Research article Special Issues

Finite-time transient control of uncertain nonlinear systems based on prescribed performance and disturbance observer

  • Published: 03 November 2025
  • MSC : 93C10, 93C42

  • For uncertain nonlinear systems with dead-zone input, this paper focuses on designing a disturbance observer-based adaptive fuzzy finite-time prescribed performance controller. To meet practical requirements, a fixed-time disturbance observer is constructed to estimate the system uncertainties. To confine the tracking error within a predefined range, a finite-time performance function is introduced. Subsequently, the constrained problem is transformed into a stability problem via a transformation function. Based on Lyapunov stability theory, the proposed control method can ensure that the closed-loop signals are bounded and the tracking error is restricted within the prescribed range. The simulation results confirm the validity of the proposed approach.

    Citation: Yuhong Huo, Wei Xiang. Finite-time transient control of uncertain nonlinear systems based on prescribed performance and disturbance observer[J]. AIMS Mathematics, 2025, 10(11): 25137-25153. doi: 10.3934/math.20251112

    Related Papers:

  • For uncertain nonlinear systems with dead-zone input, this paper focuses on designing a disturbance observer-based adaptive fuzzy finite-time prescribed performance controller. To meet practical requirements, a fixed-time disturbance observer is constructed to estimate the system uncertainties. To confine the tracking error within a predefined range, a finite-time performance function is introduced. Subsequently, the constrained problem is transformed into a stability problem via a transformation function. Based on Lyapunov stability theory, the proposed control method can ensure that the closed-loop signals are bounded and the tracking error is restricted within the prescribed range. The simulation results confirm the validity of the proposed approach.



    加载中


    [1] X. Chen, J. H. Park, J. Cao, J. Qiu, Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control, Neurocomputing, 273 (2018), 9–21. https://doi.org/10.1016/j.neucom.2017.07.063 doi: 10.1016/j.neucom.2017.07.063
    [2] Y. Liu, X. Liu, Y. Jing, Adaptive fuzzy finite-time stability of uncertain nonlinear systems based on prescribed performance, Fuzzy Set. Syst., 374 (2019), 23–39. https://doi.org/10.1016/j.fss.2018.12.015 doi: 10.1016/j.fss.2018.12.015
    [3] K. El Hamidi, M. Mjahed, A. El Kari, H. Ayad, Adaptive control using neural networks and approximate models for nonlinear dynamic systems, Mod. Simul. Eng., 2020 (2020), 8642915. https://doi.org/10.1155/2020/8642915 doi: 10.1155/2020/8642915
    [4] A. R. M. Jamil, K. K. Ganguly, N. Nower, Adaptive traffic signal control system using composite reward architecture based deep reinforcement learning, IET Intell. Transp. Sy., 14 (2020), 2030–2041. https://doi.org/10.1049/iet-its.2020.0443 doi: 10.1049/iet-its.2020.0443
    [5] Y. Liu, N. Zhao, Adaptive dynamic event-triggered asymptotic control for uncertain nonlinear systems, Chaos Soliton. Fract., 189 (2024), 115597. https://doi.org/10.1016/j.chaos.2024.115597 doi: 10.1016/j.chaos.2024.115597
    [6] Y. An, Y. Liu, Observer-based dynamic event-triggered adaptive control for uncertain nonlinear strict-feedback systems, Syst. Control Lett., 183 (2024), 105700. https://doi.org/10.1016/j.sysconle.2023.105700 doi: 10.1016/j.sysconle.2023.105700
    [7] L. Fang, S. Ding, L. Ma, D. Zhu, Finite-time state-feedback control for a class of stochastic constrained nonlinear systems, J. Franklin I., 359 (2022), 7415–7437. https://doi.org/10.1016/j.jfranklin.2022.07.025 doi: 10.1016/j.jfranklin.2022.07.025
    [8] F. Shu, J. Zhai, Dynamic event-triggered output feedback control for a class of nonlinear systems with time-varying delays, Inform. Sciences, 569 (2021), 205–216. https://doi.org/10.1016/j.ins.2021.04.020 doi: 10.1016/j.ins.2021.04.020
    [9] H. Peng, Q. Zhu, Stability analysis of switched stochastic nonlinear functional systems, Int. J. Robust Nonlin., 34 (2024), 1956–1970. https://doi.org/10.1002/rnc.7064 doi: 10.1002/rnc.7064
    [10] J. Fang, C. Ren, H. Wang, V. Stojanovic, S. He, Finite-region asynchronous h$\infty$ filtering for 2-d markov jump systems in roesser model, Appl. Math. Comput., 470 (2024), 128573. https://doi.org/10.1016/j.amc.2024.128573 doi: 10.1016/j.amc.2024.128573
    [11] Y. Liu, Q. Zhu, N. Zhao, L. Wang, Adaptive fuzzy backstepping control for nonstrict feedback nonlinear systems with time-varying state constraints and backlash-like hysteresis, Inform. Sciences, 574 (2021), 606–624. https://doi.org/10.1016/j.ins.2021.07.068 doi: 10.1016/j.ins.2021.07.068
    [12] X. Su, C. P. Chen, Z. Liu, Adaptive fuzzy control for uncertain nonlinear systems subject to full state constraints and actuator faults, Inform. Sciences, 581 (2021), 553–566. https://doi.org/10.1016/j.ins.2021.09.055 doi: 10.1016/j.ins.2021.09.055
    [13] C. M. Lin, C. C. Chung, Fuzzy brain emotional learning control system design for nonlinear systems, Int. J. Fuzzy Syst., 17 (2015), 117–128. https://doi.org/10.1007/s40815-015-0020-9 doi: 10.1007/s40815-015-0020-9
    [14] Z. Zhang, K. Zhang, X. Xie, V. Stojanovic, Adp-based prescribed-time control for nonlinear time-varying delay systems with uncertain parameters, IEEE T. Autom. Sci. Eng., 22 (2024), 3086–3096. https://doi.org/10.1109/TASE.2024.3389020 doi: 10.1109/TASE.2024.3389020
    [15] H. Li, Y. Wang, D. Yao, R. Lu, A sliding mode approach to stabilization of nonlinear markovian jump singularly perturbed systems, Automatica, 97 (2018), 404–413. https://doi.org/10.1016/j.automatica.2018.03.066 doi: 10.1016/j.automatica.2018.03.066
    [16] W. Xiang, F. Chen, An adaptive sliding mode control scheme for a class of chaotic systems with mismatched perturbations and input nonlinearities, Commun. Nonlinear Sci., 16 (2011), 1–9. https://doi.org/10.1016/j.cnsns.2010.02.021 doi: 10.1016/j.cnsns.2010.02.021
    [17] C. Zhang, D. Gong, Q. Gao, W. Chen, J. Wang, A fuzzy integral sliding-mode parallel control approach for nonlinear descriptor systems, Inform. Sciences, 615 (2022), 491–503. https://doi.org/10.1016/j.ins.2022.10.035 doi: 10.1016/j.ins.2022.10.035
    [18] H. Peng, Q. Zhu, Fixed time stability of impulsive stochastic nonlinear time-varying systems, Int. J. Robust Nonlin., 33 (2023), 3699–3714. https://doi.org/10.1002/rnc.6589 doi: 10.1002/rnc.6589
    [19] X. Bu, X. Wu, F. Zhu, J. Huang, Z. Ma, R. Zhang, Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors, ISA T., 59 (2015), 149–159. https://doi.org/10.1016/j.isatra.2015.09.007 doi: 10.1016/j.isatra.2015.09.007
    [20] W. Xiang, H. Liu, Fuzzy adaptive prescribed performance tracking control for uncertain nonlinear systems with unknown control gain signs, IEEE Access, 7 (2019), 149867–149877. https://doi.org/10.1109/ACCESS.2019.2946601 doi: 10.1109/ACCESS.2019.2946601
    [21] Q. Yang, M. Chen, Adaptive neural prescribed performance tracking control for near space vehicles with input nonlinearity, Neurocomputing, 174 (2016), 780–789. https://doi.org/10.1016/j.neucom.2015.09.099 doi: 10.1016/j.neucom.2015.09.099
    [22] X. Song, P. Sun, S. Song, V. Stojanovic, Saturated-threshold event-triggered adaptive global prescribed performance control for nonlinear markov jumping systems and application to a chemical reactor model, Expert Syst. Appl., 249 (2024), 123490. https://doi.org/10.1016/j.eswa.2024.123490 doi: 10.1016/j.eswa.2024.123490
    [23] S. Gao, X. Liu, Y. Jing, G. M. Dimirovski, A novel finite-time prescribed performance control scheme for spacecraft attitude tracking, Aerosp. Sci. Technol., 118 (2021), 107044. https://doi.org/10.1016/j.ast.2021.107044 doi: 10.1016/j.ast.2021.107044
    [24] Y. Dai, L. Zhang, G. Liu, C. Yang, D. Zhang, X. Huang, Prescribed-performance based finite-time adaptive fuzzy control for pv inverter in islanded systems, Int. J. Elec. Power, 133 (2021), 107254. https://doi.org/10.1016/j.ijepes.2021.107254 doi: 10.1016/j.ijepes.2021.107254
    [25] J. Qiu, T. Wang, K. Sun, I. J. Rudas, H. Gao, Disturbance observer-based adaptive fuzzy control for strict-feedback nonlinear systems with finite-time prescribed performance, IEEE T. Fuzzy Syst., 30 (2022), 1175–1184. https://doi.org/10.1109/TFUZZ.2021.3053327 doi: 10.1109/TFUZZ.2021.3053327
    [26] B. Xu, F. Sun, Y. Pan, B. Chen, Disturbance observer based composite learning fuzzy control of nonlinear systems with unknown dead zone, IEEE T. Syst. Man Cy. S., 47 (2016), 1854–1862. https://doi.org/10.1109/TSMC.2016.2562502 doi: 10.1109/TSMC.2016.2562502
    [27] Q. Yao, F. W. Alsaade, M. S. Al-zahrani, H. Jahanshahi, Fixed-time neural control for output-constrained synchronization of second-order chaotic systems, Chaos Soliton. Fract., 169 (2023), 113284. https://doi.org/10.1016/j.chaos.2023.113284 doi: 10.1016/j.chaos.2023.113284
    [28] Y. X. Li, G. H. Yang, Event-triggered adaptive backstepping control for parametric strict-feedback nonlinear systems, Int. J. Robust Nonlin., 28 (2018), 976–1000. https://doi.org/10.1002/rnc.3914 doi: 10.1002/rnc.3914
    [29] K. Sun, L. Liu, J. Qiu, G. Feng, Fuzzy adaptive finite-time fault-tolerant control for strict-feedback nonlinear systems, IEEE T. Fuzzy Syst., 29 (2020), 786–796. https://doi.org/10.1109/TFUZZ.2020.2965890 doi: 10.1109/TFUZZ.2020.2965890
    [30] Y. Sun, L. Zhang, Fixed-time adaptive fuzzy control for uncertain strict feedback switched systems, Inform. Sciences, 546 (2021), 742–752. https://doi.org/10.1016/j.ins.2020.08.059 doi: 10.1016/j.ins.2020.08.059
    [31] J. B. Liu, X. Wang, L. Hua, J. Cao, L. Chen, The coherence and robustness analysis for a family of unbalanced networks, IEEE T. Signal Inf. Pr., 2025.
    [32] M. Chen, H. Wang, X. Liu, Adaptive fuzzy practical fixed-time tracking control of nonlinear systems, IEEE T. Fuzzy Syst., 29 (2019), 664–673. https://doi.org/10.1109/TFUZZ.2019.2959972 doi: 10.1109/TFUZZ.2019.2959972
    [33] Y. Sun, F. Wang, Z. Liu, Y. Zhang, C. P. Chen, Fixed-time fuzzy control for a class of nonlinear systems, IEEE T. Cybernetics, 52 (2020), 3880–3887. https://doi.org/10.1109/tcyb.2020.3018695 doi: 10.1109/tcyb.2020.3018695
    [34] W. Dong, J. A. Farrell, M. M. Polycarpou, V. Djapic, M. Sharma, Command filtered adaptive backstepping, IEEE T. Contr. Syst. T., 20 (2011), 566–580. https://doi.org/10.1109/TCST.2011.2121907 doi: 10.1109/TCST.2011.2121907
    [35] J. B. Liu, L. Guan, J. Cao, L. Chen, Coherence analysis for a class of polygon networks with the noise disturbance, IEEE T. Syst. Man Cy. S., 55 (2025), 4718–4727. https://doi.org/10.1109/TSMC.2025.3559326 doi: 10.1109/TSMC.2025.3559326
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(400) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(9)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog