The auxiliary equation method for the construction of deformed solitary solutions to the mathematical model of tumor-immune system interaction is presented in this paper. The investigated model does not admit classical solitary solutions. Special techniques based on symbolic computations are used to construct deformed solitary solutions by simultaneously avoiding the inherent additional constraints to the model parameters. It is demonstrated that the introduction of the auxiliary equation does not drop any solutions from the original system. Also, deformed solitary solutions do not depend on the parameters of the auxiliary equations. Analytical and computations experiments are used to demonstrate the efficacy of the proposed method.
Citation: R. Marcinkevičius, R. Mickevičius, Z. Navickas, I. Telksnienė, T. Telksnys, M. Ragulskis. The auxiliary equation method for the construction of deformed solitary solutions to the model of tumor-immune system interaction[J]. AIMS Mathematics, 2025, 10(11): 25729-25755. doi: 10.3934/math.20251139
The auxiliary equation method for the construction of deformed solitary solutions to the mathematical model of tumor-immune system interaction is presented in this paper. The investigated model does not admit classical solitary solutions. Special techniques based on symbolic computations are used to construct deformed solitary solutions by simultaneously avoiding the inherent additional constraints to the model parameters. It is demonstrated that the introduction of the auxiliary equation does not drop any solutions from the original system. Also, deformed solitary solutions do not depend on the parameters of the auxiliary equations. Analytical and computations experiments are used to demonstrate the efficacy of the proposed method.
| [1] |
C. Vaghi, A. Rodallec, R. Fanciullino, J. Ciccolini, J. P. Mochel, M. Mastri, et al., Population modeling of tumor growth curves and the reduced gompertz model improve prediction of the age of experimental tumors, PLoS Comput. Biol., 16 (2020), e1007178. https://doi.org/10.1371/journal.pcbi.1007178 doi: 10.1371/journal.pcbi.1007178
|
| [2] |
S. Shah, G. G. D'Souza, Modeling tumor microenvironment complexity in vitro: spheroids as physiologically relevant tumor models and strategies for their analysis, Cells, 14 (2025), 732. https://doi.org/10.3390/cells14100732 doi: 10.3390/cells14100732
|
| [3] |
R. Kim, M. Emi, K. Tanabe, Cancer immunoediting from immune surveillance to immune escape, Immunotherapy, 121 (2007), 1–14. https://doi.org/10.1111/j.1365-2567.2007.02587.x doi: 10.1111/j.1365-2567.2007.02587.x
|
| [4] |
C. M. Phillips, E. A. B. F. Lima, R. T. Woodall, A. Brock, T. E. Yankeelov, A hybrid model of tumor growth and angiogenesis: in silico experiments, Plos One, 15 (2020), e0231137. https://doi.org/10.1371/journal.pone.0231137 doi: 10.1371/journal.pone.0231137
|
| [5] |
C. Grassberger, S. G. Ellsworth, M. Q. Wilks, F. K. Keane, J. S. Loeffler, Assessing the interactions between radiotherapy and antitumour immunity, Nat. Rev. Clin. Oncol., 16 (2019), 729–745. https://doi.org/10.1038/s41571-019-0238-9 doi: 10.1038/s41571-019-0238-9
|
| [6] |
D. Mathur, E. Barnett, H. I. Scher, J. B. Xavier, Optimizing the future: how mathematical models inform treatment schedules for cancer, Trends Cancer, 8 (2022), 506–516. https://doi.org/10.1016/j.trecan.2022.02.005 doi: 10.1016/j.trecan.2022.02.005
|
| [7] |
T. Telksnys, Z. Navickas, I. Timofejeva, R. Marcinkevicius, M. Ragulskis, Symmetry breaking in solitary solutions to the Hodgkin–Huxley model, Nonlinear Dyn., 97 (2019), 571–582. https://doi.org/10.1007/s11071-019-04998-4 doi: 10.1007/s11071-019-04998-4
|
| [8] |
I. Timofejeva, T. Telksnys, Z. Navickas, R. Marcinkevicius, R. Mickevicius, M. Ragulskis, Solitary solutions to a metastasis model represented by two systems of coupled Riccati equations, J. King Saud Univ.-Sci., 35 (2023), 102682. https://doi.org/10.1016/j.jksus.2023.102682 doi: 10.1016/j.jksus.2023.102682
|
| [9] |
S. H. Dong, A new approach to the relativistic schrödinger equation with central potential: ansatz method, Int. J. Theor. Phys., 40 (2001), 559–567. https://doi.org/10.1023/A:1004119928867 doi: 10.1023/A:1004119928867
|
| [10] |
X. L. Mai, W. Li, S. H. Dong, Exact solutions to the nonlinear schrödinger equation with time-dependent coefficients, Adv. High Energy Phys., 2021 (2021), 6694980. https://doi.org/10.1155/2021/6694980 doi: 10.1155/2021/6694980
|
| [11] |
R. Castro López, G. H. Sun, O. Camacho-Nieto, C. Yáñez-Márquez, S. H. Dong, Analytical traveling-wave solutions to a generalized Gross–Pitaevskii equation with some new time and space varying nonlinearity coefficients and external fields, Phys. Lett. A, 381 (2017), 2978–2985. https://doi.org/10.1016/j.physleta.2017.07.012 doi: 10.1016/j.physleta.2017.07.012
|
| [12] |
D. J. Korteweg, G. De Vries, Xli. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, London, Edinb., Dublin Philos. Mag. J. Sci., 39 (1895), 422–443. https://doi.org/10.1080/14786449508620739 doi: 10.1080/14786449508620739
|
| [13] |
U. Hassan, J. Sabi'u, U. A. Yakubu, C. A. T. Aidara, U. A. Muhammad, New precise solitary wave solutions for coupled Higgs field equations via two enhanced methods, Sci. Rep., 15 (2025), 29914. https://doi.org/10.1038/s41598-025-98309-0 doi: 10.1038/s41598-025-98309-0
|
| [14] |
A. H. Arnous, M. S. Hashemi, K. S. Nisar, M. Shakeel, J. Ahmad, I. Ahmad, et al., Investigating solitary wave solutions with enhanced algebraic method for new extended Sakovich equations in fluid dynamics, Results Phys., 57 (2024), 107369. https://doi.org/10.1016/j.rinp.2024.107369 doi: 10.1016/j.rinp.2024.107369
|
| [15] |
S. Ali, A. Ullah, S. F. Aldosary, S. Ahmad, S. Ahmad, Construction of optical solitary wave solutions and their propagation for Kuralay system using tanh-coth and energy balance method, Results Phys., 59 (2024), 107556. https://doi.org/10.1016/j.rinp.2024.107556 doi: 10.1016/j.rinp.2024.107556
|
| [16] |
Y. A. Madani, K. S. Mohamed, S. Yasin, S. Ramzan, K. Aldwoah, M. Hassan, Exploring novel solitary wave phenomena in klein–gordon equation using $\phi$ 6 model expansion method, Sci. Rep., 15 (2025), 1834. https://doi.org/10.1038/s41598-025-85461-w doi: 10.1038/s41598-025-85461-w
|
| [17] |
X. Wang, H. Ehsan, M. Abbas, G. Akram, M. Sadaf, T. Abdeljawad, Analytical solitary wave solutions of a time-fractional thin-film ferroelectric material equation involving beta-derivative using modified auxiliary equation method, Results Phys., 48 (2023), 106411. https://doi.org/10.1016/j.rinp.2023.106411 doi: 10.1016/j.rinp.2023.106411
|
| [18] |
U. Ledzewicz, H. Schättler, On modeling the synergy of cancer immunotherapy with radiotherapy, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 106987. https://doi.org/10.1016/j.cnsns.2022.106987 doi: 10.1016/j.cnsns.2022.106987
|
| [19] |
T. Hagemann, F. Balkwill, T. Lawrence, Inflammation and cancer: a double-edged sword, Cancer Cell, 12 (2007), 300–301. https://doi.org/10.1016/j.ccr.2007.10.005 doi: 10.1016/j.ccr.2007.10.005
|
| [20] |
Z. Navickas, R. Marcinkevicius, I. Telksniene, T. Telksnys, R. Mickevicius, M. Ragulskis, Beyond solitons: deformed solitary solutions to the mathematical model of tumor–immune system interactions, Chaos, Soliton. Fract., 197 (2025), 116419. https://doi.org/10.1016/j.chaos.2025.116419 doi: 10.1016/j.chaos.2025.116419
|
| [21] | A. Scott, Encyclopedia of nonlinear science, Routledge, New York, 2005. https://doi.org/10.4324/9780203647417 |
| [22] |
R. Marcinkevicius, I. Telksniene, T. Telksnys, Z. Navickas, M. Ragulskis, The step-wise construction of solitary solutions to Riccati equations with diffusive coupling, AIMS Math., 8 (2023), 30683–30703. https://doi.org/10.3934/math.20231568 doi: 10.3934/math.20231568
|
| [23] | Z. Navickas, R. Marcinkevicius, T. Telksnys, M. Ragulskis, Existence of second order solitary solutions to riccati differential equations coupled with a multiplicative term, IMA J. Appl. Math., 81 (2016), 1163–1190. |