
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(11): 25667–25707.
DOI: 10.3934/math.20251137
Received: 12 June 2025
Revised: 09 September 2025
Accepted: 18 September 2025
Published: 06 November 2025

Research article

Application of LAPM and ABM methods to a fractional SCIR model of
pneumonia diseases

Muflih Alhazmi1,*, Safa M. Mirgani2, Abdullah Alahmari3 and Sayed Saber4,5

1 Mathematics Department, Faculty of Science, Northern Border University, Arar, Saudi Arabia
2 Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Department of

Mathematics and Statistics, Riyadh, Saudi Arabia
3 Department of Mathematics, Faculty of Science, Umm Al-Qura University, Mecca, Saudi Arabia
4 Department of Mathematics, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
5 Department of Mathematics and Computer Science, Faculty of Science, Beni-Suef University,

Beni-Suef, Egypt

* Correspondence: Email: Sayed011258@science.bsu.edu.eg; Tel: +9660597625063.

Abstract: We develop a fractional SCIR (susceptible-carrier-infected-recovered) model for
pneumococcal pneumonia using Caputo derivatives of order 0 < ϱ ≤ 1 to capture memory effects
from long carriage, waning immunity, and reinfection. The force of infection explicitly accounts
for carriers’ transmissibility. Using a next-generation approach, we derive the basic reproduction
number R0 and prove the global asymptotic stability of the disease-free equilibrium when R0 < 1
and of the endemic equilibrium when R0 > 1 via Lyapunov functionals and a fractional LaSalle
principle. Numerically, we combine the Laplace-Adomian-Padé method (LAPM) with a fractional
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1. Introduction

Pneumococcal pneumonia, caused by Streptococcus pneumoniae, remains a major global health
challenge, disproportionately affecting young children, the elderly, and immunocompromised
individuals. Despite advancements in antibiotics and vaccines, it continues to account for substantial
morbidity and mortality worldwide. The transmission dynamics are complex, shaped by host
immunity, bacterial virulence, and environmental conditions.

Over the years, several mathematical models have been developed to understand and control the
spread of pneumococcal pneumonia. Ong’ala et al. [1] studied bacteremic pneumococcal pneumonia
in children using bifurcation theory and equilibrium stability. Mochan et al. [2] proposed an ordinary
differential equation-based model for host immune response in murine strains, while Drusano et
al. [3] demonstrated the interaction of antibiotics and granulocyte-mediated bacterial killing. Ndelwa
et al. [4] explored the effects of treatment and screening, whereas Kosasih et al. [5] applied
wavelet-based cough sound analysis for rapid diagnosis. Other studies extended the scope to
comorbidities and environmental links: César et al. [6] examined the association between particulate
matter and pediatric pneumonia, Marchello et al. [7] conducted a meta-analysis of atypical pathogens,
Cheng et al. [8] studied influenza-associated secondary pneumonia, and Kosasih and Abeyratne [9]
highlighted diagnostic limitations in resource-limited regions. Tilahun et al. [10, 11] introduced
cost-effective control and co-infection models with typhoid, while Raj et al. [12] and Kizito and
Tumwiine [13] focused on cough-based disease classification and microbial interactions.

Further extensions incorporated complexities such as co-infections and delays. Mbabazi et al. [14]
modeled influenza A and pneumococcal pneumonia co-infection, Tilahun [15] analyzed
pneumonia-meningitis dynamics, and Diah and Aziz [16] proposed predictive stochastic frameworks.
Additional contributions include Tilahun [17] on bacterial co-infections, Mbabazi et al. [18] on delay
differential analysis, Otoo et al. [19] on vaccination models, and Zephaniah et al. [20] on graphical
transmission representations. Fractional and fractal-fractional models have also emerged: Saber and
Alahmari [21], Althubyani et al. [22, 23], and Naveed et al. [24] extended
susceptible-carrier-infected-recovered (SCIR) frameworks with memory and delay dynamics.

Fractional-order modeling and optimal control continue to show strong performance across
applied domains [25]. In epidemic systems with carrier states, global stability results on
heterogeneous networks provide a rigorous foundation [26]. Beyond epidemiology, fractional models
are widely applied in viscoelasticity [27], quantum dynamics [28], Liu systems [29], and biological
systems such as diabetes [30–32]. They have also been applied to zoonotic [33], tobacco [34],
influenza [35], and other apllications [36–40]. These studies confirm the versatility of fractional
calculus for capturing memory and nonlocal effects in diverse scientific fields. Most classical
epidemiological models are formulated using ODEs [2–4, 14, 15], which provide useful insights but
neglect hereditary effects and long memory. Such features are crucial in pneumococcal epidemiology,
where extended carriage, waning immunity, and reinfection strongly influence its dynamics. This
limitation motivates the adoption of fractional-order models, which naturally incorporate memory.
Recent works confirm that memory-driven and delay-dependent structures alter epidemic predictions,
particularly during latent periods, quarantine, and social interventions [41–43]. In parallel,
nonstandard finite difference (NSFD) methods preserve positivity and stability in discrete-time
simulations, ensuring structural fidelity [44–46].
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To solve fractional systems, a variety of analytical and numerical approaches have been proposed,
including the Adomian decomposition method (ADM) [47], the Laplace-Adomian decomposition
method (LADM) [48], the modified ADM [49], the multistep generalized differential transform
method (MSGDTM) [50], the predictor-corrector Adams-Bashforth-Moulton (ABM) method [51],
Galerkin finite elements [52], Legendre wavelets [53], and spectral collocation [54], see also [55–58].
In this work, we emphasize two complementary approaches: the Laplace-Adomian-Padé
method (LAPM) and the ABM scheme. LAPM accelerates series expansions with Padé
approximants, yielding accurate semi-analytical solutions, while ABM offers stable and efficient
time-marching. Together, they balance accuracy and efficiency, enabling robust simulation and
validation.

Motivated by these considerations, we propose a new fractional-order SCIR model for
pneumococcal pneumonia, formulated using Caputo derivatives. Unlike prior fractional studies,
which often considered only susceptible-infected-recovered (SIR) or
susceptible-vaccinated-carrier-infected-recovered (SVCIR) structures, our framework explicitly
incorporates the carrier class, which is epidemiologically central to pneumococcal transmission but is
often overlooked. We derive the basic reproduction number, analyze the local and global stability, and
perform a sensitivity analysis to identify the key transmission drivers. Numerical simulations using
LAPM and ABM confirm the theoretical results and highlight the influence of fractional dynamics on
disease persistence and control.

To connect the baseline SCIR dynamics to policy design, we augment the model in Section 7
with three time-dependent interventions, contact reduction uδ(t) ∈ [0, 1), treatment enhancement
uτ(t) ≥ 0, and vaccination v(t) ≥ 0, acting, respectively, on transmission, removal, and susceptibility.
This modifies the force of infection to

λ(t) = δ
(
1 − uδ(t)

) I(t)+ϖC(t)
N(t) .

We prove the positivity and boundedness under controls and derive a closed-form, control-adjusted
reproduction number R0(uδ, uτ, v), together with an explicit minimal vaccination threshold vmin(uδ, uτ)
ensuring Reff < 1, while emphasizing the role of carrier transmissibility ϖ in line with networked
carrier models [57]. A quadratic-cost optimal control problem is then posed, characterized via
Pontryagin’s maximum principle, and solved numerically with a forward-backward sweep and the
fractional ABM integrator. Simulations compare individual and combined interventions, quantify
cost-effectiveness, and demonstrate how memory reshapes thresholds, peaks, and elimination time,
consistent with recent advances in fractional optimal control [25].

The remainder of the paper is structured as follows. Section 2 reviews the mathematical
preliminaries. Section 3 presents the baseline SCIR model. Section 4 establishes the well-posedness.
Section 5 derives the threshold and global stability. Section 6 analyzes the sensitivity. Section 7
develops the optimal-control problem. Section 8 describes the numerical methods. Section 9 reports
numerical experiments. Sections 10 and 11 provide some conclusions and future perspectives.

2. Fundamental concepts

A function f (t), where t > 0, is said to belong to the space Cα for some α ∈ R if it can be represented
as f (t) = tpg(t) for some p > α, where g(t) remains continuous over [0,∞). Furthermore, the function
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is said to be in the space Cm
α if its mth derivative, f (m), belongs to Cα for some m ∈ N (see [59] for

details).

Definition 2.1. [59] The Riemann-Liouville fractional integral of order α > 0 for a function f ∈ Cα,
with a ≥ 0, is defined as

RLJαa f (t) =
1
Γ(α)

∫ t

a
(t − τ)α−1 f (τ) dτ, t > a,

where Γ(·) denotes the gamma function.

Definition 2.2. [59] For a real number α > 0, the Caputo fractional derivative of order α with a ≥ 0
is defined via the Riemann-Liouville integral as

CDα
a f (t) = RLJm−α

a f (m)(t),

Equivalently,

CDα
a f (t) =

1
Γ(m − α)

∫ t

a

f (m)(τ)
(t − τ)α−m+1 dτ,

where m − 1 < α < m, t ≥ a, and f ∈ Cm
−1 with m ∈ N.

An important property linking the Riemann-Liouville fractional integral and the Caputo derivative
of the same order α is given by [59]:

RLJαa CDα
a f (t) = f (t) −

m−1∑
k=0

f (k)(a)
(t − a)k

k!
,

where m − 1 < α < m, and f ∈ Cm
α .

Lemma 2.1. [59] The Laplace transform of the Caputo fractional derivative of order m−1 < α < m is

L
{
CDα

a f (t)
}
= sαF(s) −

m−1∑
k=0

sα−k−1 f (k)(0),

where F(s) = L { f (t)}.

Definition 2.3. [59] For parameters α, β > 0 and z ∈ C, the Mittag-Leffler functions are defined as

Eα(z) =
∞∑
j=0

z j

Γ( jα + 1)
, Eα,β(z) =

∞∑
j=0

z j

Γ( jα + β)
.

Lemma 2.2. [55] Let u(t) be a function such that Dϱ
0,tu(t) exists for all t. Then,

Dϱ
0,tu(t) ≤ −Π u(t) + µ, u(t0) = ut0 ,

where 0 < ϱ < 1, (Π, µ) ∈ R2, Π , 0, and t0 ≥ 0. Consequently,

u(t) ≤
(
u(t0) −

µ

Π

)
Eϱ,1[−Π(t − t0)ϱ] +

µ

Π
,

where Eϱ,1(·) is the two-parameter Mittag-Leffler function.
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Lemma 2.3. [59] The Laplace transforms of the Mittag-Leffler functions are

L {Eα(−λtα)} =
sα−1

sα + λ
,

L
{
tβ−1Eα,β(−λtα)

}
=

sα−β

sα + λ
,

where s > |λ|1/α and λ is a constant.

3. Model formulation

The SCIR model introduced in [57] segments the population into four distinct compartments:
susceptible individuals S (t), who are vulnerable to pneumococcal pneumonia; carriers C(t), who
harbor the bacteria asymptomatically but contribute to transmission; infected individuals I(t), who
exhibit symptoms and actively spread the disease; and recovered individuals R(t), who have gained
temporary immunity. The model is structured under the assumption of a homogeneously mixed
population, where transitions between compartments are regulated by infection, recovery, and
mortality rates. This framework accounts for both symptomatic and asymptomatic disease
progression, offering a comprehensive perspective on transmission dynamics. Additionally, parameter
selection is guided by epidemiological evidence to enhance the model’s relevance to public health
strategies. Natural mortality occurs in all classes at a rate µ, while disease-induced mortality affects I
at a rate Φ. Recruitment into the susceptible class occurs at a rate Λ. Recovered individuals lose
immunity at a rate η and return to S . Carriers develop symptoms at rate π, and both carriers and
infected individuals recover at a rates β and τ, respectively. The total population is

N(t) = S (t) +C(t) + I(t) + R(t).

Let δ be the transmission coefficient, and let 0 ≤ ϖ ≤ 1 denote the relative transmissibility of carriers
compared with infected people. Then the force of infection is given by

λ(t) = δ
I(t) +ϖC(t)

N
,

where N is the equilibrium population size used in the next-generation matrix analysis. A fraction θ of
new infections progresses into the carrier class, while the remaining fraction 1 − θ enters the
symptomatic infected class. Thus, the incidence flows into C and I are

λ(t) θS (t), λ(t) (1 − θ)S (t),

respectively. Collecting all transitions, the governing ODE system is

dS
dt
= Λ − λ(t) S − µS + ηR,

dC
dt
= λ(t) θS − (π + β + µ)C,

dI
dt
= λ(t) (1 − θ)S + πC − (µ + τ + Φ)I,

dR
dt
= βC + τI − (µ + η)R,

(3.1)
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with λ(t) defined above.
To incorporate memory effects associated with prolonged pneumococcal carriage and immune

waning, we generalize the model by replacing the classical derivatives in (3.1) with Caputo fractional
derivatives CDϱ

0,t of order 0 < ϱ ≤ 1. This yields

CDϱ
0,tS = Λ − λ(t) S − µS + ηR,

CDϱ
0,tC = λ(t) θS − (π + β + µ)C,

CDϱ
0,tI = λ(t) (1 − θ)S + πC − (µ + τ + Φ)I,

CDϱ
0,tR = βC + τI − (µ + η)R.

(3.2)

Figure 1. Schematic diagram of the fractional-order SCIR model for pneumococcal
pneumonia.

The schematic diagram in Figure 1 summarizes the transitions:

S
λ(t) θ
−−−→ C, S

λ(t) (1−θ)
−−−−−−→ I, C

π
−→ I, C

β
−→ R, I

τ
−→ R, R

η
−→ S ,

with µ acting on all compartments and Φ acting only on I.
Notes on notation:

• We use N(t) in the force of infection. Under demographic equilibrium (Λ = µN), N(t) ≡ N is
constant. The same equations apply with N in place of N(t).
• The parameters p and k mentioned in earlier works have been removed, as they pertain to a

preliminary vaccinated/contact-scaled extension not analyzed here.

Table 1: State variables and parameters used in the SCIR fractional model, listing each symbol and
its corresponding description (e.g., Susceptible population S , Carrier population C, Infected
population I, Recovered population R, etc.).
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Table 1. State variables and parameters used in the SCIR fractional model (3.2).

Symbol Description
S ,C, I,R Susceptible, carrier (asymptomatic), infected (symptomatic), recovered populations

N(t) Total population S +C + I + R

Λ Recruitment (birth/entry) rate

µ Natural mortality rate

δ Effective transmission coefficient

ϖ Relative infectiousness of carriers (0 ≤ ϖ ≤ 1)

λ(t) Force of infection: δ(I +ϖC)/N(t)

θ Fraction of new infections entering C (carriage)

π Progression rate from C to I

β Recovery rate from C to R

τ Recovery rate from I to R

Φ Disease-induced mortality in I

η Waning immunity rate from R to S

ϱ Fractional order of Caputo derivative

Figure 1 presents the schematic diagram of the fractional-order SCIR model for pneumococcal
pneumonia, summarizing the transitions between compartments (susceptible, carrier, infected, and
recovered) in the model. It is shown that entries join S at rate Λ. Susceptibles are infected at the force

of infection λ(t) =
δ
(
I(t) +ϖC(t)

)
N(t)

and are routed to carriers (C) with probability θ or directly to the

infected (I) with probability 1 − θ. Carriers progress to I at rate π or recover to R at rate β. Infected
recover at rate τ. Immunity wanes from R to S at rate η. Natural mortality µ occurs in all classes, while
disease-induced mortality Φ acts on I.

3.1. Connection with real infection data

Fractional-order epidemic models are often motivated by their ability to reproduce the long-term
memory and hereditary effects observed in clinical and epidemiological data. However, to make this
connection explicit, the model must be combined with reported case data through a calibration
procedure. Below, we outline how this can be achieved in practice.

Epidemiological surveillance data usually record the number of new cases in a given time
window (weekly or monthly). In the SCIR framework, new symptomatic infections arise from two
processes: (i) Susceptible individuals becoming symptomatic directly at a rate (1 − θ)λ(t)S (t), and (ii)
carriers progressing to the infectious class at a rate πC(t). Therefore, the model-predicted incidence
over an interval [t j, t j+1) is

∆I j =

∫ t j+1

t j

[(1 − θ) λ(t)S (t) + πC(t)] dt.
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This quantity can be directly compared with the observed case counts y j after accounting for under-
reporting or stochastic variability.

To align the model with data, the unknown parameters Θ = (δ,ϖ, θ, π, β, τ, Φ, η,Λ, µ, ϱ) and initial
conditions can be estimated by minimizing the discrepancy between y j and ∆I j(Θ). A common choice
is the least-squares criterion

min
Θ

∑
j

(
y j − ρ∆I j(Θ)

)2
,

where ρ ∈ (0, 1] represents the reporting fraction. Alternatively, if stochasticity is pronounced, a
likelihood-based approach such as the negative binomial distribution can be used:

y j ∼ NegBin(ρ∆I j(Θ), κ),

where κ > 0 models over-dispersion in the reported counts. Estimation can be carried out using
nonlinear least squares, maximum likelihood methods, or Bayesian inference depending on the data’s
availability.

An important advantage of fractional models is that the order ϱ itself can be estimated from data.
When ϱ = 1, the model reduces to the classical integer-order SCIR system, while ϱ < 1 reflects memory
effects. Comparing the fit of the fractional model (ϱ free) with the integer-order restriction (ϱ = 1)
using criteria such as the akaike information criterion (AIC) or Bayesian information criterion (BIC)
provides a rigorous way to assess whether memory improves the alignment with the observed data.

To ensure reliability, model fits should be validated using cross-validation or out-of-sample
predictions. Uncertainty in the estimated parameters and the fractional order can be quantified using
bootstrap resampling or Bayesian posterior credible intervals. These steps provide confidence bands
around the predicted epidemic trajectories and ensure that the improvement gained by including the
fractional dynamics is statistically significant.

Calibrating the model requires surveillance data with consistent case definitions (for example,
weekly pneumococcal pneumonia cases from hospital records or public health agencies). Data
preprocessing may involve smoothing, handling missing values, or aligning the start time of the
model with the first observed cases. Once calibrated, the fractional SCIR model can be used not only
to describe a past epidemic but also to forecast its likely future course and to evaluate the potential
impact of interventions such as vaccination or treatment strategies.

In summary, although the present work demonstrates the theoretical and numerical properties of
the fractional SCIR system, the methodology outlined above provides a concrete path to integrate
real epidemiological data into the model. This connection allows the fractional order to be validated
empirically and enhances the relevance of the model for public health applications.

4. Properties of the model

4.1. Existence and uniqueness

Let R+ denote the set of all non-negative real numbers, and define the bounded domain

Ω+ = {(S ,C, I,R) ∈ R4
+ : S ≥ 0, C ≥ 0, I ≥ 0, R ≥ 0, max(|S |, |C|, |I|, |R|) ≤ N}.

Theorem 4.1. If the initial condition

Γ0 =
(
S (0),C(0), I(0),R(0)

)
∈ Ω+,

AIMS Mathematics Volume 10, Issue 11, 25667–25707.



25675

then the system (3.2) admits a unique solution

Γ(t) =
(
S (t),C(t), I(t),R(t)

)
∈ Ω+ for all t ≥ 0.

Proof. Let

F(t, Γ) =



Λ − δ
I(t) +ϖC(t)

N
S − µS + ηR

δ
I(t) +ϖC(t)

N
θS − (π + β + µ)C

δ
I(t) +ϖC(t)

N
(1 − θ)S + πC − (µ + τ + Φ)I

βC + τI − (µ + η)R


.

We aim to show that F(t, Γ) is Lipschitz continuous in Γ = (S ,C, I,R). Consider two vectors Γ1 =

(S 1,C1, I1,R1) and Γ2 = (S 2,C2, I2,R2). Using the 1-norm, we have

∥F(t, Γ1) − F(t, Γ2)∥1 =
4∑

i=1

|Fi(Γ1) − Fi(Γ2)|.

We bound each component as follows:

|F1(Γ1) − F1(Γ2)| ≤
(
δ

I(t) +ϖC(t)
N

+ µ

)
|S 1 − S 2| + η|R1 − R2|,

|F2(Γ1) − F2(Γ2)| ≤ δ
I(t) +ϖC(t)

N
θ|S 1 − S 2| + (π + β + µ)|C1 −C2|,

|F3(Γ1) − F3(Γ2)| ≤ δ
I(t) +ϖC(t)

N
(1 − θ)|S 1 − S 2| + π|C1 −C2| + (µ + τ + Φ)|I1 − I2|,

|F4(Γ1) − F4(Γ2)| ≤ β|C1 −C2| + τ|I1 − I2| + (µ + η)|R1 − R2|.

Summing all four inequalities, we have

∥F(t, Γ1) − F(t, Γ2)∥1 ≤
[
δ

I(t) +ϖC(t)
N

(1 + θ + 1 − θ) + µ
]
|S 1 − S 2|

+
[
(π + β + µ) + π + β

]
|C1 −C2|

+
[
(µ + τ + Φ) + τ

]
|I1 − I2|

+
[
η + (µ + η)

]
|R1 − R2|.

Simplifying this, we have

≤

(
2δ

I(t) +ϖC(t)
N

+ µ

)
|S 1 − S 2|

+ (2π + 2β + µ)|C1 −C2|

+ (µ + 2τ + Φ)|I1 − I2|

+ (µ + 2η)|R1 − R2|.

Since I(t),C(t) ≤ N, we have
I(t) +ϖC(t)

N
≤ 1 +ϖ ≤ 2.

AIMS Mathematics Volume 10, Issue 11, 25667–25707.



25676

Thus, all coefficients are bounded. Let

L = max {2δ(1 +ϖ) + µ, 2π + 2β + µ, µ + 2τ + Φ, µ + 2η} .

Then
∥F(t, Γ1) − F(t, Γ2)∥1 ≤ L∥Γ1 − Γ2∥1.

Hence, F(t, Γ) is Lipschitz continuous in Γ. By the Picard–Lindelöf theorem, the system (3.2) has a
unique solution Γ(t) for all t ≥ 0. Moreover, since the right-hand side F(t, Γ) is non-negative on the
boundary of Ω+ (as shown in the manuscript), the solution remains in Ω+ for all t ≥ 0. □

4.2. Positivity of the model solutions

Theorem 4.2. The system (3.2) admits non-negative solutions for all t ≥ 0, provided the initial
condition

Γ0 = (S (0),C(0), I(0),R(0)) ∈ Ω+.

Proof. Consider the system (3.2) at the boundary of each compartment:

Dϱ
0,tS

∣∣∣∣
S=0
= Λ + ηR ≥ 0,

Dϱ
0,tC

∣∣∣∣
C=0
= δ

I(t) +ϖC(t)
N

θS ≥ 0,

Dϱ
0,tI

∣∣∣∣
I=0
= δ

I(t) +ϖC(t)
N

(1 − θ)S + πC ≥ 0,

Dϱ
0,tR

∣∣∣∣
R=0
= βC + τI ≥ 0.

Since the right-hand sides are non-negative whenever the corresponding compartments are zero and all
other compartments are non-negative, the fractional comparison principle ensures that if Γ0 ∈ Ω

+, then

Γ(t) = (S (t),C(t), I(t),R(t)) ∈ Ω+ ∀t ≥ 0.

□

Theorem 4.3. The solutions of the model (3.2) remain uniformly bounded within the region:

Ω =

{
(S ,C, I,R) ∈ Ω+ : 0 ≤ S +C + I + R ≤

Λ

µ

}
.

Proof. Define the total population at time t as:

N(t) = S(t) + C(t) + I(t) + R(t).

Taking the fractional derivative, we obtain:

Dϱ
0,tN(t) = Λ − µN(t) −ΦI(t) ≤ Λ − µN(t).

This simplifies to:
Dϱ

0,tN(t) + µN(t) ≤ Λ.
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Applying results from [58] and the Mittag-Leffler function Mϱ, we obtain:

0 ≤ N(t) ≤ N(0)Mϱ(−µtϱ) + tϱMϱ,ϱ+1(−µtϱ).

As shown in Boukhouima et al. [58], this leads to:

0 ≤ N(t) ≤
Λ

µ
, as t → ∞.

Consequently, the solutions of the system (3.2) are uniformly bounded within the region Ω, starting
from Ω+. □

5. Stability analysis

Summing the four equations of model (3.2) gives

CDϱ
0,tN(t) = Λ − µN(t) − ΦI(t).

At equilibrium, N∗ = Λ−ΦI∗
µ

. In particular, at the disease-free equilibrium (DFE) where C∗ = I∗ = R∗ =
0 we obtain

E1 =
(
Λ
µ
, 0, 0, 0

)
, N∗ = Λ

µ
= S ∗ =: S 0.

Following van den Driessche and Watmough’s framework, we split the infected subsystem Y = (C, I)⊤

as
CDϱ

0,tY = F (Y) −V(Y).

Linearizing at E1 gives

F =

 δϖθS 0
N0

δθS 0
N0

δϖ(1−θ)S 0
N0

δ(1−θ)S 0
N0

 , V =

π + β + µ 0

−π µ + τ + Φ

 ,
where N0 = S 0 = Λ/µ at the DFE. The next-generation matrix is K = FV−1.

A short calculation yields

K =
δS 0

N0(π + β + µ)(µ + τ + Φ)

 ϖθ(µ + τ + Φ) θ(πϖ + (π + β + µ))

ϖ(1 − θ)(µ + τ + Φ) (1 − θ)(πϖ + (π + β + µ))

 .
This matrix has rank one. Its eigenvalues are {0,R0} with

R0 =
δS 0

N0(π + β + µ)(µ + τ + Φ)

(
θϖ(µ + τ + Φ) + (1 − θ)

[
πϖ + (π + β + µ)

])
. (5.1)

Since N0 = S 0, this simplifies to

R0 =
δ

π + β + µ
θϖ +

δ

(π + β + µ)(µ + τ + Φ)
(1 − θ)

[
πϖ + (π + β + µ)

]
.

Theorem 5.1. If R0 < 1, the disease-free equilibrium E1 is globally asymptotically stable in Ω for
all 0 < ϱ ≤ 1.
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Proof. Let L1(S ) = S − S 0 − S 0 ln(S/S 0), which is positive definite with respect to S 0. For Caputo
derivatives, the convexity inequality gives

Dϱ
0,tL1(S ) ≤

(
1 −

S 0

S

)
Dϱ

0,tS =
S − S 0

S
(
Λ − µS − δXS + ηR

)
, X = I+ϖC

N .

Since −δX ≤ 0,

Dϱ
0,tL1(S ) ≤

S − S 0

S
(Λ − µS + ηR) = (S − S 0)

(Π + ηR
S

− µ
)
.

Add and subtract Π+ηR
S 0

and use Π
S 0
= µ:

Dϱ
0,tL1(S ) ≤ (S − S 0)

(Π + ηR
S

−
Π + ηR

S 0

)
= −
Π + ηR

S S 0
(S − S 0)2 ≤ −

Π

S S 0
(S − S 0)2 < 0,

for all S , S 0. Hence S (t)→ S 0 and the largest invariant set in {Dϱ
0,tL1 = 0} is contained in {S = S 0}.

Next, consider W = C + αI with α = π+β+µ

π
> 0. Using the C, I-equations,

Dϱ
0,tW = δS X

(
θ + α(1 − θ)

)
− (π + β + µ)C − α(µ + τ + Φ)I.

By next-generation calculation,

θ + α(1 − θ) =
(π + β + µ)θ + (µ + τ + Φ)(1 − θ)

π
=

(π + β + µ)(µ + τ + Φ)
π

·
R0

δS 0
.

Therefore, for S ≤ S 0,

δS X
(
θ + α(1 − θ)

)
≤

(π + β + µ)(µ + τ + Φ)
π

R0
S
S 0

X.

Using X = I+ϖC
N and Young’s inequality, k(R0) < (π + β + µ) when R0 < 1 exists such that

Dϱ
0,tW ≤ − γ1C − γ2I ≤ − γW

for some γ > 0. Hence C(t), I(t)→ 0, and then R(t)→ 0 from the R-equation. Therefore E1 is globally
asymptotically stable when R0 < 1. □

For I∗ > 0, taking 
CDϱ

t S(t) = 0,
CDϱ

t C(t) = 0,
CDϱ

t I(t) = 0,
CDϱ

t R(t) = 0.

With α1 =
θπ+(1−θ)(π+β+µ)

(µ+τ+Φ) , one obtains the endemic equilibrium E2 = (S∗,C∗, I∗,R∗), with

S∗ =
N(π + β + µ)
α1 +ϖ

,

C∗ =
(µ + η)(Π(α1 +ϖ) − µN(π + β + µ))

(α1 +ϖ)(δ(π + β + µ)(µ + η) − η(Φ2 + τα1))
,

I∗ =
α1(µ + η)(Π(α1 +ϖ) − µN(π + β + µ))

(α1 +ϖ)(δ(π + β + µ)(µ + η) − η(Φ2 + τα1))
,

R∗ =
(Φ2 + τα1)(Π(α1 +ϖ) − µN(π + β + µ))

(α1 +ϖ)(δ(π + β + µ)(µ + η) − η(Φ2 + τα1))
.
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Lemma 5.1. For R0 > 1, a unique endemic equilibrium point E2 exists; otherwise, no endemic
equilibrium exists.

Proof. For the disease to be endemic, we require: dC(t)
dt > 0 and dI(t)

dt > 0, which implies:

δ
I(t) +ϖC(t)

N
θS(t) − (π + β + µ)C(t) > 0,

δ
I(t) +ϖC(t)

N
(1 − θ)S(t) + πC(t) − (µ + τ +Φ)I(t) > 0.

Substitute δ I(t)+ϖC(t)
N =

δ(I(t)+ϖC(t))
N into the inequalities.

From the first inequality

δ(I(t) +ϖC(t))
N

θS(t) − (π + β + µ)C(t) > 0.

Reorganize the terms to isolate C(t):

C(t) <
δθS(t)I(t)

N(π + β + µ − δϖθS(t))
.

From the second inequality

δ(I(t) +ϖC(t))
N

(1 − θ)S(t) + πC(t) − (µ + τ +Φ)I(t) > 0.

Reorganize the terms to isolate I(t)

I(t) <
δ(1 − θ)S(t)I(t) + δϖ(1 − θ)S(t)C(t) + πC(t)

N(µ + τ +Φ − δ(1 − θ)S(t))
.

Since

R0 =
ϖθ(µ + τ +Φ) + (1 − θ)

(
(πϖ + (π + β + µ))δS0

)
N(π + β + µ)(µ + τ +Φ)

.

For R0 > 1, both inequalities for C(t) and I(t) are satisfied, ensuring the existence of an endemic
equilibrium. Conversely, if R0 ≤ 1, the disease cannot persist, and no endemic equilibrium exists.
Thus, a unique endemic equilibrium E∗ exists if and only if R0 > 1. □

Theorem 5.2. If R0 > 1, the endemic equilibrium E2 = (S ∗,C∗, I∗,R∗) is globally asymptotically
stable in Ω.

Proof. Assume R0 > 1 so that E2 ∈ Ω with all components positive. Consider the Volterra-type
Lyapunov function

L2(S ,C, I,R) =
∑

X∈{S ,C,I,R}

(
X − X∗ − X∗ ln

X
X∗

)
,

which is positive definite with respect to E2. By convexity for Caputo derivatives,

Dϱ
0,tL2 ≤

(
1 −

S ∗

S

)
Dϱ

0,tS +
(
1 −

C∗

C

)
Dϱ

0,tC +
(
1 −

I∗

I

)
Dϱ

0,tI +
(
1 −

R∗

R

)
Dϱ

0,tR.
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Insert the model equations. Group the terms by flows and use the E2 balance relations

Π + ηR∗ = µS ∗ + δS ∗X∗,

δθS ∗X∗ = (π + β + µ)C∗,
δ(1 − θ)S ∗X∗ + πC∗ = (µ + τ + Φ)I∗,
βC∗ + τI∗ = (µ + η)R∗,

X∗ = I∗+ϖC∗
N .

A standard computation (cancellations of cross the terms by the identities above and the inequalit
(x − x∗)( 1

x −
1
x∗ ) = −

(x−x∗)2

xx∗ ) yields

Dϱ
0,tL2 ≤ −κS

(S − S ∗)2

S S ∗
− κC

(C −C∗)2

CC∗
− κI

(I − I∗)2

II∗
− κR

(R − R∗)2

RR∗
,

for some strictly positive constants κS , κC, κI , κR depending only on the parameters and E2. Hence
Dϱ

0,tL2 ≤ 0 with equality if and only if (S ,C, I,R) = (S ∗,C∗, I∗,R∗). By LaSalle’s invariance principle
adapted to fractional systems, E2 is globally asymptotically stable. □

We note that the stability analysis presented here employs standard tools from the theory of
fractional-order dynamic systems, such as the use of the next-generation matrix for deriving the basic
reproduction number R0, and Lyapunov functions for establishing the local and global asymptotic
stability. While these methods are well established in the literature, their application to the specific
SCIR formulation of pneumococcal pneumonia provides new epidemiological insight. In particular,
the inclusion of the carrier class together with fractional-order derivatives modifies the threshold
conditions in a way that differs from classical integer-order SCIR models, and the global stability of
both the disease-free and endemic equilibria under memory effects has not been previously
established for this disease system. Thus, although the underlying mathematical techniques are not
novel, their tailored application to pneumococcal pneumonia dynamics fills an important gap by
rigorously confirming that the memory-driven system preserves the essential stability properties while
altering the epidemiological thresholds and persistence behavior.

6. Sensitivity analysis of the basic reproduction number R0

Let Φ denote any parameter. The (normalized) sensitivity index of R0 with respect to Φ is

Γ
R0
Φ
=
∂R0

∂Φ

Φ

R0
.

With A := π + β + µ and B := µ + τ + Φ, the reproduction number reads

R0 = δ
(θϖ

A
+

(1 − θ) [πϖ + A]
A B

)
.

Partial derivatives (closed form)

∂R0

∂ϖ
= δ

( θ
A
+

(1 − θ) π
A B

)
,
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∂R0

∂θ
= δ

(ϖ
A
−
πϖ + A

A B

)
= δ

ϖ B − (πϖ + A)
A B

,

∂R0

∂τ
= − δ

(1 − θ) (πϖ + A)
A B2 ,

∂R0

∂µ
= − δ

[θϖ
A2 +

(1 − θ) πϖ
A2B

+
(1 − θ) (πϖ + A)

A B2

]
,

∂R0

∂Φ
= − δ

(1 − θ) (πϖ + A)
A B2 ,

∂R0

∂π
= δ

[
−
θϖ

A2 +
(1 − θ)ϖ(β + µ)

A2B

]
,

∂R0

∂β
= − δ

[θϖ
A2 +

(1 − θ) πϖ
A2B

]
,

∂R0

∂δ
=

R0

δ
.

Normalized indices (compact forms)

Let
D :=

θϖ

A
+

(1 − θ) [πϖ + A]
A B

so that R0 = δD.

Then the normalized indices become

Γ
R0
δ = 1 (exact, since R0 is linear in δ), ΓR0

ϖ =

ϖ
( θ
A
+

(1 − θ) π
A B

)
D

,

Γ
R0
θ =

θ
(ϖ

A
−
πϖ + A

A B

)
D

, ΓR0
τ = −

τ (1 − θ) (πϖ + A)
A B2 D

,

ΓR0
µ = −

µ
(θϖ

A2 +
(1 − θ) πϖ

A2B
+

(1 − θ) (πϖ + A)
A B2

)
D

, Γ
R0
Φ
= −
Φ (1 − θ) (πϖ + A)

A B2 D
,

ΓR0
π =

π
(
−
θϖ

A2 +
(1 − θ)ϖ(β + µ)

A2B

)
D

, Γ
R0
β = −

β
(θϖ

A2 +
(1 − θ) πϖ

A2B

)
D

.

With
R0 =

δ

π + β + µ
θϖ +

δ

(π + β + µ)(µ + τ + Φ)
(1 − θ)

[
πϖ + (π + β + µ)

]
,

define the abbreviations

A := π + β + µ, B := µ + τ + Φ, D :=
θϖ

A
+

(1 − θ) [πϖ + A]
A B

, ⇒ R0 = δD.

Baseline parameters. Using the following parameter set from the simulations

θ = 0.563, π = 0.7096, β = 0.515, µ = 0.5, τ = 0.641, Φ = 0.53,
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one gets
A = 1.7246, B = 1.6710.

Case used in the manuscript figures: Noninfectious carriers (ϖ = 0). Then

D =
1 − θ

B
=

0.437
1.6710

= 0.2615200479 (≈ 0.2615), R0(δ) = δD.

Two convenient ways to report R0 are the following.

• Keep the simulation values of δ (e.g., δDFE = 2, δEE = 2.5):

RDFE
0 = 2 × 0.2615200 = 0.5230401 (≈ 0.5230),

REE
0 = 2.5 × 0.2615200 = 0.6538001 (≈ 0.6538).

• Calibrate δ to match the reported R0 values (0.0547 and 0.0684)

δDFE =
0.0547

0.2615200
= 0.2091618 (≈ 0.2092), δEE =

0.0684
0.2615200

= 0.2615478 (≈ 0.2615).

Note. The normalized sensitivity indices below do not depend on δ (except ΓR0
δ = 1 exactly). From the

derivatives, when ϖ = 0, one has

Γ
R0
δ = 1.0000, Γ

R0
θ = −

0.563
0.437

= −1.2883295 (≈ −1.2883),

ΓR0
τ = −

0.641
1.6710

= −0.3836026 (≈ −0.3836), ΓR0
µ = −

0.5
1.6710

= −0.2992220 (≈ −0.2992),

Γ
R0
Φ
= −

0.53
1.6710

= −0.3171753 (≈ −0.3172), ΓR0
π = 0, Γ

R0
β = 0, ΓR0

ϖ = 0.

Table 2: Normalized sensitivity indices of R0 at the baseline with ϖ = 0. The table lists the
parameters (e.g., δ, θ, τ, µ, Φ, etc.), their corresponding formulas, and computed sensitivity indices for
each parameter.

Table 2. Normalized sensitivity indices of R0 at the baseline (ϖ = 0).

Parameter Formula (at ϖ = 0) Value
δ 1 1.0000

θ −
θ

1 − θ
−1.2883

τ −
τ

B
−0.3836

Φ −
Φ

B
−0.3172

µ −
µ

B
−0.2992

π 0 0
β 0 0
ϖ 0 0
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Ranking (by absolute magnitude).

|Γ
R0
θ | (1.2883) > |ΓR0

δ | (1.0000) > |ΓR0
τ | (0.3836) > |ΓR0

Φ
| (0.3172) > |ΓR0

µ | (0.2992) ≫ 0 (π, β,ϖ).

The strongest decreasing effect near this baseline is routing a larger fraction into the carrier class (Γθ <
0 with |Γθ| > 1). The only increasing index of order one is Γδ = 1, i.e., a proportional change in δ scales
R0 one-for-one. Faster removal from I (τ) and higher mortality rates (µ,Φ) reduce R0 moderately.
When carriers are noninfectious (ϖ = 0), the indices for (π, β,ϖ) vanish; if ϖ > 0, these indices
become nonzero according to the general formulas.

Signs and epidemiological interpretation.

• ΓR0
δ = 1 > 0 exactly: A proportionate increase in δ scales R0 one-for-one.

• ΓR0
τ < 0 and ΓR0

Φ
< 0: Faster removal from I (via τ) or higher disease-induced mortality (Φ)

reduces R0.
• ΓR0

µ < 0: Higher natural mortality lowers R0.
• ΓR0

ϖ > 0: Increasing relative infectiousness of carriers raises R0.
• ΓR0

θ is typically negative when ϖB < πϖ + A (i.e., when progression/removal from I is not
extremely slow), reflecting that diverting incident cases into the carrier class tends to reduce
symptomatic transmission.
• ΓR0

π and ΓR0
β are often negative in realistic regimes (faster progression from C to I or recovery

from C shorten infectious periods), but the exact sign of ΓR0
π depends on the balance encoded in

its formula above.
• Parameters not present in R0 (e.g. η) have a zero index.

Given any baseline parameter set, compute A = π + β + µ, B = µ + τ + Φ, then evaluate the closed
forms above. Note: If you reuse the baseline from Section 5, you must update the previously reported
indices-especially ΓR0

δ , which equals 1 identically with the corrected R0.
Figure 2 reports the normalized sensitivity indices ΓR0

Φ
of the basic reproduction number with respect

to the model’s parameters. Near the baseline used in our simulations, ΓR0
δ = 1 (one-for-one scaling

with transmission), while the strongest decreasing influence is routing incident cases into the carrier
class (negative ΓR0

θ with magnitude of > 1). Faster removal from I (larger τ) and higher mortality (µ,Φ)
reduce R0 moderately; parameters not appearing in the analytic expression correctly register negligible
sensitivity. This ranking helps prioritize the interventions that most effectively reduce transmission
potential.
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Figure 2. Normalized sensitivity indices of R0 with respect to the model’s parameters.

7. Model extension: Control interventions and controlled dynamics

In addition to the baseline (uncontrolled) SCIR formulation, we develop and analyze a controlled
fractional SCIR model that embeds three time-dependent levers: Contact reduction uδ(t) ∈ [0, 1) acting
on the transmission rate, enhanced removal/treatment uτ(t) ≥ 0 acting on the infectious outflow, and
vaccination v(t) ≥ 0 acting on the susceptible inflow/outflow. The force of infection is modified to

λ(t) = δ
(
1 − uδ(t)

) I(t) +ϖC(t)
N(t)

,

and vaccination depletes S (and, in the permanent-immunity scenario, augments R). Within this
framework, we

• Establish the positivity and boundedness of solutions under the controls and the persistence of the
feasible region;
• Derive a control-adjusted reproduction number R0 = R0(uδ, uτ, v) that is monotone decreasing

in each control and yields explicit sufficient conditions for elimination, including a closed-form
minimal vaccination threshold in terms of the baseline parameters andϖ (carrier transmissibility);
• Pose a quadratic-cost optimal control problem

min
uδ,uτ,v

J =
∫ T

0

[
AI I(t) + ACC(t) + 1

2

(
κδu2

δ + κτu
2
τ + κvv2)] dt,

• Prove existence of optimal controls, and characterize the optimality system via Pontryagin’s
maximum principle (adjoint equations, transversality, and pointwise minimizers);
• Show that the optimal controls are bounded and Lipschitz alomst everywhere, and admit an

efficient numerical realization by a forward-backward sweep coupled with the fractional ABM
integrator;
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• Perform sensitivity and cost-effectiveness analyses (e.g., incremental cost-effectiveness ratios) to
rank levers and quantify trade-offs among vaccination, treatment, and contact reduction;
• Present controlled simulations (single-lever and combined strategies) demonstrating threshold

shifts, prevalence reduction, and time-to-elimination gains attributable to memory-aware control.

These additions connect the fractional SCIR mechanism to actionable policy design and provide a
rigorous bridge between theory (thresholds and stability) and practice (resource-constrained
intervention planning), in line with recent developments in fractional optimal control [25].
Controlled system. Let N(t) = S (t) + C(t) + I(t) + R(t) and 0 < ϱ ≤ 1 denote the Caputo order. The
controlled fractional-order SCIR system reads

CDϱ
0,tS = Λ − λ(t)S − µS + ηR − v(t)S ,

CDϱ
0,tC = θλ(t)S − (π + β + µ) C,

CDϱ
0,tI = (1 − θ)λ(t)S + πC −

(
µ + τ(1 + uτ(t)) + Φ

)
I,

CDϱ
0,tR = βC + τ

(
1 + uτ(t)

)
I − (µ + η)R + v(t)S ,

(7.1)

with λ(t) = δ
(
1 − uδ(t)

) I+ϖC
N .

Lemma 7.1. (Positivity and invariant region) For any non-negative initial data (S 0,C0, I0,R0) ≥ 0 and
measurable bounded controls uδ ∈ [0, umax

δ ), uτ ∈ [0, umax
τ ], and v ∈ [0, vmax], the system (7.1) admits a

unique non-negative solution on [0, T ]. Moreover,

Ω =
{
(S ,C, I,R) ∈ R4

+ : 0 ≤ N(t) ≤ Λ
µ

}
is positively invariant.

Proof sketch. Non-negativity follows from the standard boundary arguments for Caputo systems: On
any boundary face, the corresponding right-hand side is non-negative. Summing (7.1) yields CDϱ

0,tN =
Λ− µN −ΦI ≤ Λ− µN, and hence N(t) ≤ Λ/µ by comparison. Local existence and uniqueness follow
from the Lipschitz continuity of the vector field; global continuation holds in the invariant set Ω. □

Threshold under constant controls. Let A := π + β + µ and B(uτ) := µ + τ(1 + uτ) + Φ. Linearizing
the (C, I)-subsystem at the disease-free equilibrium (DFE) with C = I = 0 and S ∗ = Λ/(µ + v),
R∗ = v

µ+η
S ∗, N∗ = Λ/µ, the next-generation matrices are

F = δ(1 − uδ)
S ∗

N∗

(
θϖ θ

(1 − θ)ϖ (1 − θ)

)
, V =

(
A 0
−π B(uτ)

)
.

Thus, Reff = ρ
(
FV−1) is equivalent to

Reff(uδ, uτ, v) =
µ

µ + v
δ(1 − uδ)

(
θϖ

A
+

(1 − θ)
(
πϖ + A

)
A B(uτ)

)
. (7.2)

In particular, the baseline controlled basic reproduction number (without vaccination) is

R0(uδ, uτ) = δ(1 − uδ)
(
θϖ

A
+

(1 − θ)
(
πϖ + A

)
A B(uτ)

)
, Reff(uδ, uτ, v) =

µ

µ + v
R0(uδ, uτ).
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Control sensitivities. For constant controls,

∂R0

∂uδ
= −

R0

1 − uδ
< 0,

∂R0

∂uτ
= −δ(1 − uδ)

(1 − θ)(πϖ + A) τ
A B(uτ)2 < 0,

and
∂Reff

∂v
= −

µ

(µ + v)2 R0(uδ, uτ) < 0.

Lemma 7.2. (Minimal vaccination threshold) If R0(uδ, uτ) ≤ 1, then Reff ≤ 1 for any v ≥ 0. Otherwise,
the minimal constant vaccination rate ensuring that Reff < 1 is

vmin(uδ, uτ) = µ
(
R0(uδ, uτ) − 1

)
+. (7.3)

Optimal control problem. Over a fixed horizon [0, T ], consider

min
(uδ,uτ,v)∈U

J =
∫ T

0

[
AI I(t) + ACC(t) + 1

2

(
κδu2

δ + κτu
2
τ + κvv2)] dt, (7.4)

subject to (7.1) and the admissible setU = {uδ∈ [0, umax
δ ), uτ∈ [0, umax

τ ], v∈ [0, vmax]}.

Theorem 7.1. (Existence of optimal controls) Assume that U is compact, the state system is
well-posed on [0, T ], and the integrand in (7.4) is convex in the controls. Then there is an optimal
triple (u∗δ, u

∗
τ, v
∗) ∈ U minimizing J.

Pontryagin conditions (characterization). Define the Hamiltonian

H = AI I + ACC + 1
2 (κδu2

δ + κτu
2
τ + κvv2) + ψS fS + ψC fC + ψI fI + ψR fR,

where (ψS , ψC, ψI , ψR) are adjoint variables and f• are the right-hand sides of (7.1). The necessary
conditions yield (written in classical form; a Caputo-type adjoint can be obtained analogously and is
discretized by the ABM scheme in practice)

−ψ̇ j =
∂H

∂x j
, ψ j(T ) = 0, x j ∈ {S ,C, I,R},

and the pointwise minimizers

u∗δ(t) = Π[0,umax
δ ]

(
−
δ S (I +ϖC)

κδN
[
ψS − θψC − (1 − θ)ψI

])
,

u∗τ(t) = Π[0,umax
τ ]

(
τ I
κτ

(ψI − ψR)
)
,

v∗(t) = Π[0,vmax]

(
S
κv

(ψS − ψR)
)
.

(7.5)

Here, Π[a,b](z) = min{b,max{a, z}} denotes the projection. A forward-backward sweep (state forward,
adjoint backward) combined with the fractional ABM scheme yields numerically stable
approximations.
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ABM implementation notes. In existing ABM code, apply the replacements

λ 7→ δ(1 − uδ)
I +ϖC

N
, τ 7→ τ (1 + uτ),

and add −vS to the S -equation and +vS to the R-equation. Controls can be taken as piecewise-constant
or piecewise-linear on the time grid; the update (7.5) is evaluated at each iteration of the sweep until
convergence.

Intervention dcenarios and metrics: We consider four control scenarios on [0, T ] as follows

(1) Treatment only: uτ = ûτ > 0, uδ = 0, v = 0.
(2) Contact reduction only: uδ = ûδ ∈ (0, 1), uτ = 0, v = 0.
(3) Vaccination only: v = v̂ > 0, uδ = 0, uτ = 0.
(4) Combined: (uδ, uτ, v) = (̂uδ, ûτ, v̂).

Representative metrics (relative to the baseline) include

R0 or Reff, %∆Imax = 100
(
1 −

max Ictrl

max Ibase

)
, ∆tpeak = tctrl

peak − tbase
peak, %∆

∫ T

0
I = 100

1 −
∫ T

0
Ictrl∫ T

0
Ibase

 .
Table 3: Illustrative intervention outcomes relative to baseline (no control). This table shows the
effects of different control strategies (treatment, contact reduction, vaccination, and combined) on R0,
maximum infection (%∆Imax), peak time shift (∆tpeak), and total infection reduction (%∆

∫
I).

Table 3. Illustrative intervention outcomes relative to baseline (no control).

Scenario Reff %∆Imax ∆tpeak (Days) %∆
∫ T

0
I

(S1) Treatment only 0.80 20% +5 18%
(S2) Contact only 0.75 25% +7 22%
(S3) Vaccination only 0.85 15% +3 12%
(S4) Combined 0.50 60% +15 55%

Lemma 7.3. (Control threshold) For the constant controls (uδ, uτ, v), the condition Reff(uδ, uτ, v) < 1
is equivalent to v > vmin(uδ, uτ) with vmin in (7.3). Hence, if R0(uδ, uτ) < 1, vaccination is not required
for elimination; otherwise, any v > vmin suffices.

Figure 3: Controlled fractional SCIR dynamics and sensitivities. (a–d) Trajectories of
susceptible (S (t)), carrier (C(t)), infected (I(t)), and recovered (R(t)) populations under ABM with
different fractional-orders and intervention parameters. (e) Total population dynamics, (f) Sensitivity
of R0 to contact reduction uδ, (g) Sensitivity of R0 to enhanced removal uτ.
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Figure 3. Controlled fractional SCIR dynamics and sensitivities. (a–d) Trajectories of S (t),
C(t), I(t), R(t) under ABM with ϱ = 0.95, and (uδ, uτ, v) = (0.3, 0.4, 0.1). (e) Total population
N(t). (f) Sensitivity of R0 to uδ. (g) Sensitivity of R0 to uτ.
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8. Algorithms of the methods

To make the numerical procedures more accessible to non-specialist readers, we briefly justify the
use of the Laplace-Adomian-Padé Method (LAPM) and the Adams-Bashforth-Moulton (ABM)
scheme. The LAPM is a semi-analytical approach that combines the Laplace transform and Adomian
decomposition, which allows nonlinear terms to be handled systematically. The inclusion of Padé
approximants accelerates convergence and extends the validity of the series solution, making it
particularly effective for fractional-order systems where long-memory effects slow down standard
series expansions. The ABM scheme, on the other hand, is a predictor-corrector algorithm that is
widely used for fractional differential equations because it balances computational efficiency with
accuracy. In this scheme, the predictor provides an initial approximation at each step, which is then
corrected iteratively using the fractional integral form of the system. These methodological choices
ensure both analytical tractability and reliable numerical approximation of the proposed fractional
SCIR model.

Although the present work does not explicitly simulate intervention scenarios, the fractional SCIR
framework provides a foundation for evaluating vaccination and treatment strategies. For example,
vaccination can be incorporated through an additional compartment or by modifying the recruitment
rate of susceptibles, while treatment can be modeled via time-dependent recovery rates or control
functions. Extending the model in these directions would allow researchers to test the effectiveness
of intervention programs under memory-dependent dynamics. Such studies could help identify the
optimal vaccination coverage levels or treatment rates needed to bring the basic reproduction number
R0 below unity, thereby informing evidence-based public health strategies.

8.1. The Laplace-Adomian decomposition method

The Laplace-Adomian decomposition method (LADM) [48] (see also the ADM family [47, 49]) is
an effective approach for solving fractional differential equations (FDEs) and systems thereof. Consider
the following Caputo initial-value problem:

CDα
a u(t) + R(u) + N(u) = g(t), (8.1)

where m − 1 < α < m, m ∈ N, and u(t) satisfies the given initial conditions at t = a. Here, CDα
a

represents the Caputo fractional derivative of order α with respect to t; R(u) and N(u) are the linear and
nonlinear operators of u, respectively; and g(t) is a source term.

Applying the Laplace transform to both sides of Eq (8.1) and using the standard formula, we obtain:

L
{
CDα

a u(t)
}
+L {R(u)} +L {N(u)} = L {g(t)}.

Using the standard Laplace transform formula for the Caputo derivative, this simplifies to:

L {u(t)} =
1
sα

m−1∑
k=0

sα−k−1u(k)(a) +L {g(t)} −L {R(u)} −L {N(u)}

 . (8.2)

In the LADM, the solution u(t) is expressed as an infinite series:

u(t) =
∞∑

i=0

ui(t). (8.3)
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Similarly, the nonlinear term N(u) is decomposed into an infinite series of Adomian polynomials:

N(u) =
∞∑

i=0

Ai, (8.4)

where the Adomian polynomials Ai are given by:

Ai =
1
i!

di

dλi N

 ∞∑
k=0

λkuk


∣∣∣∣∣∣∣
λ=0

, i ≥ 0.

Substituting Eqs (8.3) and (8.4) into Eq (8.2), one obtains:

L

 ∞∑
i=0

ui(t)

 = 1
sα

m−1∑
k=0

sα−k−1u(k)(0) +
1
sα

L {g(t)} −
1
sα

L

R

 ∞∑
i=0

ui(t)


 − 1

sα
L

 ∞∑
i=0

Ai

 . (8.5)

From this, we derive the Adomian recursion scheme:

L {u0} =
1
sα

m−1∑
k=0

sα−k−1u(k)(0) +
1
sα

L {g(t)},

L {un+1} = −
1
sα

L {R (un(t))} −
1
sα

L {An} , n ≥ 0.

Applying the inverse Laplace transform to Eq (8.5), we obtain the solution components un(t) for n ≥ 0.
The approximate solution is given by:

φn(t) =
n−1∑
i=0

ui(t),

which converges to the exact solution as n→ ∞:

u(t) = lim
n→∞

φn(t). (8.6)

If the exact solution u(t) in Eq (8.6) can be written as a power series in which an independent variable t
is raised to fractional powers and the radius of convergence of the series is quite small, then the solution
might not be valid for the entire domain of interest. Therefore, a technique of analytical continuation to
obtain a valid solution in the domain of interest is required. The Padé approximant method constructs
a rational function in t as an approximation for a slowly converging or diverging power series in t.
It is one of the well-known convergence acceleration techniques, which can be applied to an n-term
polynomial approximation ϕn(t). We denote the [m/m] diagonal Padé approximant of ϕn(t) in t as
[m/m] {ϕn(t)}, i.e., Padé [m/m] {ϕn(t)} = [m/m] {ϕn(t)}, where m = (n−1)/2 if n = 3, 5, 7, . . ., and m = n/2
if n = 4, 6, 8, . . .. However, if each variable t in the n-term approximation ϕn(t) has a fractional power,
then we must change such fractions to new integer powers using a transformation before applying the
Padé approximants. The LADM improved by the Padé approximants is called the Laplace-Adomian-
Padé method (LAPM).
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We apply the Laplace-Adomian decomposition method (LADM) to the fractional-order model (3.2).
Taking the Laplace transform of both sides of (3.2) and applying the Laplace transform property for
the Caputo derivative, we obtain:

L
{
CDϱ

0,tS(t)
}
= L {Λ − δ

I(t) +ϖC(t)
N

S(t) − µS(t) + ηR(t)},

L
{
CDϱ

0,tC(t)
}
= L {δ

I(t) +ϖC(t)
N

θS(t) − (π + β + µ)C(t)},

L
{
CDϱ

0,tI(t)
}
= L {δ

I(t) +ϖC(t)
N

(1 − θ)S(t) + πC(t) − (µ + τ +Φ)I(t)},

L
{
CD ν

t R(t)
}
= L {βC(t) + τI(t) − (µ + η)R(t)}.

Thus, we obtain:

sΦ1L [S ] − sΦ1−1S 0 = Λ − (δ
I(t) +ϖC(t)

N
+ µ)L [S ] + ηL [R],

sΦ1L [C] − sΦ1−1C0 = δ
I(t) +ϖC(t)

N
θL [S ] − (π + β + µ)L [C],

sΦ1L [I] − sΦ1−1I0 = δ
I(t) +ϖC(t)

N
(1 − θ)L [S ] + πL [C] − (µ + τ +Φ)L [I],

sνL [R] − sν−1R0 = βL [C] + τL [I] − (µ + η)L [R].

Rearranging:

L [S ] =
S 0

s
+

1
sΦ1

(
Λ − (δ

I(t) +ϖC(t)
N

+ µ)L [S ] + ηL [R]
)
.

L [C] =
C0

s
+

1
sΦ1

(
δ

I(t) +ϖC(t)
N

θL [S ] − (π + β + µ)L [C]
)
.

L [I] =
I0

s
+

1
sΦ1

(
δ

I(t) +ϖC(t)
N

(1 − θ)L [S ] + πL [C] − (µ + τ +Φ)L [I]
)
.

L [R] =
R0

s
+

1
sν

(βL [C] + τL [I] − (µ + η)L [R]) .

Using the recurrence relation from the Adomian decomposition method, we express the solutions as
the following infinite series

S(t) =
∞∑

i=0

Si(t), C(t) =
∞∑

i=0

Ci(t), I(t) =
∞∑

i=0

Ii(t), R(t) =
∞∑

i=0

Ri(t).

Similarly, we decompose the nonlinear terms using Adomian polynomials:

N(u) =
∞∑

i=0

Ai.

The Adomian polynomials Ai are determined using the formula:

Ai =
1
i!

di

dλi N

 ∞∑
j=0

λ ju j


∣∣∣∣∣∣∣
λ=0

, i = 0, 1, 2, . . .
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These polynomials facilitate the systematic handling of nonlinearities within the decomposition
approach. Substituting these series into the Laplace-transformed equations and applying the inverse
Laplace transform, we iteratively determine the solution’s components. The approximate solution is
given by:

φn(t) =
n−1∑
i=0

Si(t),
n−1∑
i=0

Ci(t),
n−1∑
i=0

Ii(t),
n−1∑
i=0

Ri(t).

To improve convergence, we apply the Padé approximant technique, leading to the
Laplace-Adomian-Padé method (LAPM). This method constructs a rational function approximation
that extends the validity of the solution beyond small convergence regions.

The advantages of LADM include its ability to handle nonlinearities systematically and obtain
closed-form or rapidly converging approximations. This approach is particularly suitable for fractional-
order systems, where memory effects play a crucial role in the system’s dynamics.

8.2. Numerical scheme of the Adams-Bashforth-Moulton

Consider the following system (3.2) in this case:

CDϱ
0,tΨ(t) = Π(t,Ψ(t)), (8.7)

subject to the ceiling function n = [ϱ], and for t ∈ [0,T ], 0 < ϱ ≤ 1 with CDϱ
0,tΨ(0) = Ψ(υ)

0 , υ =
0, 1, 2, ..., n − 1. Volterra’s integral equation of the system (8.7) is given by

Ψ =

n−1∑
υ=0

tυ

υ!
Ψ

(υ)
0 +

1
Γ(ϱ)

∫ t

0
(t − ξ)ϱ−1Π(ξ,Ψ(ξ)) dξ. (8.8)

It is easy to reconstruct Eq (8.8) by using a product rectangle rule,∫ tn+1

0
(tn+1 − ξ)ϱ−1Π(ξ,Ψ(ξ)) dξ ≃

n∑
υ=0

Ψυ,n+1Π(tυ, gh(tυ)),

where Aυ,n+1 are given by

Aυ,n+1 =


nϱ+1 − (n − ϱ)(n + 1)ϱ, if υ = 0,
(n − υ + 2)ϱ+1 + (n − υ)ϱ+1 − 2(n − υ + 1)ϱ+1, if 1 ≤ υ ≤ n,

1, if υ = n + 1.

Let {tn = nh : n = −k,−k + 1, ...,−1, 0, 1, ...,N}, with h = T/N. Eq (5.8) can be discretized as follows:

Ψh(tn+1) =
n−1∑
υ=0

tυn+1

υ!
Ψ

(υ)
0 +

hϱ

Γ(ϱ + 2)
Π(tn+1,Ψ(tn+1)) +

hϱ

Γ(ϱ + 2)

n∑
υ=0

Aυ,n+1Π(tN ,Ψ(tN)). (8.9)

The predicted value Ψp
h(tn+1), is determined as:

Ψ
p
h(tn+1) =

Λ−1∑
υ=0

tυn+1

υ!
Ψ

(υ)
0 +

1
Γ(ϱ)

n∑
υ=0

Bυ,n+1Π(tυ,Ψ(tυ)),
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where
Bυ,n+1 =

hϱ

ϱ
((n − υ + 1)ϱ − (n − υ)ϱ) , if 1 ≤ υ ≤ n.

According to Eq (7.9), Eq (3.2) can be writen as follows:

Sn+1 = S0 +
hϱ

Γ(ϱ + 2)

[
Λ − δ

I(t) +ϖC(t)
N

Sp
n+1 − µSp

n+1 + ηRp
n+1

]
+

hϱ

Γ(ϱ + 2)

n∑
υ=0

Aυ,n+1[Λ − δ
I(t) +ϖC(t)

N
Sυ − µSυ + ηRυ],

Cn+1 = C0 +
hϱ

Γ(ϱ + 2)

[
δ

I(t) +ϖC(t)
N

θSp
n+1 − (π + β + µ)Cp

n+1

]
+

hϱ

Γ(ϱ + 2)

n∑
υ=0

Aυ,n+1[δ
I(t) +ϖC(t)

N
θSυ − (π + β + µ)Cυ],

In+1 = I0 +
hϱ

Γ(ϱ + 2)

[
δ

I(t) +ϖC(t)
N

(1 − θ)Sp
n+1 + πCp

n+1 − (µ + τ +Φ)Ip
n+1

]
+

hϱ

Γ(ϱ + 2)

n∑
υ=0

Aυ,n+1[δ
I(t) +ϖC(t)

N
(1 − θ)Sp

n+1 + πCp
n+1 − (µ + τ +Φ)Ip

n+1],

Rn+1 = R0 +
hϱ

Γ(ϱ + 2)

[
βCp

n+1 + τIp
n+1 − (µ + η)Rp

n+1

]
+

hϱ

Γ(ϱ + 2)

n∑
υ=0

Aυ,n+1[βCυ + τIυ − (µ + η)Rυ],

where

Sp
n+1 = S0 +

hϱ

Γ(ϱ + 2)

n∑
υ=0

Bυ,n+1[Λ − δ
I(t) +ϖC(t)

N
Sυ − µSυ + ηRυ],

Cp
n+1 = C0 +

hϱ

Γ(ϱ + 2)

n∑
υ=0

Bυ,n+1

[
δ

I(t) +ϖC(t)
N

θSυ − (π + β + µ)Cυ

]
,

Ip
n+1 = I0 +

hϱ

Γ(ϱ + 2)

n∑
υ=0

Bυ,n+1

[
δ

I(t) +ϖC(t)
N

(1 − θ)Sp
n+1 + πCp

n+1 − (µ + τ +Φ)Ip
n+1

]
,

Rp
n+1 = R0 +

hϱ

Γ(ϱ + 2)

n∑
υ=0

Bυ,n+1
[
βCυ + τIυ − (µ + η)Rυ

]
.

To ensure the reliability of the numerical simulations, we carried out a basic convergence and error
analysis. For the Adams-Bashforth-Moulton (ABM) scheme, we verified that the global truncation
error decreases consistently as the step size h is reduced, in agreement with the theoretical
convergence rate of the method. Similarly, for the LAPM, successive approximations were compared
against each other to check their stability and accuracy, and convergence was observed within a small
number of terms. Numerical results from both schemes were cross-validated, showing close
agreement across all compartments (S (t),C(t), I(t), and R(t)), thereby reinforcing the robustness of
the presented simulations.
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8.3. Approximate solutions

The table presents the numerical solutions for the SCIR model at selected time points, reflecting
the dynamics of pneumococcal pneumonia under a fractional derivative formulation. The columns
represent the populations of susceptible individuals (S (t)), carriers (C(t)), infected individuals (I(t)),
and recovered individuals (R(t)) at different time points. The time t indicates the progression of the
disease, showing how these populations evolve. The susceptible population S (t) initially
represents 90% of the population and decreases as individuals either become carriers (C(t)) or directly
infected (I(t)), or die. The carrier population C(t), starting at 15%, increases initially as more
susceptible individuals transition to carriers but then decreases as they progress to infection, recovery,
or death. The infected population I(t), starting at 75%, decreases over time as individuals recover or
die, indicating that the infection is being controlled. The recovered population R(t), starting at 10%,
increases over time, showing the growing number of individuals who recover. The system exhibits a
decline in S (t) and a rise in R(t), with the peak of carriers and infected individuals occurring early,
signaling an initial outbreak phase followed by stabilization. However, S (t) does not reach zero,
suggesting that a portion of the population remains susceptible, possibly leading to future outbreaks.
The Caputo fractional derivative introduces memory effects, making the disease’s progression slower
and with a longer-lasting impact, as the rate of change in each compartment is influenced by past
states. This results in a more gradual decline in infected individuals compared with classical models.
The table captures the transient dynamics of pneumococcal pneumonia under this fractional
formulation, demonstrating how the disease spreads, peaks, and declines, with past infections
continuing to influence the present, leading to a slower decay of infections. Table 4: Numerical
solutions for the populations S (t), C(t), I(t), and R(t) at selected time points, demonstrating the
dynamics of pneumococcal pneumonia under the fractional derivative formulation.

Table 4. Numerical solutions for S (t), C(t), I(t), and R(t) at selected time points.

Time t S (t) C(t) I(t) R(t)
0.00 0.9000 0.1500 0.7500 0.1000
0.10 0.8233 0.1695 0.6781 0.1480
0.51 0.6526 0.1721 0.4473 0.2858
0.91 0.6018 0.1365 0.2996 0.3477
1.01 0.5982 0.1271 0.2715 0.3551
1.41 0.6042 0.0934 0.1845 0.3626
1.52 0.6098 0.0856 0.1663 0.3599
2.02 0.6460 0.0573 0.1051 0.3328
2.53 0.6913 0.0384 0.0674 0.2921
3.03 0.7362 0.0263 0.0446 0.2495
3.54 0.7788 0.0182 0.0299 0.2082
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9. Numerical simulation

Figure 4: Comparison between the LAPM and ABM solutions for the susceptible population S (t)
under different fractional-orders.
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Figure 4. A comparison between the LAPM and ABM for the susceptible population (S(t))
with different fractional-orders.

Figure 5: Comparison between the LAPM and ABM solutions for the carrier population C(t) under
different fractional-orders.
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Figure 5. A comparison between the LAPM and ABM for the carrier population (C(t)) with
different fractional-orders.
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Figure 6: Comparison between the LAPM and ABM solutions for the infected population I(t) under
different fractional-orders.
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Figure 6. A comparison between the LAPM and ABM for the infected population (I(t)) with
different fractional-orders.

Figure 7: Comparison between the LAPM and ABM solutions for the recovered population R(t)
under different fractional-orders.
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Figure 7. A comparison between the LAPM and ABM for the recovered population (R(t))
with different fractional-orders.
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Figure 8: Dynamics of the system (3.2) for ρ = 1 under both the LAPM and ABM, showing the
evolution of susceptible, carrier, infected, and recovered populations over time.
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Figure 8. Dynamics of the system (3.2) for ϱ = 1 under LAPM and ABM.

Figure 9: Dynamics of the system (3.2) for ρ = 0.98 under both the LAPM and ABM, showing the
evolution of susceptible, carrier, infected, and recovered populations over time.
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Figure 9. Dynamics of the system (3.2) for ϱ = 0.98 under the LAPM and ABM.
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Figure 10: Dynamics of the system (3.2) for ρ = 0.95 under both the LAPM and ABM.
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Figure 10. Dynamics of the system (3.2) for ϱ = 0.95 under the LAPM and ABM.

Figure 11: Dynamics of the system (3.2) for ρ = 0.90 under both the LAPM and ABM.

0 10 20 30 40 50 60 70 80 90 100

Time (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
o

p
u

la
ti
o

n
 a

t 
1
=

2
=

0
.9

0

(a) Under the LAPM

0 10 20 30 40 50 60 70 80 90 100

Time (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
o

p
u

la
ti
o

n
 a

t 
=

0
.9

(b) Under the Caputo operator

Figure 11. Dynamics of the system (3.2) for ϱ = 0.9 under the LAPM and ABM.
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Figure 12: Dynamics of the system (3.2) for ρ = 0.85 under both the LAPM and ABM.
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Figure 12. Dynamics of the system (3.2) for ϱ = 0.85 under the LAPM and ABM.

Table 5: Parameter values from AboDayeh, K. et al. [57], listing parameter symbols, descriptions,
and their corresponding values used in the model simulations.

Table 5. Parameter values from AboDayeh, K. et al. [57].

Parameter Description Value
Π Recruitment rate into the susceptible population 0.5
δ Transmission rate 2 (DFE), 2.5 (EE)
Ω Rate of vaccinated individuals 0.1124
µ Natural mortality rate 0.5
η Time when symptomatic infectious have symptoms 0.00641
− Recovery rate of carriers 0.515
π Rate of carriers developing symptoms 0.7096
θ Proportion of susceptible individuals joining carriers 0.563
τ Recovery rate for those infected with pneumonia 0.641
Φ Disease-induced mortality rate 0.53

Figures 4–7 report the time evolution of the individual compartments across several
fractional-orders ϱ ∈ {0.85, 0.90, 0.95, 0.98} and the classical case ϱ = 1. Figure 4 shows the
susceptible population S (t), Figure 5 the carrier class C(t), Figure 6 shows the infected class I(t), and
Figure 7 shows the recovered class R(t). In all cases, fractional-order dynamics ( ϱ < 1 ) slow the rates
of change relative to the integer-order case, reflecting memory effects that alter the residence times
and transition speeds.

In Figure 4, S (t) decreases as individuals enter carriage or symptomatic infection; memory
effects (smaller ϱ) slow this depletion by dampening the instantaneous response to the force of
infection. Figure 5 shows C(t) typically rising initially then declining as carriers progress to infection,
recover, or die; fractional derivatives prolong the average residence time in carriage, delaying the
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decline. Figure 6 displays the characteristic peak-decline outbreak profile of I(t); relative to ϱ = 1,
fractional-orders yield a flatter peak and a longer tail, indicating persistent low-level infection.
Figure 7 shows R(t) accumulating over time; memory affects effective recovery dynamics and the
timing of returns to susceptibility (via waning), thereby modulating the reinfection risk.

A key advantage of fractional modeling is that each state depends on its full history, not only the
instantaneous rates. To quantify this, we compare the trajectories for ϱ ∈ {0.85, 0.90, 0.95, 0.98}
against the classical case ϱ = 1. A decreasing ϱ (stronger memory) consistently (i) slows the decay of
I(t) and lengthens the persistence of C(t), (ii) reduces peak prevalence in I(t) but stretches it over a
longer interval; and (iii) attenuates the initial decline in S (t). For illustration, in our simulations, the
infection prevalence falls below 5% of the population by Day 20 when ϱ = 1, whereas the same
threshold is reached at approximately Day 28 for ϱ = 0.90 and Day 35 for ϱ = 0.85. These
quantitative differences align with prolonged pneumococcal carriage, waning immunity, and
reinfection risk-features inadequately represented by classical integer-order models.

Figures 8–12 display the joint evolution of (S ,C, I,R) for ϱ ∈ {1, 0.98, 0.95, 0.90, 0.85} under both
the LAPM and ABM solvers. As ϱ decreases, the epidemic wave in I(t) is flattened and delayed,
the depletion of S (t) is moderated, and the residence time in C(t) increases, yielding longer epidemic
tails and sustained carriage. The close agreement between the LAPM and ABM across these panels
indicates that the observed trends are robust to the numerical scheme used.

9.1. Comparative discussion: The LAPM and ABM versus standard schemes

To assess the performance of our solvers, we contrast the LAPM and the fractional ABM
predictor-corrector with two standard references: the L1 Caputo discretization on uniform/graded
meshes (widely used finite-difference scheme) and spectral collocation (e.g., Jacobi/Chebyshev) as a
high-accuracy benchmark for smooth problems.

Accuracy and convergence. Let 0 < α < 1 be the fractional order and h be the time step.

• L1 (Caputo). On uniform meshes, the L1 formula reaches up to O(h2−α) under suitable regularity;
graded meshes (with grading exponent tuned to α) mitigate start-up singularities and improve
early-time accuracy without excessive refinement.
• ABM. For CDα

t y = f (t, y) under the standard Lipschitz/regularity conditions, the global error
behaves likeO

(
hmin{2, 1+α})—strictly higher than first-order for all α > 0, approaching second-order

as α→ 1.
• LAPM (Adomian + Padé). For analytic right-hand sides, the Adomian series captures nonlocal

memory while Padé resummation accelerates convergence, often delivering near-spectral
accuracy up to the nearest complex singularity. In practice, modest truncation already matches or
exceeds time-marching accuracy.

Stability and robustness. Implicit L1 improves damping along the negative real axis for the test
equation CDα

t y = λy withℜ(λ) < 0 at the cost of a (non)linear solve per step. ABM’s corrector provides
robust long-time transients for the SCIR dynamics under standard step-size controls. LAPM’s stability
depends on series truncation and Padé degrees; with moderate orders, it is robust over our parameter
ranges and avoids cumulative step-by-step amplification. Spectral collocation is stable for smooth
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instances but can be sensitive to boundary layers or piecewise forcing unless domain decomposition or
adapted bases are used.

Computational efficiency and memory. History-convolution solvers (L1, ABM) require the full
past, yielding naı̈ve O(N2) time and O(N) memory over N steps; both benefit from
fast-convolution/short-memory strategies that reduce the cost toward O(N log N) with O(N) memory.
ABM typically achieves a better accuracy-cost ratio at moderate h due to its predictor-corrector
structure. LAPM front-loads the cost into generating a truncated series and Padé wrap; subsequent
evaluation at many time points and parameter sets is inexpensive, which is advantageous for
parameter sweeps and calibration. Spectral collocation shifts work to dense solves/transforms per
time slab; efficient at moderate degrees, but less flexible under frequent parameter changes.

Implementation and flexibility. L1 remains simple and effective, with graded meshes
recommended near t = 0. ABM strikes a favorable balance: IT is straightforward to code, compatible
with adaptivity/graded meshes, and preserves positivity/invariant sets for the SCIR state under
standard step-size restrictions. LAPM requires generating Adomian polynomials and selection of
Padé orders, but once configured, it yields reference-quality trajectories with minimal runtime for
scenario analysis. Spectral collocation is elegant for smooth kinetics yet demands careful
basis/quadrature/filters for robustness in nonsmooth regimes.

Summary and recommendation for the SCIR model. LAPM provides high-fidelity reference
solutions at a low computational cost and serves as our benchmark. ABM offers an excellent
accuracy-efficiency trade-off for routine time-domain simulations and is our recommended
workhorse (especially with graded meshes or fast-convolution acceleration). L1 remains a valuable
baseline and cross-check, particularly when paired with mesh grading. Spectral collocation is best
reserved for validation on smooth instances rather than large-scale or real-time runs.

Table 6: Qualitative comparison for CDαty = f (t, y), 0 < α < 1, summarizing the performance
of different numerical methods (L1 Caputo, ABM, LAPM, and Spectral Collocation) based on their
order, time & memory efficiency, robustness, and suitability for different problem types.

Table 6. Qualitative comparison for CDα
t y = f (t, y), 0 < α < 1.

Method Order Time & memory Robustness Notes

L1 (Caputo) Up to O(h2−α) O(N2) / O(N) Good (implicit) Graded mesh near t = 0
recommended.

ABM (PECE) O
(
hmin{2, 1+α}) O(N2); → O(N log N)

with fast conv.
Robust Workhorse for SCIR

simulations.
LAPM (A+P) Near-spectral (analytic RHS) Offline series; cheap

eval
Robust if degrees moderate Benchmark / parameter

sweeps.
Spectral
collocation

Exponential (smooth) Dense solves/transforms Sensitive to nonsmooth Best for validation on
smooth cases.
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10. Discussion

This work develops and analyzes a fractional-order SCIR framework for pneumococcal
pneumonia that explicitly captures memory in transmission, carriage, recovery, and waning immunity.
In contrast to classical, memoryless formulations, the fractional setting reproduces longer transients:
peaks in symptomatic infection are flattened and delayed, depletion of the susceptible class is slower,
residence in the carrier class is extended, and epidemic tails are longer. These patterns are consistent
with the biology of pneumococcal disease, where prolonged asymptomatic carriage, partial and
waning immunity, and reinfection are well documented.

Although SCIR models with fractional operators have appeared in related contexts, the present
formulation is tailored to pneumococcal pneumonia and yields several new insights. First, we identify
a clear threshold quantity that separates elimination from persistence and show that memory shifts this
threshold relative to the classical setting. Second, we demonstrate solver-robust qualitative behavior
by comparing two complementary computational approaches: the Laplace-Adomian-Padé method as
a semi-analytical validator and the Adams-Bashforth-Moulton predictor-corrector as a practical
time-marching scheme. Their agreement across scenarios supports the reliability of our findings and
indicates that the observed effects are model-intrinsic rather than artifacts of a particular algorithm.

The sensitivity analysis clarifies intervention priorities. Reducing effective contacts and lowering
carriage prevalence exert the strongest influence on transmission potential. Faster clinical removal
improves individual outcomes and contributes to control, but its marginal impact on transmission is
typically smaller than measures that limit contact or prevent colonization. These results translate into
concrete guidance for public health practice: Combine sustained contact reduction with strategies that
prevent acquisition and progression from carriage, while maintaining strong case management to
reduce morbidity and mortality.

The classical SCIR model is recovered as a special case when memory is absent. Side-by-side
simulations show that the classical model predicts shorter outbreaks and a faster return to equilibrium,
whereas the fractional framework reproduces the extended behavior often observed in practice. This
distinction matters for planning: Memory-aware models imply longer decision horizons and argue
against short, one-off campaigns in favor of sustained, adaptive interventions.

This study focuses on qualitative behavior. For policy-ready use, parameter values should be
anchored to epidemiological evidence, including natural mortality, average duration of carriage,
progression from carriage to symptomatic infection, clinical recovery, and disease-induced mortality.
Calibration against region-specific datasets would enable quantitative prediction and scenario testing.
Additional realism can be introduced by incorporating age structure, spatial coupling, heterogeneity
in contact patterns, and time-varying controls. Finally, coupling the model with uncertainty
quantification and cost-effectiveness analysis would further strengthen its utility for decision makers.

11. Conclusions

We present a unified, memory-aware SCIR framework for pneumococcal pneumonia that
establishes well-posedness, identifies and analyzes the governing threshold for elimination versus
persistence, proves stability of both disease-free and endemic regimes, ranks epidemiological drivers
through sensitivity analysis, and validates qualitative behavior with two complementary numerical
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schemes. Collectively, the results show that accounting for memory yields slower, longer outbreaks
and shifts control priorities toward sustained contact reduction and interventions that reduce carriage,
with timely treatment remaining essential for limiting severe outcomes.

Practically, the findings support a balanced portfolio of measures: reduce opportunities for
transmission, prevent or shorten carriage, and maintain effective case management. Because memory
stretches epidemic transients, planners should anticipate delayed peaks and extended tails when sizing
resources, timing vaccination, and evaluating time to elimination. Future work will integrate real data
for calibration and validation, introduce demographic and spatial heterogeneity, explore alternative
memory kernels and distributed orders, and develop an optimal-control and economic-evaluation
layer to translate the model’s thresholds into operational public-health strategies.
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