The physics informed neural network (PINN) has achieved significant success in solving evolution partial differential equations (PDEs). For improving the prediction accuracy of the PINN, we developed a new PINN with Taylor series expansion (TPINN). However, the low accuracy problem for the PINN or TPINN may occur in approximating the solution of strongly nonlinear evolution PDEs or even linear wave equations. For solving this issue, we introduced a novel efficient method, called a forward progressive PINN with Taylor series expansion (FP-TPINN), where the formula obtained by the Taylor series expansion was applied to construct extra supervised learning task and the domain decomposition in time was used to further improve the accuracy of our proposed method. We carried out several numerical experiments to demonstrate that the TPINN significantly improved the accuracy of the PINN. Moreover, we used the Korteweg-de Vries (KdV) equation to indicate that the TPINN can achieve higher accuracy than the SPINN, and illustrated that the FP-TPINN performed better than the pre-training PINN (PT-PINN) and the dimension-augmented PINN (DaPINN) by solving the Allen-Cahn equation.
Citation: Wenkai Liu, Yang Liu. A forward progressive physics informed neural network with Taylor series expansion for solving evolution partial differential equations[J]. AIMS Mathematics, 2025, 10(10): 24857-24900. doi: 10.3934/math.20251101
The physics informed neural network (PINN) has achieved significant success in solving evolution partial differential equations (PDEs). For improving the prediction accuracy of the PINN, we developed a new PINN with Taylor series expansion (TPINN). However, the low accuracy problem for the PINN or TPINN may occur in approximating the solution of strongly nonlinear evolution PDEs or even linear wave equations. For solving this issue, we introduced a novel efficient method, called a forward progressive PINN with Taylor series expansion (FP-TPINN), where the formula obtained by the Taylor series expansion was applied to construct extra supervised learning task and the domain decomposition in time was used to further improve the accuracy of our proposed method. We carried out several numerical experiments to demonstrate that the TPINN significantly improved the accuracy of the PINN. Moreover, we used the Korteweg-de Vries (KdV) equation to indicate that the TPINN can achieve higher accuracy than the SPINN, and illustrated that the FP-TPINN performed better than the pre-training PINN (PT-PINN) and the dimension-augmented PINN (DaPINN) by solving the Allen-Cahn equation.
| [1] |
M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informend neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
|
| [2] |
R. Laubscher, Simulation of multi-species flow and heat transfer using physics-informed neural networks, Phys. Fluids, 33 (2021), 087101. https://doi.org/10.1063/5.0058529 doi: 10.1063/5.0058529
|
| [3] |
S. Z. Cai, Z. C. Wang, S. F. Wang, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks for heat transfer problems, J. Heat Transfer., 143 (2021), 060801. https://doi.org/10.1115/1.4050542 doi: 10.1115/1.4050542
|
| [4] |
S. Z. Cai, Z. P. Mao, Z. C. Wang, M. L. Yin, G. E. karniadakis, Physics-informed neural networks (PINNs) for fluid mechanics: a review, Acta Mech. Sin., 37 (2021), 1727–1738. https://doi.org/10.1007/s10409-021-01148-1 doi: 10.1007/s10409-021-01148-1
|
| [5] |
J. He, X. X. Li, H. Q. Zhu, An adaptive discrete physics-informed neural network method for solving the Cahn-Hilliard equation, Eng. Anal. Bound. Elem., 155 (2023), 826–838. https://doi.org/10.1016/j.enganabound.2023.06.031 doi: 10.1016/j.enganabound.2023.06.031
|
| [6] |
R. Mattey, S. Ghosh, A novel sequential method to train physics informed neural networks for Allen Cahn and Cahn Hilliard equations, Comput. Methods Appl. Mech. Eng., 390 (2022), 114474. https://doi.org/10.1016/j.cma.2021.114474 doi: 10.1016/j.cma.2021.114474
|
| [7] |
J. Song, M. Zhong, G. E. Karniadakis, Z. Y. Yan, Two-stage initial-value iterative physics-informed neural networks for simulating solitary waves of nonlinear wave equations, J. Comput. Phys., 505 (2024), 112917. https://doi.org/10.1016/j.jcp.2024.112917 doi: 10.1016/j.jcp.2024.112917
|
| [8] |
G. M. Bai, U. Koley, S. Mishra, R. Molinaro, Physics informed neural networks (PINNs) for approximating nonlinear dispersive PDEs, J. Comput. Math., 39 (2021), 816–847. https://doi.org/10.4208/jcm.2101-m2020-0342 doi: 10.4208/jcm.2101-m2020-0342
|
| [9] |
Z. Y. Zhang, H. Zhang, Y. Liu, J. Y. Li, C. B. Li, Generalized conditional symmetry enhanced physics-informed neural network and application to the forward and inverse problems of nonlinear diffusion equations, Chaos Solitons Fract., 168 (2023), 113169. https://doi.org/10.1016/j.chaos.2023.113169 doi: 10.1016/j.chaos.2023.113169
|
| [10] |
J. G. Pan, X. F. Xiao, L. Guo, X. L. Feng, A high resolution physics-informed neural networks for high-dimensional convection-diffusion-reaction equations, Appl. Soft Comput., 148 (2023), 110872. https://doi.org/10.1016/j.asoc.2023.110872 doi: 10.1016/j.asoc.2023.110872
|
| [11] |
Z. Tang, S. D. Dong, X. S. Yang, J. J. Zhang, Application of a parallel physics-informed neural network to solve the multi-body dynamic equations for full-scale train collisions, Appl. Soft Comput., 142 (2023), 110328. https://doi.org/10.1016/j.asoc.2023.110328 doi: 10.1016/j.asoc.2023.110328
|
| [12] |
X. Wang, J. Li, J. C. Li, A deep learning based numerical PDE method for option pricing, Comput. Econom., 62 (2023), 149–164. https://doi.org/10.1007/s10614-022-10279-x doi: 10.1007/s10614-022-10279-x
|
| [13] |
W. K. Liu, Y. Liu, H. Li, Y. N. Yang, Multi-output physics-informed neural network for one- and two-dimensional nonlinear time distributed-order models, Netw. Heterog. Media, 18 (2023), 1899–1918. https://doi.org/10.3934/nhm.2023080 doi: 10.3934/nhm.2023080
|
| [14] |
S. P. Wang, H. Zhang, X. Y. Jiang, Physics-informed neural network algorithm for solving forward and inverse problems of variable-order space-fractional advection-diffusion equations, Neurocomputing, 535 (2023), 64–82. https://doi.org/10.1016/j.neucom.2023.03.032 doi: 10.1016/j.neucom.2023.03.032
|
| [15] |
W. K. Liu, Y. Liu, H. Li, Time difference physics-informed neural network for fractional water wave models, Results Appl. Math., 17 (2023), 100347. https://doi.org/10.1016/j.rinam.2022.100347 doi: 10.1016/j.rinam.2022.100347
|
| [16] |
L. Yuan, Y. Q. Ni, X. Y. Deng, S. Hao, A-PINN: auxiliary physics informed neural networks for forward and inverse problems of nonlinear integro-differential equations, J. Comput. Phys., 462 (2022), 111260. https://doi.org/10.1016/j.jcp.2022.111260 doi: 10.1016/j.jcp.2022.111260
|
| [17] |
Y. Huang, W. R. Hao, G. Lin, HomPINNs: homotopy physics-informed neural networks for learning multiple solutions of nonlinear elliptic differential equations, Comput. Math. Appl., 121 (2022), 62–73. https://doi.org/10.1016/j.camwa.2022.07.002 doi: 10.1016/j.camwa.2022.07.002
|
| [18] |
Y. Q. Liu, L. Cai, Y. P. Chen, P. F. Ma, Q. Zhong, Variable separated physics-informed neural networks based on adaptive weighted loss functions for blood flow model, Comput. Math. Appl., 153 (2024), 108–122. https://doi.org/10.1016/j.camwa.2023.11.018 doi: 10.1016/j.camwa.2023.11.018
|
| [19] |
F. J. Cao, F. Gao, X. B. Guo, D. F. Yuan, Physics-informed neural networks with parameter asymptotic strategy for learning singularly perturbed convection-dominated problem, Comput. Math. Appl., 150 (2023), 229–242. https://doi.org/10.1016/j.camwa.2023.09.030 doi: 10.1016/j.camwa.2023.09.030
|
| [20] |
C. X. Wu, M. Zhu, Q. Y. Tan, Y. Kartha, L. Lu, A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks, Comput. Methods Appl. Mech. Eng., 403 (2023), 115671. https://doi.org/10.1016/j.cma.2022.115671 doi: 10.1016/j.cma.2022.115671
|
| [21] |
Z. Y. Zhang, S. J. Cai, H. Zhang, A symmetry group based supervised learning method for solving partial differential equations, Comput. Methods Appl. Mech. Eng., 414 (2023), 116181. https://doi.org/10.1016/j.cma.2023.116181 doi: 10.1016/j.cma.2023.116181
|
| [22] |
Z. Y. Zhang, J. Y. Li, L. L. Guo, Invariant deep neural networks under the finite group for solving partial differential equations, J. Comput. Phys., 523 (2025), 113680. https://doi.org/10.1016/j.jcp.2024.113680 doi: 10.1016/j.jcp.2024.113680
|
| [23] |
E. Samaniego, C. Anitescu, S. Goswami, V. M. Nguyen-Thanh, H. Guo, K. Hamdia, et al., An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications, Comput. Methods Appl. Mech. Eng., 362 (2020), 112790. https://doi.org/10.1016/j.cma.2019.112790 doi: 10.1016/j.cma.2019.112790
|
| [24] |
Y. Z. Wang, J. Sun, J. S. Bai, C. Anitescum, M. S. Eshaghi, X. Y. Zhuang, et al., Kolmogorov-Arnold-informed neural network: a physics-informed deep learning framework for solving forward and inverse problems based on Kolmogorov-Arnold networks, Comput. Methods Appl. Mech. Eng., 433 (2025), 117518. https://doi.org/10.1016/j.cma.2024.117518 doi: 10.1016/j.cma.2024.117518
|
| [25] |
V. M. Nguyen-Thanh, C. Anitescu, N. Alajlan, T. Rabczuk, X. Y. Zhuang, Parametric deep energy approach for elasticity accounting for strain gradient effects, Comput. Methods Appl. Mech. Eng., 386 (2021), 114096. https://doi.org/10.1016/j.cma.2021.114096 doi: 10.1016/j.cma.2021.114096
|
| [26] |
H. K. Noh, M. Choi, J. H. Lim, Real-time full-field estimation of transient responses in time-dependent partial differential equations using causal physics-informed neural networks with sparse measurements, Eng. Anal. Bound. Elem., 179 (2025), 106363. https://doi.org/10.1016/j.enganabound.2025.106363 doi: 10.1016/j.enganabound.2025.106363
|
| [27] |
J. Jung, H. Kim, H. Shin, M. Choi, CEENs: causality-enforced evolutional networks for solving time-dependent partial differential equations, Comput. Methods Appl. Mech. Eng., 427 (2024), 117036. https://doi.org/10.1016/j.cma.2024.117036 doi: 10.1016/j.cma.2024.117036
|
| [28] |
A. D. Jagtap, K. Kawaguchi, G. E. Karniadakis, Adaptive activation functions accelerate convergence in deep and physics-informed neural networks, J. Comput. Phys., 404 (2020), 109136. https://doi.org/10.1016/j.jcp.2019.109136 doi: 10.1016/j.jcp.2019.109136
|
| [29] |
Z. X. Xiang, W. Peng, X. Liu, W. Yao, Self-adaptive loss balanced physics-informed neural networks, Neurocomputing, 496 (2022), 11–34. https://doi.org/10.1016/j.neucom.2022.05.015 doi: 10.1016/j.neucom.2022.05.015
|
| [30] |
H. Nosrati, M. E. Niri, Manipulating the loss calculation to enhance the training process of physics-informed neural networks to solve the 1D wave equation, Eng. Comput., 40 (2024), 1741–1769. https://doi.org/10.1007/s00366-023-01881-0 doi: 10.1007/s00366-023-01881-0
|
| [31] |
X. Rao, Y. N. Liu, X. P. He, H. Hoteit, Physics-informed Kolmogorov-Arnold networks to model flow in heterogeneous porous media with a mixed pressure-velocity formulation, Phys. Fluids, 37 (2025), 076654. https://doi.org/10.1063/5.0279122 doi: 10.1063/5.0279122
|
| [32] |
H. Shuai, F. X. Li, Physics-informed Kolmogorov-Arnold networks for power system dynamics, IEEE Open Access J. Power Energy, 12 (2025), 46–58. https://doi.org/10.1109/OAJPE.2025.3529928 doi: 10.1109/OAJPE.2025.3529928
|
| [33] |
F. Mostajeran, S. A. Faroughi, Scaled-cPIKANs: spatial variable and residual scaling in Chebyshev-based physics-informed Kolmogorov-Arnold networks, J. Comput. Phys., 537 (2025), 114116. https://doi.org/10.1016/j.jcp.2025.114116 doi: 10.1016/j.jcp.2025.114116
|
| [34] |
E. Kharazmi, Z. Q. Zhang, G. E. M. Karniadakis, hp-VPINNs: variational physics-informed neural networks with domain decomposition, Comput. Methods Appl. Mech. Eng., 374 (2021), 113547. https://doi.org/10.1016/j.cma.2020.113547 doi: 10.1016/j.cma.2020.113547
|
| [35] |
B. Moseley, A. Markham, T. Nissen-Meyer, Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, Adv. Comput. Math., 49 (2023), 62. https://doi.org/10.1007/s10444-023-10065-9 doi: 10.1007/s10444-023-10065-9
|
| [36] |
Z. Y. Hu, A. D. Jagtap, G. E. Karniadakis, K. Kawaguchi, Augmented physics-informed neural networks (APINNs): a gating network-based soft domain decomposition methodology, Eng. Appl. Artif. Intell., 126 (2023), 107183. https://doi.org/10.1016/j.engappai.2023.107183 doi: 10.1016/j.engappai.2023.107183
|
| [37] |
C. Liu, H. A. Wu, $cv$-PINN: efficient learning of variational physics-informed neural network with domain decomposition, Extreme Mech. Lett., 63 (2023), 102051. https://doi.org/10.1016/j.eml.2023.102051 doi: 10.1016/j.eml.2023.102051
|
| [38] |
T. Bandai, T. A. Ghezzehei, Forward and inverse modeling of water flow in unsaturated soils with discontinuous hydraulic conductivities using physics-informed neural networks with domain decomposition, Hydrol. Earth Syst. Sci., 26 (2022), 4469–4495. https://doi.org/10.5194/hess-26-4469-2022 doi: 10.5194/hess-26-4469-2022
|
| [39] |
W. D. Zhai, D. W. Tao, Y. Q. Bao, Parameter estimation and modeling of nonlinear dynamical systems based on Runge-Kutta physics-informed neural network, Nonlinear Dyn., 111 (2023), 21117–21130. https://doi.org/10.1007/s11071-023-08933-6 doi: 10.1007/s11071-023-08933-6
|
| [40] |
Y. B. Mao, Y. L. Gu, L. Sha, H. J. Shao, Q. X. Wang, T. Abdelzaher, Phy-Taylor: partially physics-knowledge-enhanced deep neural networks via NN editing, IEEE Trans. Neural Netw. Learn. Syst., 36 (2025), 447–461. https://doi.org/10.1109/TNNLS.2023.3325432 doi: 10.1109/TNNLS.2023.3325432
|
| [41] | J. Mau, K. Moon, Incorporating Taylor series and recursive structure in neural networks for time series prediction, 2024, arXiv: 2402.06441. |
| [42] | A. Krishnapriyan, A. Gholami, S. D. Zhe, R. Kriby, M. W. Mahoney, Characterizing possible failure modes in physics-informed neural networks, In: Advances in neural information processing systems (NeurIPS 2021), 34 (2021), 26548–26560. |
| [43] |
J. W. Guo, Y. Z. Yao, H. Wang, T. X. Gu, Pre-training strategy for solving evolution equations based on physics-informed neural networks, J. Comput. Phys., 489 (2023), 112258. https://doi.org/10.1016/j.jcp.2023.112258 doi: 10.1016/j.jcp.2023.112258
|
| [44] |
L. Lu, X. H. Meng, Z. P. Mao, G. E. Karniadakis, DeepXDE: a deep learning library for solving differential equations, SIAM Rev., 63 (2021), 208–228. https://doi.org/10.1137/19M1274067 doi: 10.1137/19M1274067
|
| [45] |
Z. Y. Zhang, H. Zhang, L. S. Zhang, L. L. Guo, Enforcing continuous symmetries in physics-informed neural network for solving forward and inverse problems of partial differential equations, J. Comput. Phys., 492 (2023), 112415. https://doi.org/10.1016/j.jcp.2023.112415 doi: 10.1016/j.jcp.2023.112415
|
| [46] |
W. L. Guan, K. H. Yang, Y. S. Chen, S. L. Liao, Z. Guan, A dimension-augmented physics-informed neural network (DaPINN) with high level accuracy and efficiency, J. Comput. Phys., 491 (2023), 112360. https://doi.org/10.1016/j.jcp.2023.112360 doi: 10.1016/j.jcp.2023.112360
|
| [47] |
P. H. Chiu, J. C. Wong, C. Ooi, M. H. Dao, Y. S. Ong, CAN-PINN: a fast physics-informed neural network based on coupled-automatic-numerical differentiation method, Comput. Methods Appl. Mech. Eng., 395 (2022), 114909. https://doi.org/10.1016/j.cma.2022.114909 doi: 10.1016/j.cma.2022.114909
|
| [48] |
P. Tamamidis, D. N. Assanis, Evaluation of various high-order-accuracy schemes with and without flux limiters, Int. J. Numer. Methods Fluids, 16 (1993), 931–948. https://doi.org/10.1002/fld.1650161006 doi: 10.1002/fld.1650161006
|
| [49] |
Y. H. Zang, G. Bao, X. J. Ye, H. M. Zhou, Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys., 411 (2020), 109409. https://doi.org/10.1016/j.jcp.2020.109409 doi: 10.1016/j.jcp.2020.109409
|