We develop a fractional SCIR (susceptible-carrier-infected-recovered) model for pneumococcal pneumonia using Caputo derivatives of order $ 0 < \varrho \leq 1 $ to capture memory effects from long carriage, waning immunity, and reinfection. The force of infection explicitly accounts for carriers' transmissibility. Using a next-generation approach, we derive the basic reproduction number $ \mathscr{R}_0 $ and prove the global asymptotic stability of the disease-free equilibrium when $ \mathscr{R}_0 < 1 $ and of the endemic equilibrium when $ \mathscr{R}_0 > 1 $ via Lyapunov functionals and a fractional LaSalle principle. Numerically, we combine the Laplace-Adomian-Padé method (LAPM) with a fractional Adams-Bashforth-Moulton scheme (ABM) to capture memory-driven transients. A sensitivity analysis identifies transmission intensity and routing into carriage as the dominant epidemic drivers, while treatment and mortality exert mitigating effects. A control extension yields a closed-form, control-adjusted $ \mathscr{R}_0 $; a minimal vaccination threshold; and an optimal control problem solved numerically. Finally, we outline a calibration workflow linking the model-predicted incidence to surveillance data, permitting a statistical estimation of the fractional order. Altogether, incorporating carriers and fractional memory modifies the thresholds and persistence conditions, producing dynamics that are more consistent with pneumococcal epidemiology.
Citation: Muflih Alhazmi, Safa M. Mirgani, Abdullah Alahmari, Sayed Saber. Application of LAPM and ABM methods to a fractional SCIR model of pneumonia diseases[J]. AIMS Mathematics, 2025, 10(11): 25667-25707. doi: 10.3934/math.20251137
We develop a fractional SCIR (susceptible-carrier-infected-recovered) model for pneumococcal pneumonia using Caputo derivatives of order $ 0 < \varrho \leq 1 $ to capture memory effects from long carriage, waning immunity, and reinfection. The force of infection explicitly accounts for carriers' transmissibility. Using a next-generation approach, we derive the basic reproduction number $ \mathscr{R}_0 $ and prove the global asymptotic stability of the disease-free equilibrium when $ \mathscr{R}_0 < 1 $ and of the endemic equilibrium when $ \mathscr{R}_0 > 1 $ via Lyapunov functionals and a fractional LaSalle principle. Numerically, we combine the Laplace-Adomian-Padé method (LAPM) with a fractional Adams-Bashforth-Moulton scheme (ABM) to capture memory-driven transients. A sensitivity analysis identifies transmission intensity and routing into carriage as the dominant epidemic drivers, while treatment and mortality exert mitigating effects. A control extension yields a closed-form, control-adjusted $ \mathscr{R}_0 $; a minimal vaccination threshold; and an optimal control problem solved numerically. Finally, we outline a calibration workflow linking the model-predicted incidence to surveillance data, permitting a statistical estimation of the fractional order. Altogether, incorporating carriers and fractional memory modifies the thresholds and persistence conditions, producing dynamics that are more consistent with pneumococcal epidemiology.
| [1] |
O. J. Otieno, M. Joseph, O. Paul, Mathematical model for pneumonia dynamics with carriers, Int. J. Math. Anal., 7 (2013), 2457–2473. https://doi.org/10.12988/ijma.2013.35109 doi: 10.12988/ijma.2013.35109
|
| [2] |
E. Mochan, D. Swigon, G. B. Ermentrout, S. Lukens, G. Clermont, A mathematical model of intrahost pneumococcal pneumonia infection dynamics in murine strains, J. Theor. Biol., 353 (2014), 44–54. https://doi.org/10.1016/j.jtbi.2014.02.021 doi: 10.1016/j.jtbi.2014.02.021
|
| [3] |
G. L. Drusano, W. Liu, S. Fikes, R. Cirz, N. Robbins, S. Kurhanewicz, et al., Interaction of drug-and granulocyte-mediated killing of J. Pseudomonas aeruginosa in a murine pneumonia model, J. Infect. Dis., 210 (2014), 1319–1324. https://doi.org/10.1093/infdis/jiu237 doi: 10.1093/infdis/jiu237
|
| [4] | E. J. Ndelwa, M. Kgosimore, E. S. Massawe, L. Namkinga, Mathematical modelling and analysis of treatment and screening of pneumonia, Math. Theor. Model., 5 (2015), 21–39. |
| [5] |
K. Kosasih, U. R. Abeyratne, V. Swarnkar, R. Triasih, Wavelet augmented cough analysis for rapid childhood pneumonia diagnosis, IEEE T. Biomed. Eng., 62 (2015), 1185–1194. https://doi.org/10.1109/TBME.2014.2381214 doi: 10.1109/TBME.2014.2381214
|
| [6] |
A. C. G. César, L. F. C. Nascimento, K. C. C. Mantovani, L. C. P. Vieira, Fine particulate matter estimated by mathematical model and hospitalisations for pneumonia and asthma in children, Rev. Paul. Pediatr., 34 (2016), 18–23. https://doi.org/10.1016/j.rpped.2015.06.009 doi: 10.1016/j.rpped.2015.06.009
|
| [7] |
C. Marchello, A. P. Dale, T. N. Thai, D. S. Han, M. H. Ebell, Prevalence of atypical pathogens in patients with cough and community-acquired pneumonia: A meta-analysis, Ann. Fam. Med., 14 (2016), 552–566. https://doi.org/10.1370/afm.1993 doi: 10.1370/afm.1993
|
| [8] |
Y. H. Cheng, S. H. You, Y. J. Lin, S. C. Chen, W. Y. Chen, W. C. Chou, et al., Mathematical modeling of post coinfection with influenza A virus and Streptococcus pneumoniae, with implications for pneumonia and COPD-risk assessment, Int. J. Chronic Obstr., 12 (2017), 1973–1988. https://doi.org/10.2147/COPD.S138295 doi: 10.2147/COPD.S138295
|
| [9] |
K. Kosasih, U. Abeyratne, Exhaustive mathematical analysis of simple clinical measurements for childhood pneumonia diagnosis, World J. Pediatr., 13 (2017), 446–456. https://doi.org/10.1007/s12519-017-0019-4 doi: 10.1007/s12519-017-0019-4
|
| [10] |
G. T. Tilahun, O. D. Makinde, D. Malonza, Modelling and optimal control of pneumonia disease with cost-effective strategies, J. Biol. Dyn., 11 (2017), 400–426. https://doi.org/10.1080/17513758.2017.1337245 doi: 10.1080/17513758.2017.1337245
|
| [11] |
G. T. Tilahun, O. D. Makinde, D. Malonza, Co-dynamics of pneumonia and typhoid fever diseases with cost effective optimal control analysis, Appl. Math. Comput., 316 (2018), 438–459. https://doi.org/10.1016/j.amc.2017.07.063 doi: 10.1016/j.amc.2017.07.063
|
| [12] | A. Y. Amrulloh, U. R. Abeyratne, V. Swarnkar, D. Herath, R. Triasih, A. Setyati, HMM based cough sound analysis for classifying pneumonia and asthma in pediatric population, In: EMBEC & NBC 2017, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-10-5122-7_213 |
| [13] |
M. Kizito, J. Tumwiine, A mathematical model of treatment and vaccination interventions of pneumococcal pneumonia infection dynamics, J. Appl. Math., 2018 (2018), 2539465. https://doi.org/10.1155/2018/2539465 doi: 10.1155/2018/2539465
|
| [14] |
F. K. Mbabazi, J. Y. T. Mugisha, M. Kimathi, Modeling the within-host coinfection of influenza A virus and pneumococcus, Appl. Math. Comput., 339 (2018), 488–506. https://doi.org/10.1016/j.amc.2018.07.031 doi: 10.1016/j.amc.2018.07.031
|
| [15] |
G. T. Tilahun, Optimal control analysis of pneumonia and meningitis coinfection, Comput. Math. Method. M., 2019 (2019), 1–15. https://doi.org/10.1155/2019/2658971 doi: 10.1155/2019/2658971
|
| [16] |
I. M. Diah, N. Aziz, Stochastic modelling for pneumonia incidence: A conceptual framework, AIP Conf. Proc., 2138 (2019), 050010. https://doi.org/10.1063/1.5121115 doi: 10.1063/1.5121115
|
| [17] |
G. T. Tilahun, Modeling co-dynamics of pneumonia and meningitis diseases, Adv. Differ. Equ., 2019 (2019), 149. https://doi.org/10.1186/s13662-019-2087-3 doi: 10.1186/s13662-019-2087-3
|
| [18] |
F. K. Mbabazi, J. Y. T. Mugisha, M. Kimathi, Analysis of pneumococcal pneumonia with time delays, Abstr. Appl. Anal., 2019 (2019), 3757036. https://doi.org/10.1155/2019/3757036 doi: 10.1155/2019/3757036
|
| [19] |
D. Otoo, P. Opoku, S. Charles, A. P. Kingsley, Deterministic epidemic model for ($SVC_{Sy}C_{Asy}$IR) pneumonia dynamics, with vaccination and temporal immunity, Infect. Dis. Model., 5 (2020), 42–60. https://doi.org/10.1016/j.idm.2019.11.001 doi: 10.1016/j.idm.2019.11.001
|
| [20] |
O. C. Zephaniah, U. I. R. Nwaugonma, I. S. Chioma, O. Adrew, A mathematical model and analysis of an SVEIR model for Streptococcus pneumoniae with saturated incidence force of infection, Math. Model. Appl., 5 (2020), 16. https://doi.org/10.11648/j.mma.20200501.13 doi: 10.11648/j.mma.20200501.13
|
| [21] |
S. Saber, A. Alahmari, Impact of fractal-fractional dynamics on pneumonia transmission modeling, Eur. J. Pure Appl. Math., 18 (2025), 5901. https://doi.org/10.29020/nybg.ejpam.v18i2.5901 doi: 10.29020/nybg.ejpam.v18i2.5901
|
| [22] |
M. Althubyani, N. E. Taha, K. O. Taha, R. A. Alharb, S. Saber, Epidemiological modeling of pneumococcal pneumonia: Insights from ABC fractal-fractional derivatives, Comput. Model. Eng. Sci., 143 (2025), 3491–3521. https://doi.org/10.32604/cmes.2025.061640 doi: 10.32604/cmes.2025.061640
|
| [23] |
N. Almutairi, S. Saber, H. Ahmad, The fractal-fractional Atangana-Baleanu operator for pneumonia disease: stability, statistical and numerical analyses, AIMS Math., 8 (2023), 29382–29410. https://doi.org/10.3934/math.20231504 doi: 10.3934/math.20231504
|
| [24] |
M. Naveed, D. Baleanu, A. Raza, M. Rafiq, A. H. Soori, M. Mohsin, Modeling the transmission dynamics of delayed pneumonia-like diseases with a sensitivity of parameters, Adv. Differ. Equ., 2021 (2021), 468. https://doi.org/10.1186/s13662-021-03618-z doi: 10.1186/s13662-021-03618-z
|
| [25] |
Y. Guo, T. Li, Fractional-order modeling and optimal control of a new online game addiction model based on real data, Commun. Nonlinear Sci. Numer. Simul., 121 (2023), 107221. https://doi.org/10.1016/j.cnsns.2023.107221 doi: 10.1016/j.cnsns.2023.107221
|
| [26] |
J. Cao, Y. Wang, A. Alofi, A. Al-Mazrooei, A. Elaiw, Global stability of an epidemic model with carrier state in heterogeneous networks, IMA J. Appl. Math., 80 (2015), 1025–1048. https://doi.org/10.1093/imamat/hxu040 doi: 10.1093/imamat/hxu040
|
| [27] | R. L. Bagley, R. A. Calico, Fractional order state equations for the control of viscoelastically damped structures, J. Guid. Control Dynam., 14 (1991), 304–311. |
| [28] |
D. Kusnezov, A. Bulgac, G. D. Dang, Quantum Lévy processes and fractional kinetics, Phys. Rev. Lett., 82 (1999), 1136–1139. https://doi.org/10.1103/PhysRevLett.82.1136 doi: 10.1103/PhysRevLett.82.1136
|
| [29] |
K. I. A. Ahmed, D. S. Haroon, N. Almutairi, S. Saber, Analytical solutions for a class of variable-order fractional Liu system under time-dependent variable coefficients, Results Phys., 56 (2024), 107311. https://doi.org/10.1016/j.rinp.2023.107311 doi: 10.1016/j.rinp.2023.107311
|
| [30] |
M. Alhazmi, S. Saber, Glucose-insulin regulatory system: Chaos control and stability analysis via Atangana-Baleanu fractal-fractional derivatives, Alex. Eng. J., 122 (2025), 77–90. https://doi.org/10.1016/j.aej.2025.02.066 doi: 10.1016/j.aej.2025.02.066
|
| [31] |
M. Alhazmi, A. F. Aljohani, N. E. Taha, S. Abdel-Khalek, M. Bayram, S. Saber, Application of a fractal fractional operator to nonlinear glucose-insulin systems: Adomian decomposition solutions, Comput. Biol. Med., 196 (2025), 110453. https://doi.org/10.1016/j.compbiomed.2025.110453 doi: 10.1016/j.compbiomed.2025.110453
|
| [32] |
S. Saber, B. Dridi, A. Alahmari, M. Messaoudi, Hyers-Ulam stability and control of fractional glucose-insulin systems, Eur. J. Pure Appl. Math., 18 (2025), 6152. https://doi.org/10.29020/nybg.ejpam.v18i2.6152 doi: 10.29020/nybg.ejpam.v18i2.6152
|
| [33] |
M. Althubyani, H. D. S. Adam, A. Alalyani, N. E. Taha, K. O. Taha, R. A. Alharbi, et al., Understanding zoonotic disease spread with a fractional order epidemic model, Sci. Rep., 15 (2025), 13921. https://doi.org/10.1038/s41598-025-95943-6 doi: 10.1038/s41598-025-95943-6
|
| [34] |
E. Addai, L. Zhang, J. K. K. Asamoah, J. F. Essel, A fractional order age-specific smoke epidemic model, Appl. Math. Model., 119 (2023), 99–118. https://doi.org/10.1016/j.apm.2023.02.019 doi: 10.1016/j.apm.2023.02.019
|
| [35] |
S. Rezapour, H. A. Mohammadi, A study on the AH1N1/09 influenza transmission model with the fractional Caputo-Fabrizio derivative, Adv. Differ. Equ., 2020 (2020), 488. https://doi.org/10.1186/s13662-020-02945-x doi: 10.1186/s13662-020-02945-x
|
| [36] |
D. S. Haroon, M. Althubyani, S. M. Mirgani, S. Saber, An application of Newton's interpolation polynomials to the zoonotic disease transmission between humans and baboons system based on a time-fractal fractional derivative with a power-law kernel, AIP Adv., 15 (2025), 045217. https://doi.org/10.1063/5.0253869 doi: 10.1063/5.0253869
|
| [37] |
A. Alsulami, R. A. Alharbi, T. M. Albogami, N. H. E. Eljaneid, H. D. S. Adam, S. Saber, Controlled chaos of a fractal-fractional Newton-Leipnik system, Thermal Sci., 28 (2024), 5153–5160. https://doi.org/10.2298/TSCI2406153A doi: 10.2298/TSCI2406153A
|
| [38] |
T. Yan, M. Alhazmi, Y. Mukhtar, E. Amna, A. Abdulrahman, S. Saber, Analysis of a Lorenz model using Adomian decomposition and fractal-fractional operators, Thermal Sci., 28 (2024), 5001–5009. https://doi.org/10.2298/TSCI2406001Y doi: 10.2298/TSCI2406001Y
|
| [39] |
M. Alhazmi, F. M. Dawalbait, A. Aljohani, K. O. Taha, H. D. S. Adam, S. Saber, Numerical approximation method and chaos for a chaotic system in sense of Caputo-Fabrizio operator, Thermal Sci., 28 (2024), 5161–5168. https://doi.org/10.2298/TSCI2406161A doi: 10.2298/TSCI2406161A
|
| [40] |
K. I. A. Ahmed, D. S. Haroon, M. Y. Youssif, S. Saber, Different strategies for diabetes by mathematical modeling: Applications of fractal-fractional derivatives in the sense of Atangana-Baleanu, Results Phys., 52 (2023), 106892. https://doi.org/10.1016/j.rinp.2023.106892 doi: 10.1016/j.rinp.2023.106892
|
| [41] |
K. I. A. Ahmed, S. M. Mirgani, A. Seadawy, S. Saber, A comprehensive investigation of fractional glucose-insulin dynamics: Existence, stability, and numerical comparisons using residual power series and generalized Runge-Kutta methods, J. Taibah Univ. Sci., 19 (2025), 2460280. https://doi.org/10.1080/16583655.2025.2460280 doi: 10.1080/16583655.2025.2460280
|
| [42] |
K. I. A. Ahmed, D. S. Haroon, M. Y. Youssif, S. Saber, Different strategies for diabetes by mathematical modeling: Modified minimal model, Alex. Eng. J., 80 (2023), 74–87. https://doi.org/10.1016/j.aej.2023.07.050 doi: 10.1016/j.aej.2023.07.050
|
| [43] |
I. Ul Haq, N. Ali, A. Bariq, A. Akgul, D. Baleanu, M. Bayram, Mathematical modelling of COVID-19 outbreak using caputo fractional derivative: stability analysis, Appl. Math. Sci. Eng., 32 (2024), 2326982. https://doi.org/10.1080/27690911.2024.2326982 doi: 10.1080/27690911.2024.2326982
|
| [44] | R. E. Mickens, Applications of nonstandard finite difference dchemes, World Scientific, 2000. https://doi.org/10.1142/4272 |
| [45] |
Z. Eskandari, Z. Avazzadeh, R. Khoshsiar Ghaziani, B. Li, Dynamics and bifurcations of a discrete-time Lotka-Volterra model using nonstandard finite difference discretization method, Math. Method. Appl. Sci., 48 (2025), 7197–7212. https://doi.org/10.1002/mma.8859 doi: 10.1002/mma.8859
|
| [46] |
L. W. Roeger, Dynamically consistent discrete Lotka-Volterra competition models derived from nonstandard finite-difference schemes, Discrete Contin. Dyn. Syst. B, 9 (2008), 415–429. https://doi.org/10.3934/dcdsb.2008.9.415 doi: 10.3934/dcdsb.2008.9.415
|
| [47] |
K. K. Kataria, P. Vellaisamy, Saigo space-time fractional Poisson process via Adomian decomposition method, Stat. Probab. Lett., 129 (2017), 69–80. https://doi.org/10.1016/j.spl.2017.05.007 doi: 10.1016/j.spl.2017.05.007
|
| [48] |
F. Haq, K. Shah, G. ur Rahman, M. Shahzad, Numerical solution of fractional order smoking model via Laplace Adomian decomposition method, Alex. Eng. J., 57 (2018), 1061–1069. https://doi.org/10.1016/j.aej.2017.02.015 doi: 10.1016/j.aej.2017.02.015
|
| [49] |
S. Sirisubtawee, S. Kaewta, New modified Adomian decomposition recursion schemes for solving certain types of nonlinear fractional two-point boundary value problems, Int. J. Math. Math. Sci., 2017 (2017), 5742965. https://doi.org/10.1155/2017/5742965 doi: 10.1155/2017/5742965
|
| [50] |
A. Freihat, S. Momani, Application of multistep generalized differential transform method for the solutions of the fractional-order Chua's system, Discrete Dyn. Nat. Soc., 2012 (2012), 427393. https://doi.org/10.1155/2012/427393 doi: 10.1155/2012/427393
|
| [51] |
M. H. Alshehri, F. Z. Duraihem, A. Alalyani, S. Saber, A Caputo (discretization) fractional-order model of glucose-insulin interaction: Numerical solution and comparisons with experimental data, J. Taibah Univ. Sci., 15 (2021), 26–36. https://doi.org/10.1080/16583655.2021.1872197 doi: 10.1080/16583655.2021.1872197
|
| [52] |
H. Wang, D. Yang, S. Zhu, A Petrov-Galerkin finite element method for variable-coefficient fractional diffusion equations, Comput. Method. Appl. M., 290 (2015), 45–56. https://doi.org/10.1016/j.cma.2015.02.027 doi: 10.1016/j.cma.2015.02.027
|
| [53] |
J. Xie, Numerical computation of fractional partial differential equations with variable coefficients utilizing the modified fractional Legendre wavelets and error analysis, Math. Method. Appl. Sci., 44 (2021), 7150–7164. https://doi.org/10.1002/mma.7252 doi: 10.1002/mma.7252
|
| [54] |
H. Lu, P. W. Bates, W. Chen, M. Zhang, The spectral collocation method for efficiently solving PDEs with fractional Laplacian, Adv. Comput. Math., 44 (2018), 861–878. https://doi.org/10.1007/s10444-017-9564-6 doi: 10.1007/s10444-017-9564-6
|
| [55] |
H. L. Li, L. Zhang, C. Hu, Y. Jiang, Z. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449. https://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8
|
| [56] |
R. Magin, X. Feng, D. Baleanu, Solving the fractional order Bloch equation, Concept. Magn. Reson. A, 34 (2009), 16–23. https://doi.org/10.1002/cmr.a.20129 doi: 10.1002/cmr.a.20129
|
| [57] |
K. AboDayeh, A. Raza, M. Rafiq, M. S. Arif, M. Naveed, Z. Zeb, et al., Analysis of pneumonia model via efficient computing techniques, Comput. Mater. Con., 70 (2022), 6073–6088. https://doi.org/10.32604/cmc.2022.020732 doi: 10.32604/cmc.2022.020732
|
| [58] |
A. Boukhouima, K. Hattaf, N. Yousfi, Dynamics of a fractional order HIV infection model with specific functional response and cure rate, Int. J. Differ. Equ., 2017 (2017), 8372140. https://doi.org/10.1155/2017/8372140 doi: 10.1155/2017/8372140
|
| [59] | I. Podlubny, Fractional differential equations, Academic Press, 1998. |