properties.

and

h(t,a,p) = , (1.3)
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Figure 1. The PDF of the BS distribution for various values of the shape parameter @ and
the scale parameter (.
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Figure 2. The HF of the BS distribution for various values of the shape parameter @ and the
scale parameter (.

The remainder of this paper is organized as follows. Section 2 provides details of the nine estimation
methods under consideration. Section 3 presents the results of extensive Monte Carlo simulations
designed to compare the performance of the estimators under various conditions. Section 4 illustrates
the application of the proposed methods to a real biomedical dataset. Finally, Section 5 concludes the
paper with a summary of findings and directions for future research.

2. Change point estimation

Recall that Eq (1.3) is the HF of the BS distribution and 3 is a positive scale parameter. Accordingly,
and based on [1], the change point of the HF is ¢, g, such that ¢, = Bc,. Here, ¢, is a decreasing
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function of @ and the solution of the following nonlinear equation:
, e(?) ” / e(?)
a[€O ¢ (——) +{e?e"(t) - e [¢ O]} @ (——) =0, 2.1)
o o
such that ®(-) is the standard normal CDF, ¢(-) is the standard normal PDF,

€ =1—17% €)= %(ré +177), and €'() = —% (7 +3r2).
Clearly, since Eq (2.1) is nonlinear; thus, one must use numerical means to approximate the solution.
However, for small values of the shape parameter, the approximation might not be stable when one
uses standard root solving techniques (e.g., Newton’s method) as indicated in [1]. The following parts
of this section discuss nine approaches to estimate the model parameters from which one can estimate
the change point.

2.1. Modified moments estimation

In statistical literature, the method of moments is one of the oldest estimation technique commonly
to acquire closed-form estimators for the model parameters. In [20], MMEs were obtained rather than
those obtained using the conventional approach. [1] made use of the MMEs to estimate the change
point ¢, since they are easy to calculate due to their closed-form expressions, and their behavior
is very similar to the MLEs. However, their performance is still unknown when data contamination
exists. If 71, ..., 1, represent the observed random sample of size n from BS(«, 5), then based on the its
distributional properties, the MMEs of @ and § are given by

e = 1|2 [(;)2 _ 1] 2.2)
and
BMME = sr, (2.3)

respectively, such that:
n n -1
1 1
= — ti d = |- l’Tl
are the sample arithmetic and harmonic means, respectively. The MMEs were considered to estimate
the BS distribution based on the Laplace kernel by [33].

2.2. Maximum likelihood estimation

Recall that 7y, ..., t, represents the observed random sample of size n from BS(a, §) with probability
density function (1.2). The MLEs of the model parameters were originally obtained in [15, 16], while
their asymptotic distributions were derived in [34]. The existence and uniqueness of the MLEs were
proved in [35]. Let

-1

1 n
K@) = [; INCEY N
i=1
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be a harmonic mean function, such that K(0) = r. The MLE of , which is denoted by BMLE, can be
obtained as the unique positive root of the following nonlinear equation:

B> —=B[2r+ KP)]+r[s+K(@B)] =0. (2.4)

Once ,@’MLE is numerically determined as a solution of (2.4), the MLE of «, which is denoted by &g,

can be obtained explicitly as
amLE = \/A - e _ 2. (2.5)

MLE r

Note that r and s are defined as shown in the aforementioned subsection.

2.3. Least-squares estimation

The first type of least-squares-based estimator is the least-squares estimator (LSE), which was

initially considered in [36] to estimate the parameters of the beta distribution. Suppose that #,, <

. < t,., are the corresponding observed order statistics based on a random sample t#,,...,¢, of size n
from an arbitrary probability distribution with CDF F(¢). It is known that:

i

E[F(t..)] = P

since F(t.,), ..., F(t,,) are order statistics from a standard uniform distribution; see, for example, [37].

The LSEs of @ and S; say, &.se and By sg, respectively, are obtained by minimizing the following least-

squares objective function:

n . 2
_ T Jn o[BI
S(a,p) = ; l(b a{ 5 fD — (2.6)
The first-order derivatives of Eq (2.6) with respect to the model parameters are as follows:
05 _ oL frm_ [BN\ o5
% - 2; fD a _ ﬁ ti;n_ n+ 1_ aa(tt:n)
and ) ) )
ANEPS ol P By PR V- | IR P
% = 2; _(D | ﬁ ti:n_ N+ 1_ a,B(tz:n)’
such that . -
9,(1) = _A(t;ﬁ)q,)(A(f,ﬂ)) 27
04 a
o B:p) (AwP)
L, t;
% ==205 ¢( - ) (2.8)
where y
At B) = — (2.9)
g VE
+B
B(t;B) = — (2.10)
n=

and ¢(-) is the standard normal PDF. It is important to mention that Eq (2.7) to Eq (2.10) are frequntly
used in the following subsection.
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2.4. Weighted least squares estimation

The second type of least-squares-based estimator is the weighted least-squares estimator (WLSE),
which was also considered in [36]. Both LSEs and their weighted counterparts were later used in [5-8].
Recall that ¢, < ... < t,., are the corresponding observed order statistics based on a random sample
t,...,t, of size n. Since F(t,.,),..., F(t,,) are order statistics form a standard uniform distribution,

then it is also known that: . .
im—i+1)

ar [F(t;.,)] = m;

see [37] for more details. The WLSEs of « and ; say, &wisg and ,BWLSE, respectively, are obtained by
minimizing the following weighted least-squares objective function:

( lﬁ_(l) n+1] @2.11)

where wy.,, ..., Wy, are the weights of ¢, < ... < t,.,, respectively, such that

Swia,p) =

_(n+ D?(n+1)
 in—-i+1)

The first-order derivatives of Eq (2.11) with respect to the model parameters are as follows:

w22 GV -7
w22 VG- )

2.5. Percentile estimation

a(tt n)

and

aﬁ( i n)

The third least-squares-based estimator is obtained as follows. When data comes from a population
with a closed-form CDF and QF, then one may estimate the unknown model parameters by fitting
a linear model to the theoretical percentiles obtained from the QF and the sample percentiles. This
method was proposed in [38,39]. Examples of its usage are found in [5, 6,40]. Recall that 7, < ... <
t..n are the corresponding realizations of the order statistics based on a random sample #4,...,t, of size
n. Based on Eq (1.4), and if F(¢;.,;@,() are estimated by p;,, = E[F(¢.,)] fori = 1,...,n, then the
percentile estimators of @ and S; say, &pcg and BPCE, can be obtained by minimizing:

n 2\ 2
S[J = Z {ti:n - § [Qq)_l(pi:n) + \/4 + {aq)_](pi:n)}z] } (2.12)

i=1

where p;., = ﬁ The first-order derivatives of Eq (2.12) with respect to the model parameters are as

follows: ,
- ZZ { in [Q(D (pzn) + \/4 + Q'CD 1(ptn)} }QQ(pi:n)a
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and i ) )
w2 {r,-:n - [acb-%p,»;n) b4+ {acb-%p,-;n)}z] }qﬁ@m),
such that »
Gu) = 2 O~ (w)Q(u; @, B)
4+ [a®' W)
and

qp(u) = —0(u; @, 1),
where Q(u; a, ) is given by Eq (1.4).

2.6. Maximum product of spacings estimation

Recent research indicates that MPSEs currently rival MLEs in terms of estimation efficiency. They
were formally introduced in [41-43]. MPSEs belong to a class of a more general estimation method
using spacings; see in this connection [44]. If #;.,, < ... < t,,, are the observed order statistics based
on a random sample of size n, then the MPSEs for the model parameters; say, &ypsg and ﬁMpSE, are
acquired by maximizing:

(2.13)

such that
t:n ﬁ . . _
1? — :]) lfl = 1,

tin B 1 Li-in B 1 1
[ n E])_(D(E[ /T_‘/?]) ifl <i<n,
1

ifi=n+1.

and
oP 1 & A
B n+l - A
where
aa(tl:n) ifi=1,
awAi = aa/(ti:n) - aa(ti—l:n) ifl1 <i< n,
=0, (tn:n) ifi=n+1,
and
Fplt1n) ifi=1,
BﬁA,- = aﬁ(t,g,,) - (9/3(1,'_1:,,) ifl<i< n,
(1) ifizn+l.
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2.7. Cramér-von Mises estimation

The Cramér-von Mises method belongs to the class of minimum distance methods, and the
corresponding CVMEs; say, &cyme and ECVME, are found by minimizing:

n . 2
L L) e (B 221
N L ek @

such that t,, < ... < t,., are the observed order statistics of a random sample of size n. Moreover, the
first-order derivatives of Eq (2.14) with respect to the model parameters are as follows:

IV AT
oS Pl )25

2.8. Anderson-Darling estimation

and

Anderson-Darling estimation and its right-tailed version also belong to the class of minimum
distance methods. In this subsection, the former is considered, while the latter is discussed in the
following subsection. Based on the fact that #,., < ... < t,.,,, then the ADEs for the model parameters;
say, @apg and ﬁADE, are determined by minimizing:

A:—n——Z(Zz—l)logCD(_é[ tni+]n_\/ B D

iivtim

——;(21—1)log®( lF—fD (2.15)

The first-order derivatives of Eq (2.15) with respect to the model parameters are as follows:

6A 1 2 . aa(tn—i+1:n)
— == 2i—1
- Zl( i—1) (

o 1 In—it+lin B
q) _;[ ﬂ - Jtn—i-#l:n

1 . . a(tin)
R YOI
n l=1 l (é [ tlll tln:l)

= 0 Ln—it+1:n
(9_A:12(2i_1) 5 (tn—is1:n)
n <

1 n—i+l:n ﬁ
(D(_E [ V t B - V [n—i+1:n:|)

1 4 a(tin)
——Z(2i—1) ﬁt
" eGlE-VE])
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2.9. Right-tailed Anderson-Darling estimation

From a random sample of size n, and based on the corresponding observed order statistics
tin < ... < t,,, then the RADEs for the model parameters; say, &rapg and BRADE, are determined

by minimizing:
_ E _ l - . _l it _ , ﬁ
AR B 2 n ;(2l 1)10gq)( a l V ﬁ tn—i+1:nl)
- 1 ti:n :3
_2;®(a{\/%—\/;l). (2.16)

The first-order derivatives of Eq (2.16) with respect to the model parameters are as follows:

Ar 1o Y C
0 R _ 2 Z(Zl_ 1) a(l(t}’l z+1.n) _ zzaa(ti:n)
aa n i=1 (I) (_l [ J’nﬂ#l:n _ \/ B ]) i=1
ﬁ th—i+1:n
and
0AR 1 - . aﬁ(tn—Hl:n) -
= _ 2i-1) -2 0p(tin)-
aﬁ n ; (D (_l [ In—itln __ \/ ﬁ ]) ; g
a ,B In—i+1:n

3. Numerical illustrations and simulations

This section is divided into two parts. The first presents an illustrative example that demonstrates
the performance of the proposed estimation methods for determining the change point. The second
reports the results of a Monte Carlo simulation study aimed at comparing the efficiency and robustness
of the considered estimators under various contaminated data scenarios.

3.1. Illustrative example

Suppose that the change point is estimated based on a data set of size 10 (i.e., n = 10)
simulated from BS(1.5,1.0) and is reported in Table 1. The actual change point ¢,z is found to
be approximately equal to 0.185. Before obtaining estimators for the model parameters, one must
check their existence and uniqueness. Mathematically proving these requirements is beyond this
study’s scope; nevertheless, one may prove them using graphical means. Using extensive Monte Carlo
simulations, a three-dimensional (3D) plot for the profile of each objective function of each estimation
method is established, as shown in Figures 3 and 4. These 3D surfaces serve as visual diagnostics,
analogous to contour plots. The 3D charts clearly indicate that global extrema exist and are unique.
The MME:s for « and g are first calculated and then used as initial values to acquire the remaining
estimators.

Table 1. Simulated data from BS(1.5, 1.0).

0.44143 0.70923 7.33011 1.11150 1.21365
8.50062 1.97052 0.03693 0.37179 0.51859
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(© d)

Figure 3. 3D surface plots of the objective functions for the nine estimation methods applied
to the simulated BS(1.5, 1.0) dataset (Table 1). The localized peak in each plot confirms the
existence of a unique optimum.
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Figure 4. 3D surface plots of the objective functions for the nine estimation methods applied
to the simulated BS(1.5, 1.0) dataset (Table 1). The localized peak in each plot confirms the

existence of a unique optimum (cont.).

Accordingly, nine estimates are found for the change point ¢, s as summarized in Table 2 alongside
the estimators of the model parameters. From the latter table, one can easily observe that MPSE and
WLSE of ¢, g provided the closest approximations for the change point.

AIMS Mathematics
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Table 2. Estimation of ¢, g using nine methods based on data in Table 1.

Method a B Cap

MME 1.344 1.175 0.282
MLE 1.344 1.217 0.292
LSE 1.506 0.961 0.176
WLSE 1.620 1.047 0.162
PCE 2.169 0.897 0.073
MPSE 1.683 1.243 0.177
CVME 1.162 0.907 0.313
ADE 1.499 1.069 0.198
RADE 1.694 1.012 0.142

3.2. Simulation outcomes

Consider the following data contamination scenarios:

(S1) No contamination.

(S2) Severe upper contamination, where the upper 10% of order statistics are multiplied by 5.

(S3) Severe lower contamination, where the lower 10% of order statistics are multiplied by 1/5.

(S4) Severe two-tailed contamination, where the upper 10% of order statistics are multiplied by 5 and
the lower 5% of order statistics are multiplied by 1/5.

These scenarios are inspired by [13]. For each case, 10,000 random samples of sizes {10, 20,
30, 40, 50, 60, 70, 80, 90, 100} are generated with model parameters @ = 0.5,1,2. These choices
are intended to numerically examine the effect of increasing both sample size and shape parameter
value on estimation efficiency. Simulation studies often assume that estimators are scale invariant (see,
e.g., [6]); therefore, without loss of generality, the true value of the scale parameter 3 is set equal to one
in all simulation settings. It is important to note that S is not assumed to be known in the estimation;
rather, it is estimated from the simulated samples under each method. The corresponding critical values
for these parameters are cys; = 4.572471, ¢;,; = 0.5148967, and ¢, ; = 0.09678019, respectively.

For each simulation, the bias and root mean squared error (RMSE) of the estimated critical values

are computed as
M

. 1 .
Bias(csp) = o- D (&~ Cap)
i=1

and

M
1
RMSE(c, 5) = J 7 D= cag),
i=1

where M is the number of simulation runs and ¢&; = ¢,, 5, denotes the estimated critical value in run i,
with @; and j3; being any of the considered estimators.

AIMS Mathematics Volume 10, Issue 11, 26106-26131.
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Figure 5. Bias of nine estimators of the BS hazard change point c,g under four data
contamination scenarios: (S1) no contamination; (S2) upper-tail; (S3) lower-tail; and (S4)
two-tailed contamination. Results are shown for @« = 0.5,1,2 across increasing sample
sizes (n = 10,20, ...,100). CVME, LSE, and WLSE exhibit the smallest bias, particularly
under data contamination.
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Figure 6. Root mean squared error (RMSE) of nine estimators of the BS hazard change
point ¢,z under the same data contamination scenarios as in Figure 5. As the sample size
increases, RMSE decreases across all methods. CVME, LSE, and WLSE show the most

robust performance under data contamination.
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All numerical results were obtained using R, an environment for statistical computing [45].*
Figures 5 and 6 display the outcomes of the simulation study. The following observations can be
made:

(1) As the sample size increases, the RMSEs decrease across all estimation methods, indicating
consistency of the estimators.

(2) Biases approach zero with larger samples, confirming asymptotic unbiasedness.

(3) Under contaminated data, some estimators such as MME, MLE, PCE, MPSE, ADE, and RADE
exhibited poor performance for small shape parameter values and small sample sizes, as reflected
in larger bias and RMSE values. By contrast, the performance of CVMEs, LSEs, and WLSEs
improves with larger samples.

(4) As the shape parameter increases, all methods converge in performance in terms of both bias and
RMSE, regardless of contamination.

(5) Performance tends to deteriorate as the proportion of contamination increases, except for CVMEs,
LSEs, and WLSEs, which demonstrate greater robustness.

4. Application

The practical application of the considered estimators is illustrated using a real dataset. This dataset
comprises 72 lifetimes (in days), shown in Table 3, of guinea pigs (cavia porcellus) injected with
different dosages of Mycobacterium tuberculosis, a pathogenic bacterium that causes tuberculosis.
This dataset has previously been analyzed in [1, 3], among others. Onec again, extensive Monte Carlo
simulations were conducted to construct three-dimensional (3D) profiles of the objective functions for
each estimation method based on data in Table 3, as illustrated in Figures 7 and 8. As previously
mentioned, these surfaces act as visual diagnostics, similar in purpose to contour plots. The 3D charts
clearly reveal the existence and uniqueness of the global extrema.

Table 3. Lifetimes of 72 cavia porcellus injected with different dosages of Mycobacterium

tuberculosis.
Lifetimes (in days)
12 44 60 70 95 146
15 48 60 72 96 175
22 52 60 73 98 175
24 53 60 75 99 211
24 54 61 76 109 233
32 54 62 76 110 258
32 55 63 81 121 258
33 56 65 83 127 263
34 57 65 84 129 297
38 58 67 85 131 341
38 58 68 87 143 341
43 59 70 91 146 376

*The R source code of this study is available from the author upon request.
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Figure 7. Three-dimensional surface plots of the objective functions for the nine estimation
methods applied to the data in Table 3. The distinct peak in each plot demonstrates the

presence of a unique optimum.
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Figure 8. Three-dimensional surface plots of the objective functions for the nine estimation
methods applied to the data in Table 3. The distinct peak in each plot demonstrates the
presence of a unique optimum (cont.).

Table 4 reports the parameter estimates (&,f) obtained from the nine estimation methods
considered, together with the corresponding goodness-of-fit results from the one-sample Kolmogorov-
Smirnov (KS) test and the estimated change point ¢, 3. Since ties exist in the dataset, the MPSEs cannot
be directly obtained; however, a generalization of the maximum product of spacings method may be
applied to address this issue (see [46] for details). The table summarizes results under three settings: (a)
no data contamination, (b) 7% upper contamination by doubling the largest five observations, and (c)
percentage errors arising from contamination. The latter table also includes percentage errors that are
used to numerically assess the robustness of the competing estimators, as well as parametric bootstrap
standard errors (SEs) computed using 1000 parametric bootstrap resamples for all nine estimation
methods. These results provide additional insight into the sampling stability of the estimators.
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Table 4. Fitted models and outcomes of goodness-of-fit: (a) no contamination; (b) 7% upper
contamination; (c) percentage errors due to contamination.

Part (a)
Method & SE* (&) B SE*(B) Cap SE*(cap) KS p-value
MME 0.76 0.064 77.453 6.755 90.301 31.735 0.104 0.413
MLE 0.76 0.064 77.535 6.763 90.397 31.777 0.104 0.419
LSE 0.638 0.069 74.311 5.886 153.846 62.423 0.092 0.571
WLSE 0.692 0.066 75.764 6.297 119.598 45.458 0.098 0.497
PCE 0.889 0.201 72.678 10.821 52.339 27.957 0.158 0.055
MPSE 0.816 0.081 76.899 7.142 71.773 20.699 0.12 0.249
CVME 0.621 0.066 74.229 5.736 167.994 74.516 0.088 0.636
ADE 0.731 0.067 76.377 6.659 100.908 35.971 0.104 0.419
RADE 0.786 0.080 74.946 7.317 78.701 34.631 0.125 0.207

Part (b)
Method & SE*(&) B SE*(B) Cap SE"(ca) KS p-value
MME 0918 0.077 86.011 8.812 56.329 18.575 0.161 0.047
MLE 0.919 0.077 87.145 8.928 57.048 18.821 0.167 0.036
LSE 0.633 0.069 74.244 5.840 157.442 63.759 0.091 0.584
WLSE 0.674 0.065 75.373 6.105 130.209 49.384 0.095 0.531
PCE 1.763 3.079 46.691 21.388 5.974 6.361 0.345 < 0.001
MPSE 0.988 0.098 87.199 9.493 46.375 12.532 0.171 0.03
CVME 0.617 0.065 74.178 5.701 171.058 75.706 0.087 0.646
ADE 0.811 0.075 77.848 7.478 73.868 25.701 0.114 0.308
RADE 0.943 0.097 75.235 8.739 45.729 19.173 0.152 0.071

Part (¢)
Method a SE*(&) B SE*(B) Cap SE"(cap) KS p-value
MME 20.79% 20.95% 11.05% 30.47% 37.62% 41.47% 54.81% 88.62%
MLE 20.92% 20.98% 12.39% 32.02% 36.89% 40.77% 60.58% 91.41%
LSE 0.78% 0.72% 0.09% 0.79% 2.34% 2.14% 1.09% 2.28%
WLSE 2.60% 2.70% 0.52% 3.06% 8.87% 8.64% 3.06% 6.84%
PCE 98.31% > 100% 35.76% 97.66% 88.59% 77.25% 118.35% 100.00%
MPSE 21.08% 21.05% 13.39% 32.92% 35.39% 39.46% 42.50% 87.95%
CVME 0.64% 0.56% 0.07% 0.62% 1.82% 1.60% 1.14% 1.57%
ADE 10.94% 11.03% 1.93% 12.31% 26.80% 28.55% 9.62% 26.49%
RADE 19.97% 20.27% 0.39% 19.43% 41.90% 44.64% 21.60% 65.70%

Table 4 indicates that the robust methods were the LSE, WLSE, and CVME since the bootstrap
SEs for the estimators of the model parameters and the change point were consistently small, and
the associated percentage errors did not exceed 3%. This confirms that these methods are not only
efficient, as seen in the simulation study, but also display high stability under repeated sampling.
In contrast, the percentile estimator (PCE) exhibited extremely large bootstrap SEs, with percentage
errors exceeding 70% for the change point and over 100% for the shape parameter «. This indicates
a severe lack of robustness and highlights the sensitivity of percentile-based procedures to sampling
variability in contaminated data. The remaining methods (MME, MLE, MPSE, ADE, and RADE)
showed moderate to high bootstrap variability, with percentage errors ranging from 20% to 45%. Taken
together, the bootstrap results reinforce the main conclusion of this study: among the nine estimators
considered, LSE, WLSE, and CVME provide the most reliable balance of accuracy and robustness
for change point estimation in the Birnbaum-Saunders model under contamination. To further support
the conclusions, and under the same assumptions, Table 5 reports observed and fitted exploratory
data analysis (EDA) results, including the sample mean, median, quartiles, standard deviation (SD),
coeflicient of skewness (CS), and coeflicient of kurtosis (CK). Overall, CVMEs, LSEs, and WLSEs
show satisfactory performance, as the percentage errors suggest that these methods are not substantially
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affected by contamination.

Table 5. Outcomes of EDA: (a) no contamination; (b) 7% upper contamination; (c)
percentage errors due to contamination.

Part (a)
Source 0 Median Mean 0 SD CS CK
Sample 54.750 70.000 99.819 112.75 81.118 1.796 5.614
MME 46.643 77.453 99.819 128.613 77.241 2.077 6.845
MLE 46.692 77.535 99.925 128.750 77.323 2.077 6.845
LSE 48.489 74.311 89.424 113.884 58.209 1.803 5.217
WLSE 47.699 75.764 93.914 120.344 66.311 1.929 5.943
PCE 40.245 72.678 101.404 131.248 91.113 2.330 8.514
MPSE 44.654 76.899 102.491 132.430 84.915 2.192 7.578
CVME 48.977 74.229 88.539 112.502 56.109 1.762 4.994
ADE 46.877 76.377 96.781 124.442 72.100 2.015 6.460
RADE 44.387 74.946 98.068 126.543 78.352 2.13 7.182

Part (b)
Source 0 Median Mean 0; SD CS CK
Sample 54.750 70.000 122.292 112.750 154.818 2.909 10.739
MME 46.734 86.011 122.292 158.299 113.237 2.383 8.878
MLE 47.346 87.145 123.915 160.401 114.755 2.383 8.880
LSE 48.592 74.244 89.128 113.439 57.599 1.792 5.156
WLSE 48.038 75.373 92.468 118.262 63.547 1.887 5.693
PCE 15.109 46.691 119.245 144.288 181.923 3.281 16.071
MPSE 45.300 87.199 129.794 167.855 128.451 2.500 9.717
CVME 49.056 74.178 88.317 112.165 55.653 1.754 4.948
ADE 45.333 77.848 103.480 133.685 85.298 2.183 7.522
RADE 40.248 75.235 108.661 140.636 103.035 2.425 9.173

Part (c)
Source o Median Mean 0; SD CS CK
Sample 0.00% 0.00% 22.51% 0.00% 90.86% 61.97% 91.29%
MME 0.20% 11.05% 22.51% 23.08% 46.60% 14.73% 29.70%
MLE 1.40% 12.39% 24.01% 24.58% 48.41% 14.73% 29.73%
LSE 0.21% 0.09% 0.33% 0.39% 1.05% 0.61% 1.17%
WLSE 0.71% 0.52% 1.54% 1.73% 4.17% 2.18% 4.21%
PCE 62.46% 35.76% 17.59% 9.94% 99.67% 40.82% 88.76%
MPSE 1.45% 13.39% 26.64% 26.75% 51.27% 14.05% 28.23%
CVME 0.16% 0.07% 0.25% 0.30% 0.81% 0.45% 0.92%
ADE 3.29% 1.93% 6.92% 7.43% 18.31% 8.34% 16.44%
RADE 9.32% 0.39% 10.80% 11.14% 31.50% 13.85% 27.72%

For the practical interpretation of the results, consider the following discussion. In many practical
applications, the hazard function is not monotone; rather, it increases up to a certain point and then
decreases. For instance, in a study of breast cancer recovery, [31] reported that the mortality rate peaked
about three years after diagnosis and subsequently declined gradually over a fixed period. Similarly,
results from the Veteran Administration lung cancer trial showed inverted hazard patterns for both
low- and high-performance status groups [47]. In such contexts, a key quantity of interest is the time
at which the hazard function reaches its maximum [48]. Assuming uncontaminated data, Table 4
indicates that this maximum mortality is expected to occur at approximately 53 days according to the
PCEs and 168 days according to the CVME:s.
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5. Conclusions

The hazard rate is a fundamental statistical measure in reliability and survival analysis, and
identifying its change point enables researchers to make informed interventions and reduce potential
costs. This study extends previous work by comparing nine frequentist procedures for estimating
the change point of the Birnbaum-Saunders hazard rate under contaminated data. Simulation results
demonstrated that CVMEs, LSEs, and WLSEs achieved the most robust performance in terms of bias
and RMSE, while MME, MLE, PCE, MPSE, ADE, and RADE were more sensitive to contamination,
particularly for small sample sizes and shape parameters. The application to tuberculosis survival data
further confirmed that CVME, LSE, and WLSE produced stable estimates even when the dataset was
artificially contaminated. These findings suggest that in the presence of outliers, CVME-, LSE-, and
WLSE-based approaches are preferable for change point estimation in BS models.

Several research directions remain open. Of particular importance is strengthening the theoretical
basis of these estimation procedures, for example by studying the asymptotic properties of change point
estimators and analyzing their robustness through influence functions. For instance. Other important
directions include extending the methods to settings with missing or censored data and comparing the
frequentist approaches considered here with Bayesian counterparts.
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