This paper investigates a fractional-order human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) model with generalized nonlinear incidence rates $ f(S, I) $ and $ g(S, E) $. First, the existence, uniqueness, non-negativity, and boundedness of the model solutions are proven, and the basic reproduction number $ R_0^\alpha $ is derived. The analysis indicates that the model exhibits two equilibrium points: A disease-free equilibrium and an endemic equilibrium. The local asymptotic stability of each equilibrium point is examined using the Routh-Hurwitz criterion. Additionally, by employing Lyapunov functionals and applying LaSalle's invariance principle, the global stability of the equilibrium points is demonstrated. The main conclusion is that under appropriate conditions, if $ R_0^\alpha < 1 $, then the disease will eventually disappear, whereas if $ R_0^\alpha > 1 $, then it will persist. Finally, the model is utilized to predict and control of HIV/AIDS transmission in Mexico, thereby highlighting the role of mutural preventive measures adopted by susceptible individuals and HIV-infected individuals in reducing disease spread. Simulations are performed to confirm the theoretical validity and practical significance of the model.
Citation: Mi Yang, Da-peng Gao, Shi-qiang Feng, Jin-dong Li. Dynamic analysis of a fractional-order HIV/AIDS model with generalized nonlinear incidence rate[J]. AIMS Mathematics, 2025, 10(10): 25049-25084. doi: 10.3934/math.20251110
This paper investigates a fractional-order human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) model with generalized nonlinear incidence rates $ f(S, I) $ and $ g(S, E) $. First, the existence, uniqueness, non-negativity, and boundedness of the model solutions are proven, and the basic reproduction number $ R_0^\alpha $ is derived. The analysis indicates that the model exhibits two equilibrium points: A disease-free equilibrium and an endemic equilibrium. The local asymptotic stability of each equilibrium point is examined using the Routh-Hurwitz criterion. Additionally, by employing Lyapunov functionals and applying LaSalle's invariance principle, the global stability of the equilibrium points is demonstrated. The main conclusion is that under appropriate conditions, if $ R_0^\alpha < 1 $, then the disease will eventually disappear, whereas if $ R_0^\alpha > 1 $, then it will persist. Finally, the model is utilized to predict and control of HIV/AIDS transmission in Mexico, thereby highlighting the role of mutural preventive measures adopted by susceptible individuals and HIV-infected individuals in reducing disease spread. Simulations are performed to confirm the theoretical validity and practical significance of the model.
| [1] | Centers for Disease Control and Prevention. HIV and AIDS-United States, 1981-2000, Morbidity Mortality Weekly Rep., 50 (2001), 430–434. |
| [2] | World Health Organization, HIV, 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids. |
| [3] | G. Assembly, Resolution adopted by the general assembly on 3 2015, New York, United Nations, 2016. https://doi.org/10.18356/9789210026253c001 |
| [4] |
H. F. Huo, R. Chen, X. Y. Wang, Modelling and stability of HIV/AIDS epidemic model with treatment, Appl. Math. Model., 40 (2016), 6550–6559. https://doi.org/10.1016/j.apm.2016.01.054 doi: 10.1016/j.apm.2016.01.054
|
| [5] |
J. W. Jia, G. L. Qin, Stability analysis of HIV/AIDS epidemic model with nonlinear incidence and treatment, Adv. Differ. Equ., 2017 (2017), 1–13. https://doi.org/10.1186/s13662-017-1175-5 doi: 10.1186/s13662-017-1175-5
|
| [6] |
S. Mangal, O. P. Misra, J. Dhar, Fractional-order deterministic epidemic model for the spread and control of HIV/AIDS with special reference to Mexico and India, Math. Comput. Simul., 210 (2023), 82–102. https://doi.org/10.1016/j.matcom.2023.03.008 doi: 10.1016/j.matcom.2023.03.008
|
| [7] | R. M. Aderson, R. M. May, Infections diseases of humans: Dynamics and control, Oxford: Oxford Univ. Press, 1991. |
| [8] |
H. W. Hethcote, The mathematics of infections diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
|
| [9] |
C. Liu, J. Gao, J. Kanesan, Dynamics analysis and optimal control of delayed SEIR model in COVID-19 epidemic, J. Inequal. Appl., 2024 (2024), 1–37. https://doi.org/10.1186/s13660-024-03140-2 doi: 10.1186/s13660-024-03140-2
|
| [10] |
C. Vargas-De-León, On the global stability of SIS, SIR and SIRS epdemic models with standard incidence, Chaos Soliton. Fract., 44 (2011), 1106–1110. https://doi.org/10.1016/j.chaos.2011.09.002 doi: 10.1016/j.chaos.2011.09.002
|
| [11] |
V. Capasso, G. Serio, A generalization of the Kermack-Mckendrick determinstic epidemic model, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8
|
| [12] |
L. W. Wang, X. G. Zhang, Z. J. Liu, An SEIR epidemic model with relapse and general nonlinear incidence rate with application to media impact, Qual. Theory Dyn. Syst., 17 (2018), 309–329. https://doi.org/10.1007/s12346-017-0231-6 doi: 10.1007/s12346-017-0231-6
|
| [13] |
Q. Tang, Z. D. Teng, X. Abdurahman, A new Lyapunov function for SIRS epidemic models, Bull. Malays. Math. Sci. Soc., 40 (2017), 237–258. https://doi.org/10.1007/s40840-016-0315-5 doi: 10.1007/s40840-016-0315-5
|
| [14] |
F. M. Al-Askar, C. Cesarano, W. W. Mohammed, The analytical solutions of stochastic-fractional drinfel'd-Sokolov-Wilson equations via (G'/G) -expansion method, Symmetry, 14 (2022), 2105. https://doi.org/10.3390/sym14102105 doi: 10.3390/sym14102105
|
| [15] |
H. Ahmad, M. Tariq, S. K. Sahoo, New estimations of Hermite–Hadamard type integral inequalities for special functions, Fractal Fract., 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
|
| [16] |
C. J. Sun, Y. P. Lin, S. P. Tang, Global stability for an special SEIR epidemic model with nonlinear incidence rates, Chaos Soliton. Fract., 33 (2017), 290–297. https://doi.org/10.1016/j.chaos.2005.12.028 doi: 10.1016/j.chaos.2005.12.028
|
| [17] |
C. Liu, X. Yi, Z. Gong, The control parametrization technique for numerically solving fractal–fractional optimal control problems involving Caputo–Fabrizio derivatives, J. Comput. Appl. Math., 472 (2026), 116814. https://doi.org/10.1016/j.cam.2025.116814 doi: 10.1016/j.cam.2025.116814
|
| [18] |
I. Yi, C. Liu, H. T. Cheong, A third-order numerical method for solving fractional ordinary differential equations, AIMS Math., 9 (2024), 21125–21143. https://doi.org/10.3934/math.20241026 doi: 10.3934/math.20241026
|
| [19] |
C. Liu, Z. Gong, C. Yu, S. Wang, Optimal control computation for nonlinear fractional time-delay systems with state inequality constraints, J. Optim. Theory Appl., 191 (2021), 83–117. https://doi.org/10.1007/s10957-021-01926-8 doi: 10.1007/s10957-021-01926-8
|
| [20] |
Y. Luo, Y. Yuan, X. Wang, Z. Teng, Dynamic analysis of a degenerated temporal-spatial acquired immun-odeficiency syndrome model with voluntary counseling and testing awareness and antiretroviral therapy treatment, J. Math. Phys., 66 (2025), 072704. https://doi.org/doi:10.1063/5.0223690 doi: 10.1063/5.0223690
|
| [21] |
Y. Hao, Y. Luo, J. Huang, L. Zhang, Z. Teng, Analysis of a stochastic HIV/AIDS model with commercial heterosexual activity and Ornstein-Uhlenbeck process, Math. Comput. Simul., 234 (2025), 50–72. https://doi.org/10.1016/j.matcom.2025.02.020 doi: 10.1016/j.matcom.2025.02.020
|
| [22] |
Y. Luo, J. Huang, Z. Teng, Q. Liu, Role of ART and PrEP treatments in a stochastic HIV/AIDS epidemic model, Math. Comput. Simul., 221 (2024), 337–357. https://doi.org/10.1016/j.matcom.2024.03.010 doi: 10.1016/j.matcom.2024.03.010
|
| [23] |
M. Naim, F. Lahmidi, A. Namir, A. Kouidere, Dynamics of an fractional SEIR epidemic model with infectivity in latent period and general nonlinear incidence rate, Chaos Soliton. Fract., 152 (2021), 111456. https://doi.org/10.1016/j.chaos.2021.111456 doi: 10.1016/j.chaos.2021.111456
|
| [24] | I. Podlubny, Fractional differential equations, Academic Press, New York, 1999. |
| [25] | Z. M. Odibat, N. T. Shawagfeh, Generalized Taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 |
| [26] |
H. L. Li, L. Zhang, C. Hu, Y. L. Jiang, Z. D. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449. https://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8
|
| [27] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integral and derivatives, 1 (1993), Gordon and Breach science publishers, Yverdon, Yverdon-Les-Bains, Switzerland. |
| [28] | K. Diethelm, The analysis of fractional differential equations, an application-oriented exposition using operators of Caputo type, Springer, Berlin, 2004. https://doi.org/10.1006/JMAA.2000.7194 |
| [29] |
L. W. Wang, Z. J. Liu, X. G. Zhang, Global dynamics for an age-structed epidemic model with media impact and incomplete vaccination, Nonlinear Anal. Real World Appl., 32 (2016), 136–158. https://doi.org/10.1016/j.nonrwa.2016.04.009 doi: 10.1016/j.nonrwa.2016.04.009
|
| [30] | M. Naim, F. Lahmidi, A. Namir, Global stability of a fractional order SIR epidemic model with double epidemic hypothesis and nonlinear incidence rate, Commun. Math. Biol. Neurosci., 2020 (2020), 38. |
| [31] |
Z. M. Li, Z. D. Teng, H. Miao, Modeling and control for HIV/AIDS transmission in China based on data from 2004 to 2016, Comput. Math. Method Med., 2017 (2017), 8935314. https://doi.org/10.1155/2017/8935314 doi: 10.1155/2017/8935314
|
| [32] |
A. Lahrouz, L. Omari, D. Kiouach, A. Belmaâti, Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination, Appl. Math. Comput., 218 (2012), 6519–6525. https://doi.org/10.1016/j.amc.2011.12.024 doi: 10.1016/j.amc.2011.12.024
|
| [33] |
A. Mouaouine, A. Boukhouima, K. Hattaf, N. Yousfi, A fractional order SIR epidemic model with nonlinear incidence rate, Adv. Differ. Equ., 2018 (2018), 1–9. https://doi.org/10.1186/s13662-018-1613-z doi: 10.1186/s13662-018-1613-z
|
| [34] |
M. R. S. Ammi, M. Tahiri, D. F. M. Torres, Global stability of a Caputo fractional SIRS model with general incidence rate, Math. Comput. Sci., 15 (2020), 91–105. https://doi.org/10.1007/s11786-020-00467-z doi: 10.1007/s11786-020-00467-z
|
| [35] |
A. Boukhouima, K. Hattaf, N. Yousfi, Dynamics of a fractional order HIV infection model with specific functional response and cure rate, Int. J. Differ. Equat., 2017 (2017), 8372140. https://doi.org/10.1155/2017/8372140 doi: 10.1155/2017/8372140
|
| [36] |
P. V. D. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6 doi: 10.1016/s0025-5564(02)00108-6
|
| [37] |
A. E. Matouk, Stability conditions, hyperchans and control in a novel fractional order hyperchaotic system, Phys. Lett. A., 373 (2009), 2166–2173. https://doi.org/10.1016/j.physleta.2009.04.032 doi: 10.1016/j.physleta.2009.04.032
|
| [38] | https://ourworldindate.org/hiv-aids. |