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Abstract: The physics informed neural network (PINN) has achieved significant success in solving
evolution partial differential equations (PDEs). For improving the prediction accuracy of the PINN,
we developed a new PINN with Taylor series expansion (TPINN). However, the low accuracy problem
for the PINN or TPINN may occur in approximating the solution of strongly nonlinear evolution PDEs
or even linear wave equations. For solving this issue, we introduced a novel efficient method, called
a forward progressive PINN with Taylor series expansion (FP-TPINN), where the formula obtained
by the Taylor series expansion was applied to construct extra supervised learning task and the domain
decomposition in time was used to further improve the accuracy of our proposed method. We carried
out several numerical experiments to demonstrate that the TPINN significantly improved the accuracy
of the PINN. Moreover, we used the Korteweg-de Vries (KdV) equation to indicate that the TPINN can
achieve higher accuracy than the SPINN, and illustrated that the FP-TPINN performed better than the
pre-training PINN (PT-PINN) and the dimension-augmented PINN (DaPINN) by solving the Allen-
Cahn equation.
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1. Introduction

In 2019, Raissi et al. [1] proposed an innovative method of deep learning named physics informed
neural network (PINN), which has demonstrated outstanding performance and broad prospects in
solving partial differential equations (PDEs). PINN uses automatic differentiation technology to embed
physical information into a deep neural network, which learns the mapping relationship between the
input of the network and the solution in the whole computational domain by minimizing the loss
function composed of residuals generated by physical information, thus acting as an approximator
for the solution. Compared to deep learning driven entirely by data, PINN can use a small amount
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of data samples to obtain a model with more generalization ability. The research on PINN has
gained significant attention in recent years and has shown promising progress in various areas,
including heat transfer problems [2, 3], fluid mechanics [4], strongly nonlinear PDEs [5-7], nonlinear
dispersive PDEs [8], forward and inverse problems of nonlinear diffusion equations [9], high-
dimensional convection-diffusion-reaction equations [10], multi-body dynamic equations [11], option
pricing problem [12], nonlinear time distributed-order models [13], variable-order space-fractional
advection-diffusion equations [14], fractional water wave models [15], nonlinear integro-differential
equations [16], nonlinear elliptic differential equations [17], blood flow model [18], singularly
perturbed convection-dominated problem [19], and so on.

A lot of work was conducted to further improve the efficiency and accuracy of PINN. Among
various influencing factors, the selection method of training points has been considered to affect the
optimization of the network. Wu et al. [20] studied the impact of different sampling methods on the
performance of PINN. There are also some studies aimed at integrating new physical information into
neural networks. Zhang et al. [21,22] studied integrating the finite group and the symmetric group into
deep neural networks to enhance the model’s predictive ability for the exact solution. Unlike the strong
form based PINN framework, Samaniego et al. [23] developed a deep neural network method based on
the principle of energy (DEM), which uses energy as the loss function. Wang et al. [24] proposed a new
deep learning framework called Kolmogorov-Arnold-informed neural networks (KINN), which uses
the Kolmogorov-Arnold network (KAN) instead of traditional multilayer perceptron and integrates
the strong form, energy form, and inverse form of PDEs to solve forward and inverse problems.
Nguyen-Thanh et al. [25] developed a deep energy method (P-DEM) based on parameter space and
PINN, which provides a new approach for solving elasticity problems with strain gradient effects. To
address the issue of lack of temporal causality in the PINN, Noh et al. [26] proposed a causal PINN-
based surrogate model that utilizes temporal causality to overcome the limitations of the standard
PINN and achieves more accurate and eflicient prediction, and Jung et al. [27] developed a causal
PINN framework that significantly improved the accuracy of the predicted solution. To accelerate
the convergence of PINN, Jagtap et al. [28] developed adaptive activation function. The key idea of
PINN is to optimize the network by minimizing the loss function constructed by initial condition,
boundary condition, and governing equation. However, multi-objective functions may cause PINN to
fail to converge. Xiang et al. [29] constructed a self-adaptive loss method by combining the adaptive
idea with loss functions to balance the relationship between multiple loss functions. By investigating
several wave motion problems, Nosrati and Niri [30] demonstrated that the multi-term objective
function can hinder the convergence of PINN during the training process, and proposed logarithmic
loss and the sigmoidal self-adaptive regularization multiplier to improve this phenomenon. In addition,
more scholars [31-33] have combined the physics-guided framework of the PINN with the emerging
KAN, allowing it to improve the efficiency and accuracy of solving PDEs by introducing physical
constraints while maintaining the advantages of the KAN with fewer parameters and interpretability.
The efforts [34—-38] have also been made to incorporate the domain decomposition technology into
PINN. The combination of the domain decomposition and PINN allows for the decomposition of a
complex problem into smaller, more manageable subproblems. In [39-41], the authors have proposed
embedding Taylor series expansions into neural networks to increase the physical constraint of the loss
function. The improved PINN framework significantly improved the prediction accuracy of the model.

Despite the significant advancements made by the PINN method in solving PDEs, there are still
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several issues that warrant further investigation. For evolution PDEs, the prediction accuracy near the
initial conditions directly affects the subsequent effectiveness of PINN. The absence of time-dependent
features may lead to insufficient network capture of time related complexity, resulting in training
failure [42]. For tackling strongly nonlinear PDEs, the local minimum problem can potentially hinder
the network’s ability to accurately learn the underlying physical information from the data [6, 43].
In order to accurately capture the solutions of PDEs, a large number of residual datasets are usually
required, which leads to an increase in the demand for computing resources [44]. Therefore, how to
balance the number and distribution of residual points and computational efficiency is an important
issue in PINN research.

In this article, we develop a method named TPINN by combining PINN and Taylor series expansion
to better approximate the solution of the evolution PDEs. The proposed TPINN introduces a truncated
Taylor series as an additional physical constraint, which is used to construct a new loss term that is
considered as a new supervised learning task to further optimize the parameters of neural networks.
The main contribution of this article is to integrate the TPINN into a forward progressive training
framework, which uses domain decomposition strategy to divide the computational domain into
multiple subdomains and the resampling technique to enable the network to fully learn the physical
information within the entire computational domain.

The characteristics of this study are as follows:

e The TPINN framework is proposed. The differential operator in the evolution partial differential
equation (PDE) is used to obtain the Taylor expansion, which not only follows the physical laws
described by the original equation, but also provides a numerical constraint condition that makes it
easier for the neural network to capture the physical laws described by the original equation during the
training process.

e Innovative integration of the TPINN framework and the forward progressive training strategy.
The Taylor expansion term provides a precise local physical constraint, forming a collaborative
mechanism with the forward progressive training strategy that decomposes complex problems. The
Taylor expansion ensures the correctness of the physical laws learned within each subdomain, while the
progressive strategy guarantees stable propagation to the next subdomain during the solving process.

e Error estimates are provided. We analyze the truncation error of the Taylor expansion terms and
the interaction between the truncation error and the approximation error of the neural network.

e Comprehensive numerical verification is conducted. We not only validated the performance of the
TPINN compared to the standard PINN, but also specifically demonstrate the advantage of the forward
progressive TPINN (FP-TPINN) over its variants.

The remainder of this paper is organized as follows. The basic idea of PINN for solving PDEs is
first presented in Section 2. In Section 3, we introduce the construction principle of TPINN and provide
a detailed description of the forward progressive training strategy. We derive the error estimates of the
proposed PINN framework in Section 4. In Section 5, several numerical experiments are used to test
the effectiveness of our proposed methods. We provide discussions on the temporal causality analysis
and length of time intervals in Section 6. Finally, we present some conclusions about our work in
Section 7.
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2. Solving PDEs with standard PINN

In this section, to briefly review the original PINN method for solving PDE, we focus on the time-
dependent equation. Consider the following one-dimensional evolution PDE:

%(x, H—Dlulx,)]=0, xeQ,re0,T],

u(x,0) = up(x), xeQ, (2.1)

u(x, 1) = B(x, 1), x€dQ,tel0,T],

where DI[-] is a general partial differential operator. In the standard PINN framework, the basic idea
is to construct a fully connected feed-forward neural network as a to-be-trained approximator of the
solution of (2.1) and update the parameters of the network by optimizing the loss function.

The general form of the neural network can be expressed as

u(x,5;0) =(Pyo0oP, o000 o0 P)(x,1),

(2.2)
Pz) =Wiz+ b, 1 <k <m,

where the spatial and temporal variables (x,7) are inputs of the network, o denotes the activation
function, and ® = {W;, b}, are the trainable parameters of the network to be updated during the
process of minimizing the loss function. P, (1 < k < m—1) and P, represent the k-th hidden layer and
the output layer, respectively. The total loss function consists of three loss terms as follows:

L00;T) = wiLi(©: T5) + wy Lp(@: Tp) + wrLr(©:. T ), T = 1T T T (2.3)
where
1
Li©:.T) = J:| ;jlm(x,o; ) — up(x), Ji={x e Q)
L@ = = (mzejb lu(x, 1; ©) — B(x, ), T = A1) € 0QX 0, T, (04
1 .
L0, = ] (460 = Dl O T, = (1) € Qx 0,71},
17,1 ,)Ej ot

Subsequently, £; corresponds to the residuals on the initial dataset, £, denotes the loss of the boundary
conditions, and L represents the mean squared error of the PDE described in (2.1). The parameters
O of the network are updated by minimizing these loss terms, and the setting of loss terms in PINN is
to ensure that the model can simultaneously consider physical laws, initial conditions, and boundary
conditions during the learning process. The weights w;, w;,, and w¢ control the proportion of different
loss components in the loss function £(®; ), and N;, N;, and Ny denote the number of training points
in the datasets f;, J, and J ¢, respectively.

Remark 2.1. The symbols with i, b, and f as subscripts represent the parameters related to the initial
conditions, boundary conditions, and governing equation of (2.1), respectively.
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3. Methodology

In this section, we enhance the accuracy of the standard PINN via the truncated Taylor series
expression obtained by combining the governing equation of (2.1), and we use the time domain
decomposition method and resampling techniques to further augment the effectiveness and reliability
of TPINN for solving the strongly nonlinear evolution PDEs.

3.1. TPINN

To simplify the description of the algorithm, the governing equation of (2.1) is rewritten as
0
=5, = Dlu(x. ). 3.1)

Then, the second order partial derivative of u(x, r) with respect to time ¢ can be defined as

0’u 0D[u(x,1)]
— ) = ———. 3.2
Py (x,1) o (3.2)
On this basis, we perform Taylor series expansion with respect to u(x, f) in the time direction:
(x,0) (x,t— Ar) + Atau( r— A+ i 2u( t— A+ 3.3)
u(x,t) = u(x,t— —(x, 1 — ———(x, 1t - .
ot 2! o

where At = L. The parameter n controls the size of the time step Az. By substituting (3.1) and (3.2)
into (3.3), a level of truncation with leading order of O(A#*) can be given by

2 J—
u(x, 1) =u(x,t — At) + AtD[u(x, 1 — A)] + Ar” 0D[u(x, t — Ar)]

2! ot
(3.4)
A O Dlu(x, t — At)] .
-+ 7l ] + O(AY).

+ ..

The Taylor expansion term (3.4) provides a local approximation for the exact solution u. Given (3.4),
we introduce ¥ (x, t) to represent the residual of the Taylor expansion term, which is defined as

AP 0D[u(x, t — At)] oy A_tk ' Dlu(x, t — Ab)]

F = ulx, ) —(ulx, t = At) + AtDlu(x, 1 — An)] + e ot k! or!

(3.5)
The residual ¥ (x, ¢) provides a structured physical constraint for the network, enabling it to focus more
on specific form of the solution during the learning process. Therefore, the total loss function of the
TPINN framework is given by adding the mean squared error loss of (3.5) to (2.3):

LO:T) = wiLi(©:T) + wpLpy(©;Tp) + weLi(©; T ) + wr L (0; Ty), (3.6)

where wg is the weight of the newly added loss component and

1
Lr(©:9) = — > IF(x0P. (3.7)
T7l &
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For solving some PDEs that fail to obtain the prediction result with high precision by the standard
PINN method, the weight w/ is set to be zero, with the aim of considering the formula (3.5) as the
primary supervised learning task to optimize the parameters ® of the network. For solving other
problems that have been made the successful application of the PINN, we define the weight w, = 1.
This means that the formula (3.5) is regarded as the extra supervised leaning task, which is conducive
to improve the prediction accuracy of the PINN.

3.2. Forward progressive training strategy

Let us decompose the time domain [0, 7] into g, independent subdomains as shown below:

[To =0, T1,[T,T2),- - ,[Ty-1,Tyl,--- , [T, T

4max

=T]. (3.8)

max—1°

The key idea of the forward progressive training strategy is to construct an independent neural network
u(x,t;®,) within the time interval [7,_;,T,] and then combine it with the Taylor expansion term to
train the parameters ©,. The predicted value at time 7', serves as the initial condition for the next time
interval [T, Tyi1].

For the q- th time interval [T,_;, T,], the corresponding optimization problem is defined as

LOy Ty) = wiLi®g T)) + wpLy(©4F)) + wiLi(@4 T7) + wr Ly (0% T7), (3.9)

where the datasets 7, J7, J}, and j? for training the corresponding loss components are denoted as

o =\TLTLTH,
T ={x e Y,
(3.10)
jq {(X,,t)eaQX[ q-1s q]}, 1°
Tt = (1) € QX [Ty, T,
and
Li©p TN = o > u(x, Ty 1300) = ulx, Ty13 04 ). (3.11)
|J|x€jq

Specifically, we define the dataset j U= {(x, 1) € Q% (T, Tl]}?fl and the initial value at T as
u(x, To; ®g) = up(x) in the first time 1nterva1 [Ty, Tq].

Despite the fact that the standard PINN can use different sampling methods, such as random
sampling and Latin hypercube sampling, to select training points, all training points are selected before
training and fixed throughout the entire training process. To further improve the prediction accuracy of
the TPINN method, we incorporate the resampling technique [43] during the training process of each
time subdomain in the forward progressive training strategy. The resampling strategy can randomly
reselect new training points and combine them with existing sample points to form new training data
during the training process, which allows the parameters of the network to be adjusted in a timely
manner based on the dynamic changes of the problem or new information feedback, making subsequent
analysis or simulation more accurate and reliable. More details about the resampling algorithm, such
as the frequency of resampling and the number of resampling points, are presented in Algorithm 1.
The procedure of the proposed FP-TPINN is detailed in Algorithm 2.
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Algorithm 1. The resampling strategy
Input: Training data sets J;, Jp, J
Iteration step number 7
Output: the prediction u(x,t; ®)
Step 1: Apply Adam algorithm to optimize the loss function £(®; )
fori=1,---,7do
1. Compute the loss function £(0O; 7).
2. Update ® by Adam optimizer
3.if i%€=0andi<{(( <% (orox 5 <i<(@+1)x+%,6=1,3,579) then
Resample N, = 0.8N points in the spatio-temporal domain and N,;, points
on the boundary
Update Ny points in s and N,, points in 7.
end

end
Step 2: Continue to use the L-BFGS method to update the parameters ©.

Algorithm 2. TPINN with the forward progressive training strategy (FP-TPINN)

Step 1: Divide the time interval [0, 7] into g, subdomains:

[To =0, T\, [T1.Ta, -+, [Tyer, T -+, [T,
Step2:forg=1, -, guax do

1. Select the training data 7,.

2. Generate the initial value u(x, T,—1;0,_;) at time T,_;.

3. Initialize the parameters ®, of the network.

4. Compute the loss function L(O4; ).

5. Set the number of resampling points in the spatio-temporal domain Q x [T,_;, T,]

to N, and the number of resampling points on the boundary to N,;.

6. Update ©, by the Algorithm 1.

7. Obtain the prediction u(x, t; ©,).

end

= T].

max—19 + Gmax

4. Error estimates

In this section, we advance to the error estimates of the proposed Taylor-series-enhanced loss term.
We assume that the following conditions hold.

Assumption 4.1. Suppose u € C'([0, T]; H™(Q)).
Assumption 4.2. Let the differential operator D be Lipschitz continuous. It holds that

ID[u] = Dz < Lollu = vilgm, (4.1)
where L is a constant.
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The core of our proposed TPINN method is to utilize Taylor series expansion as a new constraint
term to enhance the optimization capability of network parameters. Equation (3.4) is rewritten as

AV 7' Dlu(x, t — Ar)]
gl ati-1

k
u(x, 1) = u(x, t — Af) + Z + Rt (3, ), (4.2)
j=1

where Ry, (x,t) denotes the remainder term. Then, we analyze the interaction between the truncation
error of the Taylor expansion and the approximation error of the network.

Lemma 4.1. For the remainder term Ry, 1(x,t), we have

ol 0" Dlu(x,7)]
R D <C —, 4.3
[Ryes1(x, 1) kT D Te[stl_lf,,,] 5k (4.3)
where C| is a positive constant.
Proof. According to Eq (4.2), the remainder term Ry, (x, 1) is
O Dlu(x, )] (An*!
R ) = . 4.4
k1 (2, 1) EY: k+1)! (4.4)
Then, we can obtain
A 10 Dlu(x, €)] A1 O Dlu(x, 7)]
R (x, )] < ol gD D (4.5)
k+ 1)! ot (k+ D! rep—arn ot
Let C; = 1 to draw a conclusion. O

For convenience, the network u(x, t; ®) is rewritten as ug(x,t). We define the approximation error
between the network ug and the exact solution u of a neural network as

€,(x,1) = ue(x,t) — u(x,1). 4.6)

Substituting the network ug into ¥ (x, f), we obtain

T@(xa t) = M@(x? t) - 77([”@()67 t)]’ (47)
where
k . .
At 07 Dlue(x, t — Ab)]

Tiluo] = uo(x, 1 — Ar) + Z; - P . (4.8)

Theorem 4.1. It holds that

Atk+l

|Fo(x, D] < Callegllwre + C3m, 4.9)

where C, and C5 are positive constants.
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Proof. We decompose ¥, into the following three parts:

Fo = [ug — ul = [Tilugl — Tilull + [u — Tilull. (4.10)

Based on Assumption 4.2 and the approximation error €,, we have

[T klug] — Tilull < Lill€allwrs, 4.11)
where L; is a constant. Then, by setting C3 = C; - sup '% and considering the remainder term
Rii1(x, 1), we get

Alk+1
Riv1(x, 1) = u—Tilu] < C3m- (4.12)
There exists a constant C, = 1 + L; such that
Atk+l
|Fol < Coll€allwre + C3m- (4.13)
The conclusion is obtained. O

5. Numerical results

In this section, we provide some numerical experiments to illustrate the performance of the proposed
TPINN and FP-TPINN methods. The relative L? norm error is applied to evaluate the performance of
our proposed methods and the standard PINN:

N
Z |u('xi7 tl) - M(a Xis tlv ®)|2
i=1
lleex, 1) — u(, x, 1, ©)|| 12 = : (5.1)

’N
Z:l lu(x;, 1;)]?

The tanh function is selected as the activation function, and Table 1 lists the other training
configurations used in each numerical experiment and illustrates the methods involved in each example.
For convenience, we set an initial value for each variable at the beginning of each experiment, which
runs through the entire experimental process. Unless otherwise stated, all prediction results are
given under these initial settings and the parameter k is set to 2. When comparing the accuracy of
prediction results, individual variables change while other variables remain unchanged. In this work,
the hyperparameters used in the model compared to our proposed method, such as network structure,
optimizer, activation function, and the number of configuration points and initial and boundary points,
are consistent with those used in our model.
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Table 1. Training configurations used for all numerical examples.

Example Method Network structure Optimizer Iterative step  Learning rate
5.1 KdV Taylor expansion [2, 30, 30, 30, 30, 1] L-BFGS - -
5.2 Potential Taylor expansion [2, 10, 10, 10, 10, 2] L-BFGS - -
Burgers
5.3 Reaction Taylor expansion, time- [2, 10, 10, 10, 10, 1] L-BFGS - -
domain decomposition
5.4 AC Taylor expansion, time- [2, 50, 50, 50, 50, Adam + L-BFGS 10000 0.001
domain decomposition, 50, 1]
resampling
5.5 Wave Taylor expansion, time- [2, 100, 100, 100, Adam + L-BFGS 10000 0.001
domain decomposition, 100, 1]
resampling
5.6 Improved Taylor expansion [2, 20, 20, 20, 20, 1] L-BFGS - -
Boussinesq
5.7 Flow Taylor expansion [3, 10, 10, 10, 10, 1] L-BFGS - -
mixing
5.8 Diffusion- Taylor expansion [6, 20, 20, 20, 20, L-BFGS - -
reaction 20, 20, 20, 20, 1]

5.1. Korteweg-de Vries (KdV) equation
We discuss a KdV equation given by

U+ uy + tye = 0, (x,2) € (0, 1) x (0, 1], (5.2)

with initial condition
u(x,0) = 1ZSech2(x),x € [0,1], (5.3)

and boundary conditions
u(0,7) = 12sech*(-41), 1[0, 1],

) 5.4
u(l,7) = 12sech”(1 — 4r), t€[0,1],

where the analytical solution is u(x,t) = 12sech®(x — 4¢). Then, the total loss function to update the
parameters of the network is defined as

L00:T) = w Lu(®;. T) + WLy (@: Tp) + wr Lr(©;T7), T =T Tsh (5.5)
where
LT = (x;ju uCx, 1; ©) — u(x, O, T = (i, 13y 1)1 (5.6)

L,(0;.7,) denotes the mean squared error on the initial and boundary dataset J,, and w, represents the
weight.
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In this example, we randomly sample N, = 3000 collocation points from the spatiotemporal domain
and N, = 100 points from initial and boundary data to compose the training data. The weights of the
loss components are set to w, = 1, wy = 0, and wg = 100 and the parameter 7 is set as 100.

To provide an intuitive evaluation, we plot the prediction in the whole spatiotemporal domain and
the absolute errors of the PINN, the SPINN [45], and the TPINN in Figure 1, and provide a comparison
between the exact solution and the corresponding predictions in Figure 2 to display more detailed
observation, which validates that the proposed TPINN is superior to the standard PINN and the SPINN.
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Figure 1. KdV equation: (top) comparison between the exact solution and the solutions
solved by the PINN, the SPINN, and the TPINN; (bottom) absolute errors of the PINN, the
SPINN, and the TPINN.
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Figure 2. KdV equation: comparison of the exact solution and the solution solved by the
PINN, the SPINN, and the TPINN.

In Table 2, we present the training results given by the PINN, the SPINN, and the TPINN. One
can observe that the TPINN enhances the prediction accuracy of the standard PINN and the SPINN.
When N, = 2000 and 3000, the computational cost of the TPINN is significantly lower than that of the
PINN. In order to investigate the impact of adding the terms of expansion on the TPINN method, we
present the prediction accuracy of the TPINN at different k in Table 3. The results indicate that even
if n is small, increasing the expansion terms can effectively improve the performance of the TPINN.
Moreover, we also find that increasing n can achieve higher prediction accuracy when the number k
of expansion terms remains constant. We present the evolution diagram of the L? norm of the loss
gradients for the PINN and the TPINN during the training process in Figure 3. From the graph, it can
be seen that the gradient of the TPINN rapidly decreases to a lower level, indicating that the model
can update parameters more efficiently, with better convergence and stability. Finally, we present the
numerical results of the TPINN, the PINN, and the SPINN with different network architectures in
Table 4 and the performance of the TPINN with different weights in Table 5, which demonstrate that
the proposed TPINN has a good performance.
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Table 2. KdV equation: the computational cost and the relative L? errors of the TPINN, the
PINN, and the SPINN with different parameters n for different numbers of training points N;.

TPINN
Ny PINN SPINN
n =060 n=2_80 n =100
Relative L? error 1000  4.8385e-04 1.7407e-04 1.3037e-04 9.8527e-05 1.2761e-04
2000 9.7769e-04 8.6517e-05 5.7600e-05 1.3270e-04 6.5901e-05

3000 3.0576e-04 8.2006e-05 9.5781e-05 7.1979e-05 1.0684e-04

Time(s) 1000 7.84 9.07 8.86 10.17 6.79
2000 18.06 11.94 13.42 10.40 10.12
3000 25.85 16.65 18.53 23.28 13.81

Table 3. KdV equation: the relative L* errors of the TPINN with N; = 3000 for different
parameters k and n.

TPINN "

n=>5 n=10 n =20 n =50
k=1 1.1597¢-02 5.5453¢-03 4.3747¢-03 1.4520¢-03
k=2 7.2001e-03 2.9954¢-03 2.3783¢-04 1.7504¢-04
k=3 7.0655¢-03 1.0455¢-03 2.4589¢-04 7.9653¢-05

104 4 —— VL #(TPINN)
—— VL (PPINN)
10°% A

L? norm

T T T T T T T T T T T T T T
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
iteration iteration

Figure 3. KdV equation: the evolution diagram of the loss gradients from the TPINN versus
the standard PINN.
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Table 4. KdV equation: the computational cost and the relative L? errors of the TPINN, the
PINN, and the SPINN with different network architectures.

Network structure PINN TPINN (wg& = 100) SPINN
Depth ~ Width n =60 n =80 n =100
2 10 Relative L? error 2.8013e-04 2.9920e-05 4.4091e-05 3.3040e-05 1.1597e-04
Time(s) 4.47 5.42 8.99 8.99 2.47
2 20 Relative L? error 6.4498e-04 6.7469e-05 3.6693e-05 5.6842e-05 7.6321e-05
Time(s) 7.82 5.67 4.83 4.81 4.96
3 10 Relative L? error 5.7579e-05 3.0591e-05 5.5185e-05 1.0372e-04 1.8765e-04
Time(s) 7.45 9.81 6.93 5.78 3.15
3 20 Relative L? error 1.9099e-04 7.6522e-05 1.1167e-04 8.9386e-05 4.2747e-05
Time(s) 9.33 9.31 10.29 8.36 6.48
4 20 Relative L? error 1.6469¢-04 7.9599¢-05 1.5130e-04 7.2142e-05 8.2036e-05
Time(s) 8.53 15.00 19.60 16.30 12.02
4 40 Relative L? error 1.9830e-04 1.0089e-04 1.2367e-04 5.8203e-05 4.7907e-05
Time(s) 30.14 27.32 23.31 25.53 22.80
6 30 Relative L? error 3.8655e-04 9.4959¢-05 8.4570e-05 6.4763e-05 1.0390e-04
Time(s) 35.87 42.12 28.78 35.94 21.96
6 40 Relative L? error 1.8299e-04 1.1659e-04 7.3174e-05 8.6014e-05 8.2550e-05
Time(s) 41.34 52.77 44.32 39.95 20.57

Table 5. KdV equation: the computational cost and the relative L? errors of the TPINN with

different weights.
TPINN (n = 80)
wg =1 wg =20 wg = 100 wg = 200
Relative L? error 1.7110e-04 1.4781e-04 7.1979e-05 9.5486e-05
Time(s) 19.72 19.93 23.28 15.33

5.2. Potential Burgers equations
In this example, we investigate the potential Burgers equations described as

vy —u =0, (x,1) €(0.1,1.1) x (0, 1],

1, (5.7)
Vv, — Uy + Eu =0, (x,1)€e(0.1,1.1)x(0,1],

with initial conditions
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4(x+2) x x
= =-2In(= +— d,1.1 5.8
u(x,0) T v(x, 0) n(3+12), x €[0.1,1.1], (5.8)
and boundary conditions
-840 t 41
u(0.1,1) = m, v(0.1,1) = —2111(6 + TOO), te[0,1],
(1.1 t)—ﬂ (1.1 t)——21n(£+£ te[0,1] o
U= 000+ 5617 T 6 400" i

with the analytical solutions u(x, ) = 2;:‘%:2;2 and v(x,7) = =2In(; + 3 + %)

The structure of the total loss function is the same as the above example, and the training data is
composed of Ny = 2000 randomly distributed collocation points in the spatiotemporal domain and
N, = 100 points for training the initial and boundary conditions. The weights of the loss components
are the same as the numerical examples above and the parameter # is set as 60.

We plot the density diagrams of the exact and predicted solutions in Figure 4 and present the
absolute error distributions of the predicted results for u(x, ¢) and v(x, ¢) over the entire spatiotemporal
domain in Figure 5. Moreover, an intuitive comparison between the analytical solution and the training
result is shown in Figure 6. It is obvious to find that the prediction given by the proposed TPINN
achieves better resolution than that given by the standard PINN. In addition, Table 6 summarizes the
test errors of the exact solutions u and v.

t t t
(a) Exact solution (b) PINN (c) TPINN

T T T T 1
0.0 2 04 06 0.8 1.0

t t t
(d) Exact solution (e) PINN (f) TPINN

Figure 4. Potential Burgers equations: the density diagrams of the exact and predicted
solutions for u(x, t) (top) and v(x, ¢) (bottom).
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Figure 5. Potential Burgers equations: absolute errors of the PINN and TPINN for the exact

solutions u(x, t) (top) and v(x, ¢) (bottom).
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Table 6. Potential Burgers equations: the relative L? errors of the PINN and TPINN with
different parameters n for different numbers of training points N;.

Solution Ny PINN TPINN
n=10 n =30 n =060
1000 1.3852e-03 7.5867e-04 2.8645e-04 4.2065¢-04
u 2000 1.6522e-03 1.0243e-03 6.7773e-04 4.8766e-04
4000 9.5945e-04 5.1565e-04 6.8839e-04 5.8296e-04
1000 5.9970e-04 7.4379e-04 2.6666e-04 3.9838e-04
v 2000 1.6236e-03 9.4908e-04 2.8057e-04 4.8761e-04
4000 7.8131e-04 4.4148e-04 6.6338e-04 4.4545e-04

5.3. Reaction equation

Here, we develop an efficient technique combining the time domain decomposition with the TPINN,
which is called TPINN-g,,.., to explore the impact of the number g,,,, of the time intervals on the
performance of TPINN. For this purpose, we consider the reaction equation with a large reaction
coefficient as follows:

u;, —pu(l —u) =0, (x,1) € (0,21) x (0, 1], (5.10)
with initial condition
u(x,0) = up(x), x € [0, 2], (5.11)
and boundary condition
u(0,t) = um,t),t € [0, 1], (5.12)

— )2 . . . . . .
where ug(x) = exp(—%), p > 5 is the reaction coefficient, and the analytical solution is

uo(x) exp(pr)

uo(x) exp(pt) + 1 — up(x) (5.13)

u(x,t) =

In Table 7, we list the length of the time intervals used in our proposed methods and the size of
the datasets. Due to the failure of the standard PINN in accurately solving the reaction equation, the
weight wy is set to zero and all other weights are set to w; = w;, = wg = 1. We set the parameter n = 20
in the proposed TPINN frameworks.
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Table 7. Reaction equation: description of the datasets and the length of the time intervals
of the PINN and TPINN-g,,.

Method Time interval Ny N; N,
PINN [0, 1.0] 6000 50 100
TPINN [0, 1.0] 6000 50 100
[0, 0.4] 3000 50 40
TPINN-2
[0.4, 1.0] 3000 50 60
[0, 0.4] 2000 50 40
TPINN-3 [0.4,0.7] 2000 50 30
[0.7, 1.0] 2000 50 30
[0, 0.4] 1500 50 40
[0.4, 0.6] 1500 50 20
TPINN-4
[0.6, 0.8] 1500 50 20
[0.8, 1.0] 1500 50 20

We present the distribution of the exact and predicted solutions in Figure 7 and absolute error density
diagrams in Figure 8. Moreover, a more intuitive demonstration of our proposed methods is provided
in Figure 9. To quantitatively illustrate that the Taylor expansion term can more effectively guide the
optimization process, Figure 10 presents comparison of L? norm of the loss gradients for the TPINN
and the PINN. The results indicate that although the gradient norm of the total loss function in the
PINN decreases, the gradient norm of its PDE residual loss remains almost constant at around 100
and fails to decrease further. Due to the presence of sharp variations in the solution, the network fails
to accurately capture the physical laws described by the PDE during the training process. The Taylor
expansion term provides a constraint within a local region for the network, making the predicted values
and their derivatives closely related between adjacent points. This is a rigid and discrete physical law.
TPINN embeds this causal temporal relationship into the loss function. During the training process,
the norm of VyL# in the TPINN can smoothly decrease, indicating that the network parameters have
been effectively optimized and can accurately capture physical laws.

We present the resulting errors of the TPINN at different reaction coefficients p in Table 8, which
illustrates that as the parameter n is increased, the accuracy of the proposed TPINN to predict the
exact solution is improved. Figure 11 presents the variation trend of the relative L? errors obtained by
the PINN, TPINN, and TPINN-2 as the reaction coefficient p is increased. We can observe that the
TPINN-2 performs better than the standard PINN and the proposed TPINN. The results presented in
Table 9 indicate that we need to set the number of time intervals to ¢,,,. = 3 or even ¢,,,, = 4 in order
to achieve a better predictive effect at p = 100 or 200. For this example, we test the sensitivity of
TPINN-2 to the window length in Table 10 and observe that the window length of 0.4 results in higher
prediction accuracy.
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Figure 7. Reaction equation: comparison between the exact solution and the solutions solved
by the PINN, TPINN, and TPINN-2 at p = 20.

0

10

0.0 0.2 04 0.6 08

t
(a) Error dynamics of PINN

Figure 8. Reaction equation:
coefficient p = 20.

AIMS Mathematics

.

0.020

0.015

0.010

0.005

0
10 0.0 0.2 04 0.6

0.8 1.0

0.0 02 04 0.6 0.8

t t
(b) Error dynamics of TPINN (c¢) Error dynamics of TPINN-2

absolute errors of the PINN, TPINN, and TPINN-2 with the

Volume 10, Issue 10, 24857-24900.



24876

t=0.0
1 — Exact
1.2 4 - w— PINN
a /l — = TPINN
104 d | «++ TPINN-2
0.8 | - |
- .
E 06 l I
s | |
0.4 1 .
0.2 4 '! l '
: ! [
004 ————— J e -
0 1 2 3 4 5 6
xT
(@)
t=10
1.0 A
0.8 1
0.6 4 m— Exact
:At w— PINN
K == TPINN
S 04 + TPINN-2
0.2 9
004 —
T T T T T T T
0 1 2 3 4 5 6

m— Exact
1.002 A = PINN
=== TPINN
=== TPINN-2
1.000 A
=
=
S 0.998
0.996
3.050 3.075 3.100 3.125 3.150 3.175 3.200 3.225 3.250
xr
(b) close view of (a)
t=1.0
1.0050
L0025 o L o o e e e o
1.0000
0.9975 — Exact
= = PINN
& 0.9950 — = TPINN
El = TPINN-2
0.9925 4
0.9900 +
0.9875 4
0.9850
5.410 5.415 5.420 5.425 5.430 5.435

(d) close view of (©)

Figure 9. Reaction equation: the snapshots of the exact solution and the solutions solved by

PINN, TPINN, and TPINN-2.
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Figure 11. Reaction equation: relative L? errors of the PINN, TPINN, and TPINN-2 with
different reaction coeflicients p.

Table 8. Reaction equation: the relative L? errors of the PINN and TPINN with different

parameters n for different coefficients p.

TPINN
0 PINN
n=10 n=20 n =30

20 9.9691e-01 1.3084e-02 2.0875e-02 1.3640e-02
35 9.9965¢e-01 9.9767e-01 8.0152¢-03 7.3878e-03
40 9.9972e-01 9.9784e-01 1.8859¢e-02 6.0290e-03
45 9.9976e-01 9.9877e-01 9.9639¢-01 7.9848e-03
50 9.9980e-01 9.9784e-01 9.9829¢-01 7.4312e-03

Table 9. Reaction equation: the relative L? errors of the TPINN with different numbers of

time intervals for different parameters n and p.

n TPINN TPINN-2 TPINN-3 TPINN-4
20 100 9.9727e-01 7.7157e-01 3.6382¢e-03 4.1501e-03
40 200 9.9746e-01 9.9742e-01 9.9853e-01 7.9976e-03
AIMS Mathematics Volume 10, Issue 10, 24857-24900.
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Table 10. Reaction equation: the relative L? errors of the TPINN-2 with different progressive
window lengths at n = 20 and p = 20.

First interval Second interval TPINN-2

[0, 0.2] [0.2, 1.0] 6.6424¢-03
[0, 0.4] [0.4, 1.0] 5.5491e-03
[0, 0.6] [0.6, 1.0] 6.1065e-03
[0, 0.8] [0.8, 1.0] 1.3310e-02

5.4. Allen-Cahn (AC) equation

For illustrating the performance of the FP-TPINN method in solving strongly nonlinear evolution
PDEs, we aim to solve the following AC equation:

u, —0.0001u,, + 51 = 5u =0, (x,1) € (-1,1) x (0, 1], (5.14)
with initial condition
u(x,0) = x* cos(mx), x € [-1, 1], (5.15)
and boundary conditions
u(=1,0) =u(l,r), 1€][0,1],
Mx(—l,t) = ux(l’t), re [Oa 1]

We set £ = 200, ¢ = 4000 and consider n, w; wp, wr, and wg to 50, 100, 1, 0, 200, respectively.
Table 11 lists the number of the training points used in the proposed FP-TPINN-2 framework. In this
example, we replace u(x, t — Ar) in (3.4) with %(ut —0.0001u,, + Su’) at time ¢ — At.

(5.16)

Table 11. AC equation: description of the datasets and the length of time intervals.

Method Time interval Ny N; N, N, N,
PINN [0, 1] 2000 200 200 - -
TPINN [0, 1.0] 2000 200 200 - -
EP_PINN.2 [0,0.505] 1000 200 100 800 100
[0.505,1.0] 1000 200 100 800 100
FP_TPINN.2 [0,0.505] 1000 200 100 800 100
[0.505,1.0] 1000 200 100 800 100

We plot the dynamic change of the prediction and the absolute error in Figure 12 and present a
comparison between the exact solution and the prediction in Figure 13, which reveals that the predicted
solutions provided by our proposed methods are closer to the exact solution.

In Table 12, we conduct ablation studies and test the performance of the TPINN, the PINN combined
with the forward progressive training strategy (FP-PINN), and the FP-TPINN with ¢,,,, = 2 time
intervals (FP-TPINN-2) separately. We additionally present the results of the PT-PINN method [43]
for this example in Table 12.
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Figure 12. AC equation: predictions and absolute errors of the PINN and FP-TPINN-2 with
different parameters n.
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Figure 13. AC equation: the snapshots of the exact solutions and the solutions solved by the
PINN and FP-TPINN-2 with the parameters n = 10, 50.

Table 12. AC equation: the relative L? errors of the PINN, PT-PINN, and FP-TPINN-2 with

different parameters n.

Method Ny Relative L? error
PINN 2000 9.8507e-01
TPINN (n = 10) 2000 9.9770e-01
TPINN (n = 30) 2000 9.9950e-01
TPINN (n = 50) 2000 9.9959¢-01
FP-PINN-2 2000 7.8545e-02
FP-TPINN-2 (1 = 10) 2000 2.1993e-02
FP-TPINN-2 (n = 30) 2000 4.0156e-03
FP-TPINN-2 (n = 50) 2000 3.6964e-03
PINN 4000 5.1999¢-01
TPINN (n = 50) 4000 9.9962¢-01
FP-TPINN-2 (n = 50) 4000 2.6815e-03
PT-PINN 4000 5.1456e-03
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When solving the AC equation with strong nonlinearity, the TPINN failed to effectively predict
the exact solution, and the FP-PINN-2 has good prediction accuracy. Moreover, the proposed FP-
TPINN-2 is also applied to solve another AC model existed in [46], and the corresponding test errors
of the DaPINN [46] and the FP-TPINN-2 are listed in Table 13. It is observed that our proposed FP-
TPINN method can achieve better prediction accuracy than either the PT-PINN method or the DaPINN
method. Finally, the sensitivity analysis of the FP-TPINN-2 to progressive window length is reported
in Table 14, which controls the accuracy of the initial condition pushing outward. A larger window
length tends to result in poor fitting results. When solving the AC equation, the first window length of
the FP-TPINN-2 performs better at 0.4.

Table 13. AC equation reported in [46]: the relative L? errors of the PINN, DaPINN and

FP-TPINN-2.
Method Ny Relative L? error
PINN 2000 5.4717e-01
DaPINN (Fourier) 2000 1.5390e-02
DaPINN (x%) 2000 1.4418e-02
FP-TPINN-2 (n = 50) 2000 4.2976e-03

Table 14. AC equation: the relative L? errors of the FP-TPINN-2 with different progressive
window lengths at n = 50.

First interval Second interval FP-TPINN-2
[0, 0.2] [0.2, 1.0] 6.2421e-03
[0, 0.4] [0.4, 1.0] 4.3043e-03
[0, 0.6] [0.6, 1.0] 6.7707¢-03
[0, 0.8] [0.8, 1.0] 3.0110e-02

5.5. Wave equation
Here, we consider a one-dimensional wave equation as follows:
Uy — Czuxx = 09 (-x7 t) € (O’ 1) X (05 1]’ (517)

with initial conditions
u(x,0) = sin(mrx) + sin(Anx), x € [0,1],

(5.18)
ut(x7 0) = 0’ BAIS [O’ 1]’
and boundary conditions
u(0,t) =u(l,1) = 0,1 € [0, 1], (5.19)
where A = 3, C = 2, and the analytical solution u(x, ) = sin(zx) cos(Crnt) + sin(Anx) cos(ACmnt).
To apply the FP-TPINN method, the governing equation (5.17) is rewritten as
v, — C?uy, =0, (5.20)
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where v = u,.
Table 15 shows the range of sampling intervals for FP-TPINN-2 and the size of the datasets. We set
the parameter n = 50. The weights w;, wy,, wy, and wy are set as 1, 100, 0, and 200, respectively.

Table 15. Wave equation: description of the datasets and the length of time intervals of the
PINN and FP-TPINN-2.

Method Time Ny N; N, N, s Ny
interval

PINN [0, 1.0] 2000 200 200 - -

TPINN [0, 1.0] 2000 200 200 - -

FP.TPINN.2 [0, 0.4] 1000 200 100 800 0
[0.4, 1.0] 1000 200 100 800 0

We present in Figure 14 the density diagrams of the predictions obtained by the PINN and the
proposed FP-TPINN-2 and the corresponding error density diagrams, and we show in Figure 15 a
comparison of the PINN and the proposed FP-TPINN-2 to provide an intuitive assessment, which
confirms that the proposed method has better resolution than the standard PINN.
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Figure 14. Wave equation: (top) comparison between the exact solution and the
solutions solved by the PINN and FP-TPINN-2; (bottom) absolute errors of the PINN and
FP-TPINN-2.
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Figure 15. Wave equation: the snapshots of the exact solutions and the solutions solved by

the PINN and FP-TPINN-2.

Table 16 summarizes the relative L? errors, memory costs and training time of the PINN and the
proposed FP-TPINN-2 with different numbers of training points Ny. We find that the PINN spend a
lot of training time with the number of collocation points Ny = 3000, which is almost twice that of the

FP-TPINN.

Table 16. Wave equation: the training results of the PINN and FP-TPINN-2 with different
parameters n for different numbers of training points Ny.

Ny PINN FP-TPINN-2 (n = 30) FP-TPINN-2 (n = 50)

1600 5.0319e-01 5.6001e-02 1.8498e-02

Relative L? error 2000 5.0724e-01 8.5455e-02 1.8544¢-02

3000 5.0711e-01 5.5911e-02 2.0080e-02
1600 386 323 347
Training time(s) 2000 410 410 465
3000 1073 616 607
1600 276 407 405
Memory cost(MB) 2000 279 374 418
3000 271 451 452
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Table 17 reports the comparative analysis of the TPINN and the FP-TPINN. It can be observed
that the TPINN can also solve the wave equation with stiff behavior, and the FP-TPINN can further
improve the accuracy of the TPINN. According to the dynamic changes shown in Figure 16, we find
that although the loss term £, has a decreasing trend during the training process of the PINN, the
magnitude of the decrease is small, which causes the PINN to spend too much time minimizing the
loss function during the training process. However, it can be observed that the existence of the loss
term L effectively optimizes the parameters of the network during the training process of the first
interval ([0, 0.4]) and the second interval ([0.4, 1.0]) of the TPINN, resulting in a comparatively steady

downward trend for each loss term.

Table 17. Wave equation: relative L? errors of the TPINN and the FP-TPINN-2 with different

parameters n for different numbers of training points Ny.

N, TPINN-2(n=30) TPINN-2(n=50) FP-TPINN-2(n=30) FP-TPINN-2 (n = 50)

1600 5.3308e-02 2.4325e-02 5.6001e-02 1.8498e-02
2000 5.6372e-02 8.2527e-02 8.5455e-02 1.8544e-02
3000 5.7562e-02 7.6930e-02 5.5911e-02 2.0080e-02

2500 3000 0 500 1000

0 2000 4000 6000 8000 10000 0 500 1000 1500 2000
i Iteration

(c) FP-TPINN-2 ([0.4, 1.0])

Iteration Iteration

(a) PINN (b) FP-TPINN-2 ([0, 0.4])

1500

2000

2500

Figure 16. Wave equation: the dynamic variation of the loss term of the PINN and FP-

TPINN-2 (n = 50) with respect to the number of iterations.

5.6. Improved Boussinesq equation

In this example, let us investigate the following improved Boussinesq equation:

2
Ugp — Uxx — Uxxir — (I/t )xx =0, (x’ t) € (xl’ xr) X J,

with initial conditions
u(x,0) = uo(x), u(x,0)=g(x), x¢€lx,x],
and periodic boundary conditions
u(x;, t) = u(x,, 1), teJ,
u(x, 1) = uy(x,,1), teJ,

uxx(xls t) = uxx(xr, t), tel.

AIMS Mathematics
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In this example, we consider the single solitary wave case with the analytical solution defined by

u(x, 1) = asech? ( @%) , (5.24)

where @ = 0.5, x0=0,8= /1 + %", J =(0,1], and [x;, x,] = [-100, 100]. The corresponding initial
conditions are given by

(5.25)

uo(x) = asech? ( ar- xo) ,

6 B

and

3 @ o [ex—Xo @ X~ Xo
g(x)—2a\/;sech( 6—,8 )tanh(\/; g ) (5.26)

Due to the significant increase in training time caused by the derivative of u,,, with respect to time ¢,
we adopt a different calculation method from Subsection 5.5 to define 7 (x, t):

ou A
F(x, 1) =u(x,t) — (u(x, t— A+ Atg(x, t— A+ Tﬂ[u(x, t— At)]) , (5.27)

where D[u(x, £)] = by, + U + () 1
For this example, we use the training data that consists of Ny = 4000 residual points sampled from

the spatiotemporal domain, N; = 100 initial points, and N, = 100 boundary points. The weights of loss
components are set to w; = w, = wy = wg = 1 and the parameter 7 is set as 30.

The training results are summarized in Figure 17, and the snapshots shown in Figure 18 demonstrate
that the results given by the TPINN are closer to the exact solution. We report the relative L? errors,
final values of the loss terms, training time and memory costs given by the standard PINN, and the
proposed TPINN in Table 18, indicating that the TPINN method significantly improves the prediction
accuracy. The proposed TPINN introduces the loss term L# as an additional supervised learning
task, which allows the network to better learn the physical laws described by evolution PDEs, but
also increases the difficulty of training the network. Therefore, the training time required by the
TPINN is slightly higher than that of the PINN, increasing from 19 seconds to 54 seconds. However,
our proposed TPINN reduces the error from 1.0098e-02 to 2.7457e-03, with an error reduction of
approximately 73%, significantly improving the prediction accuracy. Meanwhile, all loss components
have been reduced by an order of magnitude. We believe that this is acceptable in scientific computing
problems that focus on high precision. The dynamic changes of each loss term in the PINN and TPINN
are displayed in Figure 19. Comparing the changes in the PINN and TPINN, we can observe that during
the training process of the TPINN, the value of the loss term L# is almost always lower than that of
other loss terms, and it has a positive impact on the downward trend of the loss £;, £, and L, without
disrupting their overall trend of change.

AIMS Mathematics Volume 10, Issue 10, 24857-24900.



Table 18. Improved Boussinesq equation: the results given by the PINN and TPINN.

Method PINN TPINN (n = 10) TPINN (n = 30)
Relative L? error 1.0098e-02 6.1460e-03 2.7457e-03

L 1.2066e-06 4.5959¢-07 2.0984e-07

L 6.1505e-07 2.0954e-07 7.6047e-08

L, 7.6545e-08 1.1244e-08 1.1404e-09

Ly 5.1496e-07 2.3881e-07 1.3265e-07

Lr - 1.3063e-12 2.2622e-14
Time(s) 19 43 54

Memory 604 MB 927 MB 931 MB

00 02

t
(a) Exact solution

04 06 08

t 5
(d) Error dynamics of PINN

(b) PINN

00 02 04

’ t
(e) Error dynamics of TPINN

AIMS Mathematics

Figure 17. Improved Boussinesq equation: (top) comparison between the exact solution and
the solutions solved by the PINN and TPINN; (bottom) absolute error distributions of the
PINN and TPINN.
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Figure 18. Improved Boussinesq equation: the snapshots
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Figure 19. Improved Boussinesq equation: the dynamic variations of the loss terms for the
PINN and TPINN with respect to the number of iterations.

5.7. Flow mixing problem

To further test the effectiveness of the proposed TPINN, the flow mixing problem with the Dirichlet

boundary condition is a

AIMS Mathematics

s follows:

u +au, +bu, =0, (x,y) € (—4,4) x(-4,4), t € [0,4],

(5.28)
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where

a(x,y) = — Yt X, b(x,y) = Vt f,
Vimax ¥ Vimax (529)

v, = sech®(r) tanh(r), r= +/x2 +y2.

This problem describes the motion process of two fluids with different characteristics, a clod front and
a warm front, gradually mixing at a specified speed v, in the spatial domain [47,48]. The analytical
solution is

u(x, y, 1) = — tanh(% cos(wr) — %sin(wt)), (5.30)

where w = %VL and v,,,,, = 0.385. The initial condition at ¢ = 0 is derived from the solution (5.30).

tmax

To train the network, we randomly sample N, = 2000 points within the solution domain, N, = 200
data points on the boundary, and N; = 100 initial data points. The weights of each loss is set to
w; = w, = wy = wg = 1 and the parameter 7 is set as 30.

The final mean squared error of each loss term for the PINN and TPINN presented in Table 19
and Figure 20 shows the dynamic change during the training process. It can be seen that the loss
terms L;, L,, L and the error of the total loss £ obtained by the TPINN are all lower than those of
the PINN, indicating that the existence of the loss term L further optimizes the parameters of the
network, resulting in the prediction being closer to the exact solution. We present in Figure 21 the
density diagrams of the exact solution and the predicted solutions provided by the PINN and TPINN
throughout the entire spatial domain. In Figure 22, the error density diagrams of the PINN and TPINN
at different times are plotted. The distribution interval of absolute errors given by the TPINN is smaller
than that of the PINN, indicating that our proposed method achieves a better prediction.

L; L;
10 — 7 10 5 — 5
— — £
10-1 4 10-1 _ £f
F
—2
102 10
2. g 107
o 1077 Q
2 =
1074
104
10-°
105
10-6
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1077
T T T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 12000 14000
Iteration Iteration
(a) PINN (b) TPINN

Figure 20. Flow mixing problem: the dynamic variations of the loss terms for the PINN and
TPINN with respect to the number of iterations.
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Table 19. Flow mixing problem: the training results for the PINN and TPINN.

Method Relative L? error L L; Ly Ly L Time(s) Memory
PINN 1.8752e-02 1.2011e-05 2.0188e-06 3.4129¢-07 9.6513e-06 - 177 380 MB
TPINN 1.0699¢-02 7.1101e-06 4.4728e-07 2.9558e-07 6.3135e-06 5.3712e-08 268 437 MB

4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 9 1 2 3 4 -4 -3 -2 -1 9 1 2 3 4

(a) Exact (t=1 (b) Exact (t=2) (©) Exact (t=3)

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 - 0 1 2 3 4

(d) PINN =1 (e) PINN (t = 2)

-4 -3 -2 -1 90 1 2 3 4 -4 -3 -2 -1 9 1 2 3 4 -4 -3 -2 -1 90 1 2 3 1

(2 TPINN (t=1 (h) TPINN (t=2) @) TPINN (t=3)

Figure 21. Flow mixing problem: comparison between the exact solution (top) and the
solutions solved by the PINN (middle) and TPINN (bottom) at different times.
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Figure 22. Flow mixing problem: the error dynamic diagrams of the PINN and TPINN at
different times.

5.8. High-dimensional diffusion-reaction equation

In this example, we aim to demonstrate the performance of the TPINN method in solving high
dimensional PDEs. Consider the following five-dimensional diffusion-reaction equation [49]:

u— Au—u? = f(x,1),(x,1) e Qx (0, T], (5.31)
with initial condition
5
u(x,0) = | [ sin(rx), x € Q, (5.32)
j=1
and boundary condition
5
u(x,r) = ¢ rl sin(rx;), (x,1) € aQ x [0, T1, (5.33)
j=1

5
where Q = (0, 1)° ¢ R’ and the final time 7 = 1. The exact solution is defined as u(x, t) = ¢’ [] sin(mx )
j=1
and the forcing term f(x, ?) is derived from the exact solution.
The training data consists of Ny = 2000 points randomly sampled from the solution domain, N; =
600 initial points, and N, = 500 boundary points. The parameter 7 is set to 80 and the weights w;, wy,

wy, and wg are setas 1, 1, 0, and 1, respectively.
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Table 20 presents the relative L? error, the final value of each loss term, training time, and memory
cost, indicating that the TPINN achieves higher prediction accuracy and spends less computational
time than the PINN. We also find that the final value of each loss term in the TPINN is lower than that
in the PINN. For this purpose, we provide the dynamic variation graph of each loss term during the
training process in Figure 23, which reveals that compared to the PINN, the presence of the loss term
L# in the TPINN results in a faster rate of decrease for the loss terms. Finally, Figure 24 displays a
more intuitive comparison.

Table 20. Diffusion-reaction equation: the training results for the PINN and TPINN.

Method Relative L? error L L; L Ly Lr Time(s) Memory
PINN 7.2253e-02 2.5797e-03 1.2648e-04 6.9888e-04 1.7544e-03 - 492 449 MB
TPINN 2.8781e-02 1.7486e-05 4.6917¢-06 5.7837e-06 - 7.0110e-06 361 997 MB

Li L;

102 § — 7 100 4 — Ly

— Ly — Lr

Loss

1072 4
1074 4
1072 4

1075 4
1074 4
T T T T T T T T T T T T
0 5000 10000 15000 20000 25000 30000 0 1000 2000 3000 4000
Iteration Tteration
(a) PINN (b) TPINN
L(PINN) L4 (PINN) 5 £;(PINN)
10° 4 — L£i(TPINN) 100 4 —— L£,(TPINN) 10y — L7(TPINN)

Lo
Lo

10744 104 4

107° 4 10-5 4

T T T T T T T T T T T T T T T T T T T T T
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Tteration Tteration Tteration

Figure 23. Diffusion-reaction: the dynamic variations of the loss terms for the PINN and
TPINN with respect to the number of iterations.
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Figure 24. Diffusion-reaction: point-wise density diagrams on the slice of x; = x, = x3 =
x4 = 0.5; (top) comparison between the exact solution and the solutions solved by the PINN
and TPINN; (bottom) absolute errors of the PINN and TPINN.

6. Discussion

The numerical experimental results presented in Section 5 demonstrate that the proposed TPINN
and FP-TPINN methods achieve better prediction accuracy than that of the PINN under the same
training configuration, such as the number of training points, network structure, and optimizer. Next,
we will further analyze the temporal causal relationship in our proposed methods. Moreover, it may not
be clear how to divide the length of time intervals and the scenarios applicable to TPINN or FP-TPINN.
Therefore, we will provide a detailed explanation in this section.

Temporal causality analysis: The proposed PINN-based framework in this work enhances
compliance with the initial condition and temporal causality from two aspects. (1) The local
dependency of the loss function based on Taylor expansion improves initial condition adherence
and causality. We use the loss term L# introduced by Taylor series expansion as a new supervised
learning task within the time interval [T,_;, T,]. (2) The FP-TPINN decomposes the time domain into
continuous subintervals and enforces the solution of the previous subdomain as the initial condition
for the next subdomain, thus rigidly defining the temporal causal relationship from the structure of
network training. This strategy not only ensures strict propagation of the initial condition in the global
time domain, but also transforms complex global optimization problems into a series of simpler local
problems. There are essential differences between other causality-aware PINN frameworks based on
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time domain decomposition and our proposed FP-TPINN. The authors in [43] divide the entire time
domain (0, T'] into k intervals as (0, 7], (0,T5], ---, (0,T%], (0,Tis; = T] (Ty—1 < Ty), where the
predicted solution on the subdomain (0, 7;_;] is provided as extra supervised learning data to the
next subdomain (0, 7%]. The solutions predicted by all previous intervals ([0, 7,,—;]) are considered
as a constraint for training neural networks on interval [T,_;,T,] [6]. In the proposed FP-TPINN
framework, we take the predicted value at time 7,_; in the previous interval [T,_», T,_;] as the initial
condition for the next interval [T,_,T,]. Moreover, we use Taylor expansion term instead of the
PDE residual in each interval and combine them with initial and boundary conditions to train the
neural network. Compared to the sequence-to-sequence learning method [42], we adopt the resampling
method at each interval to train the network.

The standard for dividing the length of time intervals: We control the size of interval division based
on the complexity of the variation trend exhibited by the solution in the spatiotemporal domain. In
Subsection 5.3, when the entire time interval is divided into two intervals, the length of the first time
interval is smaller than that of the second interval. From Figure 7(a), it can be seen that the exact
solution of (5.10) has a steep trend of change at the initial stage, which makes it difficult to obtain
the forecasting results with high accuracy. Therefore, we choose a relatively small interval to obtain a
better prediction. When dividing the entire time domain into three or four subdomains, we choose to
divide the time interval [0.6,1.0] equally into two or three intervals, respectively. A small time interval
can achieve better training results. The solution of the AC equation (5.14) has a small amplitude of
change near the initial time, while the solution of the wave equation (5.17) exhibits a more complex
trend of change near the initial time. Therefore, we set the first time interval to [0, 0.505] and [0, 0.4]
in Subsections 5.4 and 5.5, respectively, which can provide a more accurate initial condition for the
second interval.

Application scenarios of the TPINN and FP-TPINN: The key idea of the proposed TPINN is to add a
new supervised learning task to train the network by utilizing Taylor expansion, which aims to improve
the accuracy of the PINN. For time-dependent PDEs that can be solved by the PINN, the TPINN can
be used to obtain a better prediction. In addition, for the evolution PDEs with stiff behavior, such as
the reaction equations with a large model parameter and the wave equation, the prediction given by
the PINN deviates far from the exact solution, while the TPINN can still accurately predict the exact
solution. On the basis of the TPINN, the FP-TPINN method is constructed by combining the time
domain decomposition and the resampling strategy, further improving the performance of the TPINN.
The proposed FP-TPINN has a good performance in solving evolution PDEs with strong nonlinearity,
such as the AC equation, where the TPINN fails to produce accurate prediction.

7. Conclusions

In this paper, we propose a novel PINN framework for the forward progressive training based
on the Taylor expansion term. The core contribution of this work lies in the first combination of
the loss function constructed by Taylor expansion with the progressive training strategy. Although
Taylor expansion has been applied in the PINN, their utilization as the central component of the
loss function, integrated with a temporally progressive training mechanism, has not been reported.
Specifically, we construct the TPINN framework using the Taylor series expansion, and develop
the FP-TPINN to further improve the performance of the proposed TPINN. Our training strategy
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divides the entire problem into multiple independent subproblems, and the k-th subproblem provides
initial condition for the (k + 1)-th subproblem. This information exchange ensures that the overall
solution remains consistent on a global scale. By simulating the KdV equation, the potential Burgers
equations, the reaction equation with large reaction coefficient, the improved Boussinesq equation,
the flow mixing problem, and the five-dimensional diffusion-reaction equation, we demonstrate that
the TPINN significantly improves the accuracy of the standard PINN. For the AC equation and the
wave equation, the proposed FP-TPINN provides more accurate prediction results than that of the
PINN. We also examine the capability of the TPINN for solving time-independent PDEs such as two-
dimensional Poisson in Appendix 7. The analysis in the numerical experiments indicates that there
is an inherent correlation between the computational cost and accuracy improvement of the TPINN
method. Specifically, for the KdV equation and the diffusion-reaction equation, our proposed TPINN
has efficient convergence efficiency and requires less training time than the PINN. In more complex
scenarios such as the improved Boussinesq equation and the flow mixing problem, the TPINN only
takes about 2 to 3 times the computation time, reducing the error from the order of 1072 to the order
of 1073, It is acceptable to exchange linear growth of time cost for rapid improvement in accuracy.

Although our proposed methods have demonstrated excellent predictive ability in solving PDEs
with strong nonlinearity or stiff behavior, there are also some limitations and assumptions that will be
the focus of our future research work. Our proposed methods increase computational cost when dealing
with PDEs with high-order spatial derivatives. Therefore, for problems with fourth-order derivatives,
it is necessary to consider designing specialized network structures or training strategies to ensure
prediction accuracy and efficiency. In addition, the performance of our proposed methods mainly
depend on the assumption that sufficient training data is provided to initialize the model or define the
loss function. If the data is extremely sparse, effective predictions may not be obtained. Based on the
above limitations, we plan to study more effective numerical schemes based on strong forms in future
work to efficiently handle the problems with high-order derivative,such as the Cahn-Hilliard equation,
and consider systematic comparison and analysis with energy based deep learning frameworks, such
as the DEM method.
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Appendix. Two-dimensional Poisson equation

In this section, we aim to investigate the performance of our proposed TPINN method in

solving the time-independent problem. Consider the following Poisson equation with Dirichlet
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boundary condition:

V2u(x,y) = f(x,),(x,y) € (0,1) x (0, 1), (7.1)

where the exact solution u(x, y) = (0.1 sin(27x) + tanh(x)) sin(27ry) and the source term can be derived
from the exact solution. For this example, we define the Taylor expansion term as

F = u(x,y) - [u(x = Ax,y) + Ax(f(x = Ax,y) — 1y, (x = Ax.y)] . (7.2)

where Ax = 2. Then, the loss function can be formulated as

LO;T) = wpLp(0; T) + wer Li(0; T ). (7.3)

The neural network consists of 4 hidden layers and 20 neurons on each hidden layer. The training
set contains 2000 collocation points sampled from the solution domain and 320 boundary points. The
weights w;, and wg are set to 1 and 100, respectively. The Adam algorithm is selected as the optimizer,
with a learning rate of 0.001, and the number of iterations is set to 10000.

In Table 21, we present the relative errors and computational cost of the TPINN, the PINN, and
the hp-variational PINN (VPINN) [34]. The results show that our proposed method outperforms
the PINN in accuracy with almost the same computational time. Although the proposed TPINN has
slightly lower accuracy than the VPINN, it exhibits higher computational efficiency. Furthermore, it
can be observed that our proposed method still maintains good prediction performance under different
numbers of training points, proving its stability. To more intuitively illustrate the performance of the
TPINN, we plot the predicted solutions and corresponding error distributions of the TPINN, the PINN,
and the VPINN in Figure 25.

Table 21. Poisson equation: the computational cost and the relative L? errors of the TPINN
(n = 80), the PINN, and the VPINN with different number of training points N;.

Ny TPINN PINN VPINN
Relative L? error 1000 5.1578e-02 1.0860e-01 1.3482e-02
2000 3.4024¢-02 6.9169¢-02 1.3691e-02
3000 3.9881e-02 1.6236¢-01 1.3630e-02
Time(s) 1000 23 24 171
2000 48 45 178
3000 54 55 174
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Figure 25. Poisson equation: (top) comparison between the exact solution and the solutions
solved by the TPINN, the PINN, and the VPINN; (bottom) absolute errors of the TPINN, the
PINN, and the VPINN.
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