There are many opinions about multiplication and division formulas in interval numbers, but there is a common weakness in these formulas: That the division between two equal interval numbers does not produce the identity. Similar to the interval number sequence, many concepts about the convergence of the interval sequence are offered by various authors but they cannot prove that the basic properties of the convergence of the real number sequence can be generalized to the properties of convergence of the interval number sequence. Here, we used the algebra for interval numbers from the author, as contained in Mashadi et al. (2023), that is, the algebra for interval numbers using midpoints, which guarantees the existence of the inverse of any interval number. In this article, we showed that some basic properties of the sequence of real numbers can be generalized to the sequence of interval numbers. In addition to the convergence properties of the interval number sequence, the convergence of the interval number sequence with positive, negative, and fractional powers were also shown. Based on the definition of convergence of interval sequences given along with various basic theorems for convergence given in this paper, it was expected that all theorems related to the convergence of real number sequences can be generalized to interval number sequences; for example, the properties of tail sequences, the Monotone Convergence Theorem, the Existence of Monotone Subsequences, Subsequences and the Bolzano-Weierstrass Theorem, and the Cauchy criterion for the convergence of interval number sequences.
Citation: Mashadi, Rasi Adishamita, Sukono, Igif Gimin Prihanto, Nurnadiah Zamri, Moch Panji Agung Saputra. Convergence of interval fuzzy number sequences[J]. AIMS Mathematics, 2025, 10(10): 24755-24778. doi: 10.3934/math.20251097
There are many opinions about multiplication and division formulas in interval numbers, but there is a common weakness in these formulas: That the division between two equal interval numbers does not produce the identity. Similar to the interval number sequence, many concepts about the convergence of the interval sequence are offered by various authors but they cannot prove that the basic properties of the convergence of the real number sequence can be generalized to the properties of convergence of the interval number sequence. Here, we used the algebra for interval numbers from the author, as contained in Mashadi et al. (2023), that is, the algebra for interval numbers using midpoints, which guarantees the existence of the inverse of any interval number. In this article, we showed that some basic properties of the sequence of real numbers can be generalized to the sequence of interval numbers. In addition to the convergence properties of the interval number sequence, the convergence of the interval number sequence with positive, negative, and fractional powers were also shown. Based on the definition of convergence of interval sequences given along with various basic theorems for convergence given in this paper, it was expected that all theorems related to the convergence of real number sequences can be generalized to interval number sequences; for example, the properties of tail sequences, the Monotone Convergence Theorem, the Existence of Monotone Subsequences, Subsequences and the Bolzano-Weierstrass Theorem, and the Cauchy criterion for the convergence of interval number sequences.
| [1] |
S. Debnath, B. Sarma, Saha, On some sequence spaces of interval vectors, Afr. Mat. , 26 (2015), 673-678. https://doi.org/10.1007/s13370-014-0238-y doi: 10.1007/s13370-014-0238-y
|
| [2] |
B. C. Tripathy, S. Debnath, S. Saha, On some difference sequence spaces of interval numbers, Proyecciones (Antofagasta), 37 (2018), 603-612. http://dx.doi.org/10.4067/S0716-09172018000400603 doi: 10.4067/S0716-09172018000400603
|
| [3] | R. E. Moore, C. T. Yang, Interval analysis I, LMSD-285875, Lockheed Missiles and Space Company, 1962. |
| [4] | K. Ganesan, On some properties of interval matrices, J. Comput. Math. Sci. , 1 (2007), 2. |
| [5] | T. Nirmala, D. Datta, H. S. Kushwaha, K. Ganesan, Inverse interval matrix: A new approach, Appl. Math. Sci., 5 (2011), 607-624. Available from: https://www.m-hikari.com/ams/ams-2011/ams-13-16-2011/ganesanAMS13-16-2011.pdf. |
| [6] |
T. Nirmala, D. Datta, H. S. Kushwaha, K. Ganesan, The determinant of an interval matrix using Gaussian elimination method, Int. J. Pure Appl. Math. , 88 (2013), 15-34. http://dx.doi.org/10.12732/ijpam.v88i1.2 doi: 10.12732/ijpam.v88i1.2
|
| [7] |
T. Nirmala, K. Ganesan, Modified Crout's method for an LU decomposition of an interval matrix, J. Phys. Conf. Ser. , 1000 (2018), 012134. https://doi.org/10.1088/1742-6596/1000/1/012134 doi: 10.1088/1742-6596/1000/1/012134
|
| [8] | R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to interval analysis, SIAM, 2009. https://doi.org/10.1137/1.9780898717716 |
| [9] |
S. Abolmasoumi, A method for calculating interval inverse matrix, J. Math. Comput. Sci. , 10 (2014), 228-234. https://doi.org/10.22436/jmcs.010.03.08 doi: 10.22436/jmcs.010.03.08
|
| [10] |
S. Abolmasoumi, M. Alavi, A method for calculating interval linear system, J. Math. Comput. Sci. , 8 (2014), 193-204. https://doi.org/10.22436/jmcs.08.03.02 doi: 10.22436/jmcs.08.03.02
|
| [11] | S. Das, S. Chakraverty, Numerical solution of interval and fuzzy system of linear equations, MSc Thesis, 2011. |
| [12] |
T. Akther, S. U. Ahmad, A computational method for fuzzy arithmetic operations, Daffodil Int. Univ. J. Sci. Tech. , 4 (2009), 18-22. https://doi.org/10.3329/diujst.v4i1.4350 doi: 10.3329/diujst.v4i1.4350
|
| [13] | E. Siahlooei, S. A. Shahzadeh Fazeli, An application of interval arithmetic for solving fully fuzzy linear systems with trapezoidal fuzzy numbers, Adv. Fuzzy Syst., 2018, 2104343. https://doi.org/10.1155/2018/2104343 |
| [14] | E. Siahlooei, S. A. S. Fazeli, Two iterative methods for solving linear interval systems, Appl. Comput. Intell. S., 2018, 2797038. https://doi.org/10.1155/2018/2797038 |
| [15] |
J. Rohn, S. P. Shary, Interval matrices: Regularity generates singularity, Linear Algebra Appl, 540 (2018), 149-159. https://doi.org/10.1016/j.laa.2017.11.020 doi: 10.1016/j.laa.2017.11.020
|
| [16] |
A. Sit, Eigen values of interval matrix, AJAMC, 1 (2021), 6-11. https://doi.org/10.15864/ajamc.142 doi: 10.15864/ajamc.142
|
| [17] | A. Goldsztejn, G. Chabert, A generalized interval LU decomposition for the solution of interval linear systems, In: Numerical Methods and Applications, Berlin, Heidelberg: Springer, 4310 (2007), 312-319. https://doi.org/10.1007/978-3-540-70942-8_37 |
| [18] |
T. Allahviranloo, M. Ghanbari, On the algebraic solution of fuzzy linear systems based on interval theory, Appl. Math. Model. , 36 (2012), 5360-5379. https://doi.org/10.1016/j.apm.2012.01.002 doi: 10.1016/j.apm.2012.01.002
|
| [19] |
S. Majumdar, S. Chakraverty, A method for the solution of interval system of linear equation, Int. J. Modern Math. Sci. , 2 (2012), 67-70. https://doi.org/10.11591/ijaas.v2i2.1512 doi: 10.11591/ijaas.v2i2.1512
|
| [20] | M. Mashadi, A new method for dual fully fuzzy linear systems by use LU factorizations of the coefficient matrix, J. Mat. Sains, 15 (2010), 101-106. |
| [21] | R. Adishamita, M. Mashadi, M. Muliana, New formula for interval numbers with powers of positive rational numbers and its properties, In: Proceedings of the 3rd Sriwijaya International Conference on Basic and Applied Sciences (SICBAS 2023), November 3, 2023, Palembang, Indonesia, 2024. https://doi.org/10.4108/eai.3-11-2023.2347908 |
| [22] |
A. S. Abidin, M. Mashadi, S. Gemawati, Algebraic modification of trapezoidal fuzzy numbers to complete fully fuzzy linear equations system using Gauss-Jacobi method, Int. J. Manag. Fuzzy Syst. , 5 (2019), 40-46. https://doi.org/10.11648/j.ijmfs.20190502.12 doi: 10.11648/j.ijmfs.20190502.12
|
| [23] |
A. Mashadi, A. Hadi, Sukono, Alternative algebra for multiplication and inverse of interval number, Math. Stat. , 11 (2023), 685-692. https://doi.org/10.13189/ms.2023.110410 doi: 10.13189/ms.2023.110410
|
| [24] |
Mashadi, Y. Safitri, Sukono, I. G. Prihanto, M. D. Johansyah, M. P. A. Saputra, The inverse and general inverse of trapezoidal fuzzy numbers with modified elementary row operations, Mathematics, 12 (2024), 946. https://doi.org/10.3390/math12070946 doi: 10.3390/math12070946
|
| [25] | M. Sengönül, A. Eryılmaz, On the sequence spaces of interval numbers, Thai J. Math. , 8 (2010), 503-510. |
| [26] |
B. Dai, Y. E. Bao, M. Wu, Research on the limit of interval number sequences, AIP Conf. Proc. , 1864 (2017), 020083. https://doi.org/10.1063/1.4992900 doi: 10.1063/1.4992900
|
| [27] | Z. Desmita, A. Mashadi, Alternative multiplying triangular fuzzy number and applied in fully fuzzy linear system, Am. Sci. Res. J. Eng. Tech. Sci., 56 (2019), 113-123. Available from: https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/4887. |
| [28] | B. Dai, Y. Bao, Research on the limit of interval number sequences, Pioneer J. Math. Math. Sci., 20 (2017), 77-84. Available from: http://www.pspchv.com/content_1_PJMMS_volume_20_issus-2.html. |
| [29] |
A. Nazari, M. Zeinali, H. Mesgarani, Inverse eigenvalue problem of interval nonnegative matrices of order < 3, J. Math. Model. , 6 (2018), 187-194. https://doi.org/10.22124/jmm.2018.10836.1171 doi: 10.22124/jmm.2018.10836.1171
|
| [30] | K. Nora, B. Khier, B. Arres, Solving linear systems using interval arithmetic approach, Int. J. Sci. Eng. Invest. , 1 (2012), 29-33. |
| [31] | S. Debnath, S. Saha, Some statistically convergent difference sequence spaces of interval numbers, ROMAI J. , 12 (2016), 53-59. |
| [32] |
S. Gemawati, I. Nasfianti, A. Hadi, A new method for dual fully fuzzy linear system with trapezoidal fuzzy numbers by QR decomposition, J. Phys. Conf. Ser. , 1116 (2018), 022011. https://doi.org/10.1088/1742-6596/1116/2/022011 doi: 10.1088/1742-6596/1116/2/022011
|
| [33] | D. R. A. Sari, M. Mashadi, New arithmetic triangular fuzzy number for solving fully fuzzy linear system using inverse matrix, Int. J. Sci. , 46 (2019), 169-180. |