Integration of artificial intelligence into computational fluid dynamics has significantly enhanced the simulation of complex transport phenomena. This review presents a detailed analysis of artificial neural network (ANN) techniques, namely Levenberg Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG), in the simulation of magnetohydrodynamic (MHD) hybrid nanofluid flows with bio-convection and internal heat generation. Such flows are characterized by strong nonlinearities arising from the synergistic interaction of magnetic forces, nanoparticle-particle interactions, convective effects caused by microorganisms, and heat gradients. Traditional numerical methods, though well-refined, typically face convergence issues, computational costs, and adaptability to highly nonlinear cases. ANN-based models, on the other hand, show remarkable characteristics toward the approximation of intricate physical correlations with enhanced convergence and generalization. This review discusses, in a detailed manner, the theoretical basis, training behavior, prediction accuracy, and computational efficiency of LM, BR, and SCG algorithms in maintaining critical fluid properties like velocity, temperature, and concentration. Special focus is given to the role played by bio-convection in enhancing transport properties and to how ANN techniques effectively model these dynamics with minimal residual error and computational intensity. A comparative study highlights the applicability and uniformity of such neural network algorithms in advanced heat and mass transfer operations with MHD hybrid nanofluids.
Citation: Sohaib Abdal, Adnan Ashique, Usman Afzal, Maddina Dinesh Kumar, Khalid Masood, Nehad Ali Shah. A comprehensive review on artificial neural network techniques (Levenberg–Marquardt, Bayesian regularization, scaled conjugate gradient) for magnetohydrodynamic hybrid nanofluid flow with bio-convection and heat sources[J]. AIMS Mathematics, 2025, 10(10): 23084-23135. doi: 10.3934/math.20251025
Integration of artificial intelligence into computational fluid dynamics has significantly enhanced the simulation of complex transport phenomena. This review presents a detailed analysis of artificial neural network (ANN) techniques, namely Levenberg Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG), in the simulation of magnetohydrodynamic (MHD) hybrid nanofluid flows with bio-convection and internal heat generation. Such flows are characterized by strong nonlinearities arising from the synergistic interaction of magnetic forces, nanoparticle-particle interactions, convective effects caused by microorganisms, and heat gradients. Traditional numerical methods, though well-refined, typically face convergence issues, computational costs, and adaptability to highly nonlinear cases. ANN-based models, on the other hand, show remarkable characteristics toward the approximation of intricate physical correlations with enhanced convergence and generalization. This review discusses, in a detailed manner, the theoretical basis, training behavior, prediction accuracy, and computational efficiency of LM, BR, and SCG algorithms in maintaining critical fluid properties like velocity, temperature, and concentration. Special focus is given to the role played by bio-convection in enhancing transport properties and to how ANN techniques effectively model these dynamics with minimal residual error and computational intensity. A comparative study highlights the applicability and uniformity of such neural network algorithms in advanced heat and mass transfer operations with MHD hybrid nanofluids.
| [1] |
N. A. M. Alkuhayli, Heat transfer analysis of a hybrid nanofluid flow on a rotating disk considering thermal radiation effects, Case Stud. Therm. Eng., 49 (2023), 103131. https://doi.org/10.1016/j.csite.2023.103131 doi: 10.1016/j.csite.2023.103131
|
| [2] |
B. Venkateswarlu, P. V. S. Narayana, A. J. Chamkha, Heat energy impacts on hybrid (copper-titanium/water) nanofluid flow over a porous elongated sheet, J. Nanofluids, 13 (2024), 863–872. https://doi.org/10.1166/jon.2024.2181 doi: 10.1166/jon.2024.2181
|
| [3] |
S. Ontela, P. K. Pattnaik, S. Panda, S. R. Mishra, Optimizing heat transfer rate and sensitivity analysis of hybrid nanofluid flow over a radiating sheet: applications in solar-powered charging stations, Numer. Heat Tr. B-Fund., 2024 (2024), 1–21. https://doi.org/10.1080/10407790.2024.2341439 doi: 10.1080/10407790.2024.2341439
|
| [4] |
M. Atashafrooz, H. Sajjadi, A. A. Delouei, Simulation of combined convective-radiative heat transfer of hybrid nanofluid flow inside an open trapezoidal enclosure considering magnetic force impacts, J. Magn. Magn. Mater., 567 (2023), 170354. https://doi.org/10.1016/j.jmmm.2023.170354 doi: 10.1016/j.jmmm.2023.170354
|
| [5] |
W. Al-Kouz, W. Owhaib, A. Ayub, B. Souayeh, M. Hader, R. Z. Homod, et al., Thermal proficiency of magnetized and radiative cross-ternary hybrid nanofluid flow induced by a vertical cylinder, Open Phys., 22 (2024), 20230197. https://doi.org/10.1515/phys-2023-0197 doi: 10.1515/phys-2023-0197
|
| [6] |
A. U. Awan, B. Ali, S. A. A. Shah, M. Oreijah, K. Guedri, S. M. Eldin, Numerical analysis of heat transfer in Ellis hybrid nanofluid flow subject to a stretching cylinder, Case Stud. Therm. Eng., 49 (2023), 103222. https://doi.org/10.1016/j.csite.2023.103222 doi: 10.1016/j.csite.2023.103222
|
| [7] |
M. Qayyum, S. Afzal, S. T. Saeed, A. Akgül, M. B. Riaz, Unsteady hybrid nanofluid (Cu-UO2/blood) with chemical reaction and non-linear thermal radiation through convective boundaries: An application to bio-medicine, Heliyon, 9 (2023), e16578. https://doi.org/10.1016/j.heliyon.2023.e16578 doi: 10.1016/j.heliyon.2023.e16578
|
| [8] |
N. Sandeep, B. Ranjana, C. Sulochana, G. P. Ashwinkumar, Flow and heat transfer mechanism of engine-oil based hybrid nanofluid due to a nonlinearly extending surface: A comparative study, International Journal of Modelling and Simulation, 45 (2025), 665–681. https://doi.org/10.1080/02286203.2023.2235539 doi: 10.1080/02286203.2023.2235539
|
| [9] |
P. S. Reddy, P. Sreedevi, A. J. Chamkha, Hybrid nanofluid heat and mass transfer characteristics over a stretching/shrinking sheet with slip effects, J. Nanofluids, 12 (2023), 251–260. https://doi.org/10.1166/jon.2023.1996 doi: 10.1166/jon.2023.1996
|
| [10] |
U. Farooq, M. Imran, N. Fatima, S. Noreen, M. Tahir, A. Akgül, et al., Cattaneo–Christov heat flux model in radiative flow of (Fe3O4-TiO2/transformer oil) and (Cu-TiO2/transformer oil) magnetized hybrid nanofluids past double rotating disks, Case Stud. Therm. Eng., 45 (2023), 102905. https://doi.org/10.1016/j.csite.2023.102905 doi: 10.1016/j.csite.2023.102905
|
| [11] |
S. G. Li, R. Saadeh, J. K. Madhukesh, U. Khan, G. K. Ramesh, A. Zaib, et al., Aspects of an induced magnetic field utilization for heat and mass transfer ferromagnetic hybrid nanofluid flow driven by pollutant concentration, Case Stud. Therm. Eng., 53 (2024), 103892. https://doi.org/10.1016/j.csite.2023.103892 doi: 10.1016/j.csite.2023.103892
|
| [12] |
Y. Ouyang, M. F. M. Basir, K. Naganthran, I. Pop, Effects of discharge concentration and convective boundary conditions on unsteady hybrid nanofluid flow in a porous medium, Case Stud. Therm. Eng., 58 (2024), 104374. https://doi.org/10.1016/j.csite.2024.104374 doi: 10.1016/j.csite.2024.104374
|
| [13] |
E. A. Algehyne, Z. Raizah, T. Gul, A. Saeed, S. M. Eldin, A. M. Galal, Cu and Al2O3-based hybrid nanofluid flow through a porous cavity, Nanotechnol. Rev., 12 (2023), 20220526. https://doi.org/10.1515/ntrev-2022-0526 doi: 10.1515/ntrev-2022-0526
|
| [14] |
T. Gul, S. Nasir, A. S. Berrouk, Z. Raizah, W. Alghamdi, I. Ali, et al., Simulation of water-based hybrid nanofluids flow through a porous cavity for heat transfer applications, Sci. Rep., 13 (2023), 7009. https://doi.org/10.1038/s41598-023-33650-w doi: 10.1038/s41598-023-33650-w
|
| [15] | A. Paul, J. M. Nath, T. K. Das, An investigation of the MHD Cu-Al2O3/H2O hybrid-nanofluid in a porous medium across a vertically stretching cylinder incorporating thermal stratification impact, J. Ther. Eng., 9 (2023), 799–810. |
| [16] |
M. Ismail, D. M. Gururaj, Numerical investigation on nonlinear radiative magnetohydrodynamics hybrid nanofluid flow past a stretching cylinder embedded in a porous medium, J. Nanofluids, 12 (2023), 809–818. https://doi.org/10.1166/jon.2023.1962 doi: 10.1166/jon.2023.1962
|
| [17] |
D. Z. Yang, S. Ahmad, K. Ali, S. Algarni, T. Alqahtani, W. Jamshed, et al., CFD analysis of paraffin-based hybrid (Co-Au) and trihybrid (Co-Au-ZrO2) nanofluid flow through a porous medium, Nanotechnol. Rev., 13 (2024), 20240024. https://doi.org/10.1515/ntrev-2024-0024 doi: 10.1515/ntrev-2024-0024
|
| [18] |
M. A. Memon, K. Jacob, H. B. Lanjwani, E. E. Mahmoud, Darcy–Forchheimer MHD micropolar water-based hybrid nanofluid flow, heat and mass transfer past a stretching/shrinking surface with slip and radiation effects, Results in Engineering, 23 (2024), 102534. https://doi.org/10.1016/j.rineng.2024.102534 doi: 10.1016/j.rineng.2024.102534
|
| [19] |
F. H. Sohut, U. Khan, A. Ishak, S. K. Soid, I. Waini, Mixed convection hybrid nanofluid flow induced by an inclined cylinder with Lorentz forces, Micromachines, 14 (2023), 982. https://doi.org/10.3390/mi14050982 doi: 10.3390/mi14050982
|
| [20] |
K. Rafique, Z. Mahmood, Adnan, U. Khan, U. Farooq, W. Emam, Computational analysis of MHD hybrid nanofluid over an inclined cylinder: variable thermal conductivity and viscosity with buoyancy and radiation effects, Mod. Phys. Lett. B, 39 (2025), 2550033. https://doi.org/10.1142/S0217984925500332 doi: 10.1142/S0217984925500332
|
| [21] |
G. Rasool, A. Wakif, X. H. Wang, A. Alshehri, A. M. Saeed, Falkner–Skan aspects of a radiating (50% ethylene glycol + 50% water)-based hybrid nanofluid under Joule heating with Darcy–Forchheimer and Lorentz forces, Propuls. Power Res., 12 (2023), 428–442. https://doi.org/10.1016/j.jppr.2023.07.001 doi: 10.1016/j.jppr.2023.07.001
|
| [22] |
T. Sajid, S. Algarni, H. Ahmad, T. Alqahtani, W. Jamshed, M. R. Eid, et al., Exploration of irreversibility process and thermal energy of a tetra-hybrid radiative binary nanofluid focusing on solar implementations, Nanotechnol. Rev., 13 (2024), 20240040. https://doi.org/10.1515/ntrev-2024-0040 doi: 10.1515/ntrev-2024-0040
|
| [23] |
A. Sarkar, K. Das, Magneto hybrid nanofluid flow with activation energy and chemical reaction through an impermeable stretching elastic cylinder, International Journal of Modelling and Simulation, 2023 (2023), 1–13. https://doi.org/10.1080/02286203.2023.2296264 doi: 10.1080/02286203.2023.2296264
|
| [24] |
P. Guo, Y. C. Leng, F. Nazir, J. Ahmed, A. Mohamed, I. Khan, I. E. Elseesy, Mixed convection phenomenon for hybrid nanofluid flow exterior to a vertical spinning cylinder with binary chemical reaction and activation energy, Case Stud. Therm. Eng., 54 (2024), 103943. https://doi.org/10.1016/j.csite.2023.103943 doi: 10.1016/j.csite.2023.103943
|
| [25] |
A. Abd-Elmonem, S. Kanwal, M. Imtiaz, K. Ali, S. Ahmad, W. Jamshed, et al., Case study of heat generation/absorption and activation energy on MHD hybrid nanofluid (GO-MoS2/water) flow owing to a rotatfing disk, Case Stud. Therm. Eng., 51 (2023), 103632. https://doi.org/10.1016/j.csite.2023.103632 doi: 10.1016/j.csite.2023.103632
|
| [26] |
F. Haq, H. A. Ghazwani, J. Younis, M. H. Ghazwani, A. Alnujaie, Numerical investigation of mass and heat transfer in ternary hybrid nanofluid flow with activation energy, Int. J. Energ. Res., 2025 (2025), 8061691. https://doi.org/10.1155/er/8061691 doi: 10.1155/er/8061691
|
| [27] |
S. Ahmed, Z. -M. Chen, M. Ishaq, Multiple solutions in magnetohydrodynamic stagnation flow of hybrid nanofluid past a sheet with chemical reaction model and stability analysis, Phys. Fluids, 35 (2023), 072002. https://doi.org/10.1063/5.0157429 doi: 10.1063/5.0157429
|
| [28] |
J. Manigandan, D. Iranian, I. Khan, N. A. Mohammed, H. Alhazmi, Numerical simulations of thermal heat conservation in hybrid nanofluids with chemical reaction, viscous dissipation, and inclination, Case Stud. Therm. Eng., 58 (2024), 104386. https://doi.org/10.1016/j.csite.2024.104386 doi: 10.1016/j.csite.2024.104386
|
| [29] | S. Khalatbari, P. Jalili, B. Jalili, D. D. Ganji, Investigating the improvement of heat transfer and flow characteristics of hybrid nanofluids: A comprehensive review, P. I. Mech. Eng. E. -J. Pro., 2025 (2025), 09544089251318785. https://doi.org/10.1177/09544089251318785 |
| [30] |
M. Abbas, N. Khan, M. S. Hashmi, J. Younis, Numerical analysis of Marangoni convective flow of hybrid nanofluid over an infinite disk with thermophoresis particle deposition, Sci. Rep., 13 (2023), 5036. https://doi.org/10.1038/s41598-023-32011-x doi: 10.1038/s41598-023-32011-x
|
| [31] |
H. B. Marulasiddeshi, P. K. Kanti, S. B. Prakash, S. N. Sridhara, Investigation of entropy generation and thermohydraulic characteristics of Al2O3-CuO hybrid nanofluid flow in a pipe at different inlet fluid temperatures, Int. J. Therm. Sci., 193 (2023), 108541. https://doi.org/10.1016/j.ijthermalsci.2023.108541 doi: 10.1016/j.ijthermalsci.2023.108541
|
| [32] |
Z. Mahmood, F. Z. Duraihem, Adnan, U. Khan, A. M. Hassan, Model-based comparative analysis of MHD stagnation point flow of hybrid nanofluid over a stretching sheet with suction and viscous dissipation, Numer. Heat Tr. B-Fund., 86 (2025), 1639–1660. https://doi.org/10.1080/10407790.2024.2318457 doi: 10.1080/10407790.2024.2318457
|
| [33] |
T. Hayat, S. Amjad, Z. Nisar, A. Alsaedi, Analysis for peristaltic transport of MHD hybrid nanofluid with Darcy–Forchheimer porous medium, Mod. Phys. Lett. B, 39 (2025), 2550016. https://doi.org/10.1142/S0217984925500162 doi: 10.1142/S0217984925500162
|
| [34] |
A. F. Alharbi, M. Alhawiti, M. Usman, I. Ullah, M. M. Alam, M. Bilal, Enhancement of heat transfer in thin-film flow of a hybrid nanofluid over an inclined rotating disk subject to thermal radiation and viscous dissipation, Int. J. Heat Fluid Fl., 107 (2024), 109360. https://doi.org/10.1016/j.ijheatfluidflow.2024.109360 doi: 10.1016/j.ijheatfluidflow.2024.109360
|
| [35] |
S. Saleem, B. Ahmad, A. Naseem, M. B. Riaz, T. Abbas, Mono and hybrid nanofluid analysis over shrinking surface with thermal radiation: a numerical approach, Case Stud. Therm. Eng., 54 (2024), 104023. https://doi.org/10.1016/j.csite.2024.104023 doi: 10.1016/j.csite.2024.104023
|
| [36] |
K. Abbas, X. H. Wang, G. Rasool, T. Sun, I. Razzaq, Thermal optimization of buoyancy driven radiative engine-oil based viscous hybrid nanofluid flow observing micro-rotations in an inclined permeable enclosure, Case Stud. Therm. Eng., 60 (2024), 104774. https://doi.org/10.1016/j.csite.2024.104774 doi: 10.1016/j.csite.2024.104774
|
| [37] |
E. Elfiano, N. M. I. N. Ibrahim, M. K. A. Mohamed, Mixed convection boundary layer flow on a vertical flat plate in Al2O3-Ag/water hybrid nanofluid with viscous dissipation effects, Journal of Advanced Research in Numerical Heat Transfer, 22 (2024), 1–13. https://doi.org/10.37934/arnht.22.1.113 doi: 10.37934/arnht.22.1.113
|
| [38] |
A. Tulu, L. Asefa, M. Sohail, Unsteady magnetohydrodynamic hybrid nanofluid flow over a rotating disk with viscous dissipation and Cattaneo–Christov heat flux model, International Journal of Thermofluids, 21 (2024), 100586. https://doi.org/10.1016/j.ijft.2024.100586 doi: 10.1016/j.ijft.2024.100586
|
| [39] |
A. Rehman, D. Khan, I. Mahariq, M. A. Elkotb, T. Elnaqeeb, Viscous dissipation effects on time-dependent MHD Casson nanofluid over a stretching surface: A hybrid nanofluid study, J. Mol. Liq., 408 (2024), 125370. https://doi.org/10.1016/j.molliq.2024.125370 doi: 10.1016/j.molliq.2024.125370
|
| [40] |
S. R. Mishra, S. Panda, R. Baithalu, Enhanced heat transfer rate on the flow of hybrid nanofluid through a rotating vertical cone: a statistical analysis, Partial Differential Equations in Applied Mathematics, 11 (2024), 100825. https://doi.org/10.1016/j.padiff.2024.100825 doi: 10.1016/j.padiff.2024.100825
|
| [41] |
P. Choudhary, S. Choudhary, K. Jat, K. Loganathan, S. Eswaramoorthi, Impacts of unsteady MHD hybrid nanofluid over a non-linear stretchable porous sheet with thermal radiation and gyrotactic microorganisms, International Journal of Thermofluids, 23 (2024), 100788. https://doi.org/10.1016/j.ijft.2024.100788 doi: 10.1016/j.ijft.2024.100788
|
| [42] |
R. M. Ramana, C. Maheswari, S. M. Shaw, G. Dharmaiah, U. Fernandez-Gamiz, S. Noeiaghdam, Numerical investigation of 3-D rotating hybrid nanofluid Forchheimer flow with radiation absorption over a stretching sheet, Results in Engineering, 22 (2024), 102019. https://doi.org/10.1016/j.rineng.2023.102019 doi: 10.1016/j.rineng.2023.102019
|
| [43] |
S. M. R. S. Naqvi, U. Manzoor, H. Waqas, D. Liu, H. Naeem, S. M. Eldin, et al., Numerical investigation of thermal radiation with entropy generation effects in hybrid nanofluid flow over a shrinking/stretching sheet, Nanotechnol. Rev., 13 (2024), 20230171. https://doi.org/10.1515/ntrev-2023-0171 doi: 10.1515/ntrev-2023-0171
|
| [44] |
J. Madhu, J. K. Madhukesh, I. Sarris, B. C. Prasannakumara, G. K. Ramesh, N. A. Shah, et al., Influence of quadratic thermal radiation and activation energy impacts over oblique stagnation point hybrid nanofluid flow across a cylinder, Case Stud. Therm. Eng., 60 (2024), 104624. https://doi.org/10.1016/j.csite.2024.104624 doi: 10.1016/j.csite.2024.104624
|
| [45] |
M. Z. Bani-Fwaz, Adnan, S. U. Khan, B. S. Goud, T. Walelign, K. K. Asogwa, et al., Thermal performance of Falkner–Skan model (FSM) for (GO-MoS2)/(C2H6O2-H2O) 50: 50% nanofluid under radiation heating source, Sci. Rep., 15 (2025), 3885. https://doi.org/10.1038/s41598-025-86470-5 doi: 10.1038/s41598-025-86470-5
|
| [46] |
A. Ezhilarasi, D. Mohanavel, Heat transfer and sensitivity exploration of gyrotactic microorganisms suspended in a Casson hybrid nanofluid flow on a permeable stenosed artery, Phys. Fluids, 37 (2025), 021925. https://doi.org/10.1063/5.0254303 doi: 10.1063/5.0254303
|
| [47] |
K. Thirumalaisamy, Y. D. Lee, H. Kim, Magnetohydrodynamic buoyancy-driven hybrid nanofluid flow and heat transfer within a partially heated porous square cavity, Phys. Fluids, 37 (2025), 042011. https://doi.org/10.1063/5.0264031 doi: 10.1063/5.0264031
|
| [48] |
A. Kumar, B. K. Sharma, B. Almohsen, L. M. Pérez, K. Urbanowicz, Artificial neural network analysis of Jeffrey hybrid nanofluid with gyrotactic microorganisms for optimizing solar thermal collector efficiency, Sci. Rep., 15 (2025), 4729. https://doi.org/10.1038/s41598-025-88877-6 doi: 10.1038/s41598-025-88877-6
|
| [49] |
M. A. Almeshaal, 3D convective flow in a hybrid nanofluid filled bi-truncated-pyramid equipped with adiabatic cylinders, Front. Chem., 12 (2024), 1522372. https://doi.org/10.3389/fchem.2024.1522372 doi: 10.3389/fchem.2024.1522372
|
| [50] |
T. Hai, A. Basem, A. Alizadeh, P. K. Singh, H. Rajab, C. Maatki, et al., Optimizing ternary hybrid nanofluids using neural networks, gene expression programming, and multi-objective particle swarm optimization: A computational intelligence strategy, Sci. Rep., 15 (2025), 1986. https://doi.org/10.1038/s41598-025-85236-3 doi: 10.1038/s41598-025-85236-3
|
| [51] |
A. M. Hassaan, Evaluating experimentally the viability of employing hybrid nanofluids as an operating fluid in a shell-and-tube heat exchanger, Sci. Rep., 15 (2025), 4030. https://doi.org/10.1038/s41598-025-87149-7 doi: 10.1038/s41598-025-87149-7
|
| [52] |
Z. H. Khan, W. A. Khan, S. M. Ibrahim, K. Swain, Z. T. Huang, Impact of multiple slips and thermal radiation on heat and mass transfer in MHD Maxwell hybrid nanofluid flow over porous stretching sheet, Case Stud. Therm. Eng., 61 (2024), 104906. https://doi.org/10.1016/j.csite.2024.104906 doi: 10.1016/j.csite.2024.104906
|
| [53] |
V. J. Prajapati, R. Meher, Analysis of MHD tangent hyperbolic hybrid nanofluid flow with different base fluids over a porous stretched sheet, J. Taibah Univ. Sci., 18 (2024), 2300851. https://doi.org/10.1080/16583655.2023.2300851 doi: 10.1080/16583655.2023.2300851
|
| [54] |
S. Sadighi, H. Afshar, M. Jabbari, H. A. D. Ashtiani, Heat and mass transfer for MHD nanofluid flow on a porous stretching sheet with prescribed boundary conditions, Case Stud. Therm. Eng., 49 (2023), 103345. https://doi.org/10.1016/j.csite.2023.103345 doi: 10.1016/j.csite.2023.103345
|
| [55] |
M. Nazeer, M. W. Nazir, N. Ali, T. Javed, S. A. Abdelmohsen, M. I. Khan, Momentum and thermal transport analysis in MHD nanofluid through the thermally heated square conduit: finite element method, J. Magn. Magn. Mater., 580 (2023), 170954. https://doi.org/10.1016/j.jmmm.2023.170954 doi: 10.1016/j.jmmm.2023.170954
|
| [56] |
R. M. Kumar, R. S. Raju, M. A. Kumar, Effects of chemical reaction, Soret and Dufour parameters on MHD dissipative Williamson nanofluid flow over a slippery stretching sheet through a porous medium, International Journal of Modelling and Simulation, 45 (2025), 1135–1145. https://doi.org/10.1080/02286203.2023.2261812 doi: 10.1080/02286203.2023.2261812
|
| [57] |
A. Asghar, A. F. Chandio, Z. Shah, N. Vrinceanu, W. Deebani, M. Shutaywi, et al., Magnetized mixed convection hybrid nanofluid with effect of heat generation/absorption and velocity slip condition, Heliyon, 9 (2023), e13189. https://doi.org/10.1016/j.heliyon.2023.e13189 doi: 10.1016/j.heliyon.2023.e13189
|
| [58] |
I. Mechai, S. M. Alzahrani, H. A. Othman, S. H. Altoum, Z. Iqbal, A. -N. A. -H. Ahmad, et al., Nanomaterial heat transfer within thermal porous system in presence of Lorentz force, Case Stud. Therm. Eng., 49 (2023), 103139. https://doi.org/10.1016/j.csite.2023.103139 doi: 10.1016/j.csite.2023.103139
|
| [59] |
Y. A. Rothan, Thermal management of nanofluid flow through porous container with impose of Lorentz force, Case Stud. Therm. Eng., 60 (2024), 104779. https://doi.org/10.1016/j.csite.2024.104779 doi: 10.1016/j.csite.2024.104779
|
| [60] |
N. Vinodhini, V. R. Prasad, Numerical study of magneto-convective Buongiorno nanofluid flow in a rectangular enclosure under oblique magnetic field with heat generation/absorption and complex wall conditions, Heliyon, 9 (2023), e17669. https://doi.org/10.1016/j.heliyon.2023.e17669 doi: 10.1016/j.heliyon.2023.e17669
|
| [61] |
B. Kumar, Prachi, A. Singhal, R. Nandkeolyar, P. Kumar, A. J. Chamkha, Regression analysis and features of negative activation energy for MHD nanofluid flow model: a comparative study, Propuls. Power Res., 12 (2023), 273–283. https://doi.org/10.1016/j.jppr.2023.02.005 doi: 10.1016/j.jppr.2023.02.005
|
| [62] |
N. Tarakaramu, N. Sivakumar, N. Tamam, P. V. S. Narayana, S. Ramalingam, Theoretical analysis of Arrhenius activation energy on 3D MHD nanofluid flow with convective boundary condition, Mod. Phys. Lett. B, 38 (2024), 2341009. https://doi.org/10.1142/S0217984923410099 doi: 10.1142/S0217984923410099
|
| [63] |
S. Jayanthi, H. Niranjan, Effects of Joule heating, viscous dissipation, and activation energy on nanofluid flow induced by MHD on a vertical surface, Symmetry, 15 (2023), 314. https://doi.org/10.3390/sym15020314 doi: 10.3390/sym15020314
|
| [64] |
N. Vijay, K. Sharma, Magnetohydrodynamic hybrid nanofluid flow over a decelerating rotating disk with Soret and Dufour effects, Multidiscip, Multidiscip. Model Ma., 19 (2023), 253–276. https://doi.org/10.1108/MMMS-08-2022-0160 doi: 10.1108/MMMS-08-2022-0160
|
| [65] |
J. Aruna, H. Niranjan, Effects of electric field, MHD micropolar hybrid nanofluid flow with mixed convection and thermal radiation across a flat surface, J. Ther. Eng., 10 (2024), 1607–1620. https://doi.org/10.14744/thermal.0000851 doi: 10.14744/thermal.0000851
|
| [66] |
M. G. Reddy, K. V. Reddy, B. Souayeh, H. Fayaz, Numerical entropy analysis of MHD electro-osmotic flow of peristaltic movement in a nanofluid, Heliyon, 10 (2024), e27185. https://doi.org/10.1016/j.heliyon.2024.e27185 doi: 10.1016/j.heliyon.2024.e27185
|
| [67] |
S. Ijaz, M. Abdullah, H. Sadaf, S. Nadeem, Generalized complex cilia tip modeled flow through an electroosmotic region, J. Cent. South Univ., 30 (2023), 1217–1230. https://doi.org/10.1007/s11771-023-5305-9 doi: 10.1007/s11771-023-5305-9
|
| [68] |
R. Gandhi, B. K. Sharma, N. K. Mishra, Q. M. Al-Mdallal, Computer simulations of EMHD Casson nanofluid flow of blood through an irregular stenotic permeable artery: application of Koo–Kleinstreuer–Li correlations, Nanomaterials, 13 (2023), 652. https://doi.org/10.3390/nano13040652 doi: 10.3390/nano13040652
|
| [69] |
Z. Raizah, A. Khan, T. Gul, A. Saeed, E. Bonyah, A. M. Galal, Coupled Dufour and Soret effects on hybrid nanofluid flow through a gyrating channel subject to chemically reactive Arrhenius activation energy, J. Nanomater., 2023 (2023), 9208703. https://doi.org/10.1155/2023/9208703 doi: 10.1155/2023/9208703
|
| [70] |
M. Prashanth, V. S. Rao, The impact of Soret, Dufour, and chemical reaction on MHD nanofluid over a stretching sheet, Partial Differential Equations in Applied Mathematics, 10 (2024), 100674. https://doi.org/10.1016/j.padiff.2024.100674 doi: 10.1016/j.padiff.2024.100674
|
| [71] |
C. Maheswari, M. R. Ravuri, G. B. Prakash, D. Ramesh, D. V. Kumar, Influence of thermophoresis and Brownian motion on MHD hybrid nanofluid MgO-Ag/H2O flow along moving slim needle, Journal of Advanced Research in Applied Sciences and Engineering Technology, 36 (2023), 67–90. https://doi.org/10.37934/araset.36.2.6790 doi: 10.37934/araset.36.2.6790
|
| [72] |
A. H. Mirza, B. Dey, R. Choudhury, The detrimental effect of thermal exposure and thermophoresis on MHD flow with combined mass and heat transmission employing permeability, International Journal of Applied Mechanics and Engineering, 29 (2024), 90–104. https://doi.org/10.59441/ijame/181556 doi: 10.59441/ijame/181556
|
| [73] |
M. Priyadharsini, M. G. A. David, I. S. Mohammed, S. Mikhail, Numerical and sensitivity study on the heat transfer due to bioconvection on unsteady radiative MHD blood flow over a permeable artery with chemical reaction effects, Int. Commun. Heat Mass, 147 (2023), 106981. https://doi.org/10.1016/j.icheatmasstransfer.2023.106981 doi: 10.1016/j.icheatmasstransfer.2023.106981
|
| [74] |
U. J. Das, N. M. Majumdar, I. Patgiri, Influence of thermophoretic deposition and viscous dissipation on magnetohydrodynamic flow with variable viscosity and thermal conductivity, Heat Transf., 52 (2023), 4253–4273. https://doi.org/10.1002/htj.22875 doi: 10.1002/htj.22875
|
| [75] |
M. Hasanuzzaman, S. Akter, S. Sharin, M. M. Hossain, A. Miyara, M. A. Hossain, Viscous dissipation effect on unsteady magneto-convective heat-mass transport passing in a vertical porous plate with thermal radiation, Heliyon, 9 (2023), e14207. https://doi.org/10.1016/j.heliyon.2023.e14207 doi: 10.1016/j.heliyon.2023.e14207
|
| [76] |
D. Sahu, R. K. Deka, P. Das, R. Rabha, Comprehensive analysis of stratification and chemical reaction on MHD flow along an impulsively started infinite vertical plate in presence of radiation and heat source through porous medium, Heat Transf., 54 (2025), 2645–2658. https://doi.org/10.1002/htj.23313 doi: 10.1002/htj.23313
|
| [77] | B. J. Dutta, B. Kalita, Effects of nonlinear thermal density variation and radiation on MHD mixed convection through a porous medium over a permeable vertical plate: A numerical approach, Heat Transf., 54 (2025), 3163–3178. https://doi.org/10.1002/htj.23341 |
| [78] |
T. Maranna, U. S. Mahabaleshwar, H. N. Huang, S. W. Joo, An Analytical inspection on effect of chemical reaction and radiation on MHD biviscous Bingham tetra nanofluid flow with accelerated plate, J. Nanotechnol., 2025 (2025), 1382579. https://doi.org/10.1155/jnt/1382579 doi: 10.1155/jnt/1382579
|
| [79] |
C. Fetecau, S. Akhtar, N. C. Forna, C. Moroşanu, General solutions for MHD motions of second-grade fluids through a circular cylinder filled with porous medium, Symmetry, 17 (2025), 319. https://doi.org/10.3390/sym17030319 doi: 10.3390/sym17030319
|
| [80] |
A. S. Negi, B. Kumar, A. Kumar, S. K. Rawat, M. Yaseen, Investigation of heat flux and heat source/sink effect on heat transfer ferrofluid (CoFe₂O₄-H₂O) flow in an induced magnetic field with porous medium within the horizontal channel, Int. J. Ambient Energy, 46 (2025), 2447939. https://doi.org/10.1080/01430750.2024.2447939 doi: 10.1080/01430750.2024.2447939
|
| [81] |
B. Ilias, A. Alahmer, A. Abderrahmane, O. Younes, S. Laoudj, R. Marzougi, Investigating flow and heat distribution of NE-PCM in a double lid-driven MHD octagonal chamber, Heat Transf., 54 (2025), 2799–2815. https://doi.org/10.1002/htj.23325 doi: 10.1002/htj.23325
|
| [82] |
P. K. Yadav, P. Srivastava, Brinkman–Forchheimer model of creeping flow of electromagnetohydrodynamic micropolar fluid through a swarm of cylindrical particles: cell model technique, Phys. Fluids, 37 (2025), 033104. https://doi.org/10.1063/5.0245425 doi: 10.1063/5.0245425
|
| [83] |
V. B. R. Komaravolu, T. G. Rao, K. S. Balamurugan, C. B. Rani, Cross-diffusion effects on magnetohydrodynamic free convective flow over a vertical porous plate under the influence of chemical reactions, thermal radiation, and dissipative heating, Heat Transf., 54 (2025), 3374–3391. https://doi.org/10.1002/htj.23358 doi: 10.1002/htj.23358
|
| [84] |
B. Deka, R. Choudhury, Analysis of Soret and Dufour impacts on magnetohydrodynamics flow constrained between a long upright wavy wall and a parallel flat wall in a permeable medium, Heat Transf., 54 (2025), 3973–3984. https://doi.org/10.1002/htj.23394 doi: 10.1002/htj.23394
|
| [85] |
W. Aich, A. Abbas, A. M. Obalalu, W. Hassen, L. B. Said, R. Hajlaoui, L. Kolsi, Double diffusive MHD stagnation point flow of second grade fluid in non-Darcy porous media under radiation effects, Sci. Rep., 15 (2025), 395. https://doi.org/10.1038/s41598-024-84562-2 doi: 10.1038/s41598-024-84562-2
|
| [86] | J. -H. Pan, M. -J. Ni, Magnetohydrodynamic effects on liquid metal flows in an open channel for fusion plasma facing components with a transverse magnetic field, Nucl. Fusion, 65 (2025), 046015. |
| [87] |
Y. J. Li, A. Majeed, N. Ijaz, K. Barghout, M. R. Ali, T. Muhammad, Melting thermal transportation in bioconvection Casson nanofluid flow over a nonlinear surface with motile microorganism: application in bioprocessing thermal engineering, Case Stud. Therm. Eng., 49 (2023), 103285. https://doi.org/10.1016/j.csite.2023.103285 doi: 10.1016/j.csite.2023.103285
|
| [88] |
Z. M. Liu, S. G. Li, T. Sadaf, S. U. Khan, F. Alzahrani, M. I. Khan, et al., Numerical bio-convective assessment for rate type nanofluid influenced by Nield thermal constraints and distinct slip features, Case Stud. Therm. Eng., 44 (2023), 102821. https://doi.org/10.1016/j.csite.2023.102821 doi: 10.1016/j.csite.2023.102821
|
| [89] |
G. Dharmaiah, F. Mebarek-Oudina, J. L. R. Prasad, C. B. Rani, Exploration of bio-convection for slippery two-phase Maxwell nanofluid past a vertical induced magnetic stretching regime associated for biotechnology and engineering, J. Mol. Liq., 391 (2023), 123408. https://doi.org/10.1016/j.molliq.2023.123408 doi: 10.1016/j.molliq.2023.123408
|
| [90] |
I. Tlili, T. A. Alkanhal, A. Rebey, M. B. Henda, S. E. A. Musmar, Nanofluid bioconvective transport for non‑Newtonian material in bidirectional oscillating regime with nonlinear radiation and external heat source: applications to storage and renewable energy, J. Energy Storage, 68 (2023), 107839. https://doi.org/10.1016/j.est.2023.107839 doi: 10.1016/j.est.2023.107839
|
| [91] |
A. S. M. Aljaloud, L. Manai, I. Tlili, Bioconvection flow of Cross nanofluid due to cylinder with activation energy and second order slip features, Case Stud. Therm. Eng., 42 (2023), 102767. https://doi.org/10.1016/j.csite.2023.102767 doi: 10.1016/j.csite.2023.102767
|
| [92] |
V. Makkar, V. Poply, N. Sharma, Three-dimensional modelling of magnetohydrodynamic bio‑convective Casson nanofluid flow with buoyancy effects over exponential stretching sheet along with heat source & gyrotactic micro-organisms, J. Nanofluids, 12 (2023), 535–547. https://doi.org/10.1166/jon.2023.1921 doi: 10.1166/jon.2023.1921
|
| [93] |
P. M. Patil, S. Benawadi, The bioconvective flow of an Eyring–Powell nanoliquid: the influence of entropy, International Journal of Modelling and Simulation, 45 (2025), 405–419. https://doi.org/10.1080/02286203.2023.2205988 doi: 10.1080/02286203.2023.2205988
|
| [94] |
A. Hussain, S. Riaz, A. Hassan, M. Y. Malik, A. S. Alqahtani, H. Karamti, et al., Magneto-bio-convection enhanced heat transfer in Prandtl hybrid nanofluid with inclined magnetization and microorganism migration, J. Magn. Magn. Mater., 588 (2023), 171403. https://doi.org/10.1016/j.jmmm.2023.171403 doi: 10.1016/j.jmmm.2023.171403
|
| [95] |
M. Ali, M. Tabrez, H. Liu, W. A. Khan, Magnetized bioconvective thermal efficacy of ferromagnetic nanoparticles involving appliance of radiation and viscous dissipation, Thermal Science and Engineering Progress, 47 (2024), 102314. https://doi.org/10.1016/j.tsep.2023.102314 doi: 10.1016/j.tsep.2023.102314
|
| [96] |
I. Hussain, W. A. Khan, M. Tabrez, M. Ali, M. Waqas, I. Boukhris, et al., Bioconvection aspects in magnetized Eyring–Powell fluid configured by suspension of ferromagnetic nanoparticles subject to gyrotactic moment of microorganisms, Tribol. Int., 189 (2023), 108876. https://doi.org/10.1016/j.triboint.2023.108876 doi: 10.1016/j.triboint.2023.108876
|
| [97] |
M. I. Kopp, V. V. Yanovsky, Effect of gravity modulation on weakly nonlinear bio-thermal convection in a porous medium layer, J. Appl. Phys., 134 (2023), 104702. https://doi.org/10.1063/5.0165178 doi: 10.1063/5.0165178
|
| [98] |
S. Rehman, S. Bouzgarrou, Hashim, M. H. dhaou, M. Boujelbene, Darcy–Forchheimer flow of bioconvective nanofluid over a nonaligned stretching surface with slip effects, Mater. Today Commun., 37 (2023), 107444. https://doi.org/10.1016/j.mtcomm.2023.107444 doi: 10.1016/j.mtcomm.2023.107444
|
| [99] |
K. M. Nihaal, U. S. Mahabaleshwar, S. W. Joo, Darcy–Forchheimer imposed exponential heat source-sink and activation energy with the effects of bioconvection over radially stretching disc, Sci. Rep., 14 (2024), 7910. https://doi.org/10.1038/s41598-024-58051-5 doi: 10.1038/s41598-024-58051-5
|
| [100] |
M. S. Alqurashi, U. Farooq, M. Sediqmal, H. Waqas, S. Noreen, M. Imran, et al., Significance of melting heat in bioconvection flow of micropolar nanofluid over an oscillating surface, Sci. Rep., 13 (2023), 11692. https://doi.org/10.1038/s41598-023-38361-w doi: 10.1038/s41598-023-38361-w
|
| [101] |
B. C. Prasannakumara, J. K. Madhukesh, G. K. Ramesh, Bioconvective nanofluid flow over an exponential stretched sheet with thermophoretic particle deposition, Propuls. Power Res., 12 (2023), 284–296. https://doi.org/10.1016/j.jppr.2023.05.004 doi: 10.1016/j.jppr.2023.05.004
|
| [102] |
Y. -M. Chu, S. Jakeer, S. R. R. Reddy, M. L. Rupa, Y. Trabelsi, M. I. Khan, et al., Double diffusion effect on the bio-convective magnetized flow of tangent hyperbolic liquid by a stretched nano-material with Arrhenius catalysts, Case Stud. Therm. Eng., 44 (2023), 102838. https://doi.org/10.1016/j.csite.2023.102838 doi: 10.1016/j.csite.2023.102838
|
| [103] |
L. Kolsi, K. Al-Khaled, S. U. Khan, N. B. Khedher, Effect of thermal radiation and variable viscosity on bioconvective and thermal stability of non-Newtonian nanofluids under bidirectional porous oscillating regime, Mathematics, 11 (2023), 1600. https://doi.org/10.3390/math11071600 doi: 10.3390/math11071600
|
| [104] |
F. Peter, P. Sambath, S. Dhanasekaran, Analyzing the MHD bioconvective Eyring–Powell fluid flow over an upright cone/plate surface in a porous medium with activation energy and viscous dissipation, Computation, 12 (2024), 48. https://doi.org/10.3390/computation12030048 doi: 10.3390/computation12030048
|
| [105] |
M. I. Khan, F. Shah, S. S. Abdullaev, S. G. Li, R. Altuijri, H. Vaidya, et al., Heat and mass transport behavior in bio-convective reactive flow of nanomaterials with Soret and Dufour characteristics, Case Stud. Therm. Eng., 49 (2023), 103347. https://doi.org/10.1016/j.csite.2023.103347 doi: 10.1016/j.csite.2023.103347
|
| [106] |
W. Ibrahim, T. Gizewu, Analysis of entropy generation of bio-convection on curved stretching surface with gyrotactic micro-organisms and third-order slip flow, International Journal of Thermofluids, 17 (2023), 100277. https://doi.org/10.1016/j.ijft.2022.100277 doi: 10.1016/j.ijft.2022.100277
|
| [107] | D. Das, S. Shaw, R. R. Kairi, Irreversibility estimation in triply stratified bio-Marangoni convection in Powell–Eyring nanofluid under the influence of external flow, Phys. Scripta, 99 (2024), 055253. |
| [108] |
B. Arun, M. Deivanayaki, S. K. Vaithilingam, Bioconvection flow in the presence of Casson nanoparticles on a stretching/shrinking vertical sheet with chemical reaction, J. Chem., 2023 (2023), 6199200. https://doi.org/10.1155/2023/6199200 doi: 10.1155/2023/6199200
|
| [109] |
N. A. Shah, F. Ali, M. Faizan, S. S. Zafar, Theoretical exploration of bioconvection magneto flow of micropolar nanomaterial off-centered stagnation point framed by rotating disk, Adv. Theor. Simul., 8 (2025), 2401345. https://doi.org/10.1002/adts.202401345 doi: 10.1002/adts.202401345
|
| [110] |
S. Jakeer, S. R. R. Reddy, S. V. Easwaramoorthy, H. T. Basha, J. Cho, Influence of induced magnetic fields and double-diffusive convection on Carreau nanofluid flow through diverse geometries: numerical and ANN approaches, Mathematics, 11 (2023), 3687. https://doi.org/10.3390/math11173687 doi: 10.3390/math11173687
|
| [111] |
A. Basu, A. Saha, S. Banerjee, P. C. Roy, B. Kundu, A review of artificial intelligence methods in predicting thermophysical properties of nanofluids for heat transfer applications, Energies, 17 (2024), 1351. https://doi.org/10.3390/en17061351 doi: 10.3390/en17061351
|
| [112] |
A. Alotaibi, T. Gul, I. M. S. Alotaibi, A. Alghuried, A. S. Alshomrani, M. Alghuson, Artificial neural network analysis of the flow of nanofluids in a variable porous gap between two inclined cylinders for solar applications, Eng. Appl. Comp. Fluid, 18 (2024), 2343418. https://doi.org/10.1080/19942060.2024.2343418 doi: 10.1080/19942060.2024.2343418
|
| [113] |
M. D. Shamshuddin, S. O. Salawu, K. K. Asogwa, P. S. Rao, Thermal exploration of convective transportation of ethylene glycol-based magnetized nanofluid flow in porous cylindrical annulus utilizing MoS2 and Fe3O4 nanoparticles with inconstant viscosity, J. Magn. Magn. Mater., 573 (2023), 170663. https://doi.org/10.1016/j.jmmm.2023.170663 doi: 10.1016/j.jmmm.2023.170663
|
| [114] |
M. N. Hudha, M. J. Hasan, T. Bairagi, A. K. Azad, M. M. Rahman, Artificial neural network analysis on the effect of mixed convection in triangular-shaped geometry using water-based Al2O3 nanofluid, PLoS One, 19 (2024), e0304826. https://doi.org/10.1371/journal.pone.0304826 doi: 10.1371/journal.pone.0304826
|
| [115] |
H. A. Prince, A. Ghosh, M. M. H. Siam, M. A. H. Mamun, AI predicts MHD double-diffusive mixed convection and entropy generation in hybrid nanofluids for different magnetic field inclination angles by ANN, International Journal of Thermofluids, 19 (2023), 100383. https://doi.org/10.1016/j.ijft.2023.100383 doi: 10.1016/j.ijft.2023.100383
|
| [116] |
P. Chinnasamy, R. Sivajothi, S. Sathish, M. Abbas, V. Jeyakrishnan, R. Goel, et al., Peristaltic transport of Sutterby nanofluid flow in an inclined tapered channel with an artificial neural network model and biomedical engineering application, Sci. Rep., 14 (2024), 555. https://doi.org/10.1038/s41598-023-49480-9 doi: 10.1038/s41598-023-49480-9
|
| [117] |
Amna, F. Aljuaydi, Z. Khan, S. Islam, Numerical investigations of ion slip and Hall effects on Cattaneo–Christov heat and mass fluxes in Darcy–Forchheimer flow of Casson fluid within a porous medium, utilizing non‑Fourier double diffusion theories through artificial neural networks, International Journal of Thermofluids, 20 (2023), 100475. https://doi.org/10.1016/j.ijft.2023.100475 doi: 10.1016/j.ijft.2023.100475
|
| [118] |
Z. Shah, M. Alhazmi, W. A. Khan, N. A. AlBasheir, R. Z. Haider, An artificial neural network approach to characterizing the behavior of bioconvective nanofluid model using backpropagation of Levenberg–Marquardt algorithm, Int. J. Mod. Phys. B, 39 (2025), 2540055. https://doi.org/10.1142/S0217979225400557 doi: 10.1142/S0217979225400557
|
| [119] |
P. Kaswan, M. Kumar, M. Kumari, Analysis of a bioconvection flow of magnetocross nanofluid containing gyrotactic microorganisms with activation energy using an artificial neural network scheme, Results in Engineering, 17 (2023), 101015. https://doi.org/10.1016/j.rineng.2023.101015 doi: 10.1016/j.rineng.2023.101015
|
| [120] |
M. Yaseen, S. K. Rawat, N. A. Shah, M. Kumar, S. M. Eldin, Ternary hybrid nanofluid flow containing gyrotactic microorganisms over three different geometries with Cattaneo–Christov model, Mathematics, 11 (2023), 1237. https://doi.org/10.3390/math11051237 doi: 10.3390/math11051237
|
| [121] |
Y. Qu, D. J. Jasim, S. M. Sajadi, S. Salahshour, A. Rahmanian, et al., Artificial neural network modeling of thermal characteristics of WO3-CuO (50: 50)/water hybrid nanofluid with a back‑propagation algorithm, Mater. Today Commun., 38 (2024), 108169. https://doi.org/10.1016/j.mtcomm.2024.108169 doi: 10.1016/j.mtcomm.2024.108169
|
| [122] |
A. Borode, T. Tshephe, P. Olubambi, M. Sharifpur, J. Meyer, Effects of temperature and nanoparticle mixing ratio on the thermophysical properties of GNP-Fe2O3 hybrid nanofluids: an experimental study with RSM and ANN modeling, J. Therm. Anal. Calorim., 149 (2024), 5059–5083. https://doi.org/10.1007/s10973-024-13029-3 doi: 10.1007/s10973-024-13029-3
|
| [123] |
S. K. Rawat, M. Yaseen, M. Pant, C. S. Ujarari, Designing artificial intelligence computing techniques to study heat transfer of a ternary hybrid nanofluid flow: application of particle swarm optimization and artificial neural network, Mod. Phys. Lett. B, 39 (2025), 2550114. https://doi.org/10.1142/S0217984925501143 doi: 10.1142/S0217984925501143
|
| [124] |
S. Z. Cai, Z. P. Mao, Z. C. Wang, M. L. Yin, G. E. Karniadakis, Physics-informed neural networks (PINNs) for fluid mechanics: A review, Acta Mech. Sin., 37 (2021), 1727–1738. https://doi.org/10.1007/s10409-021-01148-1 doi: 10.1007/s10409-021-01148-1
|
| [125] |
C. Zhao, F. F. Zhang, W. Q. Lou, X. Wang, J. Y. Yang, A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics, Phys. Fluids, 36 (2024), 101301. https://doi.org/10.1063/5.0226562 doi: 10.1063/5.0226562
|
| [126] |
Z. Y. Ren, S. J. Zhou, D. Liu, Q. H. Liu, Physics-informed neural networks: methodological evolution, theoretical foundations, and interdisciplinary frontiers toward next-generation scientific computing, Appl. Sci., 15 (2025), 8092. https://doi.org/10.3390/app15148092 doi: 10.3390/app15148092
|
| [127] |
S. Goswami, A. Bora, Y. Yu, G. E. Karniadakis, Physics-informed deep neural operator networks, In: Machine learning in modeling and simulation, Cham: Springer, 2023,219–254. https://doi.org/10.1007/978-3-031-36644-4_6
10.1007/978-3-031-36644-4_6 |
| [128] | A. A. Howard, S. H. Murphy, S. E. Ahmed, P. Stinis, Stacked networks improve physics-informed training: applications to neural networks and deep operator networks, (2023), arXiv: 2311.06483. https://doi.org/10.48550/arXiv.2311.06483 |
| [129] |
P. C. Meng, Z. B. Xu, X. C. Wang, W. S. Yin, H. Y. Liu, A novel method for solving the inverse spectral problem with incomplete data, J. Comput. Appl. Math., 463 (2025), 116525. https://doi.org/10.1016/j.cam.2025.116525 doi: 10.1016/j.cam.2025.116525
|
| [130] |
J. B. Zhuang, P. C. Meng, W. S. Yin, A stable neural network for inverse scattering problems with contaminated data, Knowl. -Based Syst., 310 (2025), 113001. https://doi.org/10.1016/j.knosys.2025.113001 doi: 10.1016/j.knosys.2025.113001
|
| [131] |
Y. Xiao, Z. X. Jiang, P. C. Meng, W. S. Yin, D. Q. Qi, L. H. Zhou, Local manifold approximation of dynamical system based on neural ordinary differential equation, Physica D, 477 (2025), 134688. https://doi.org/10.1016/j.physd.2025.134688 doi: 10.1016/j.physd.2025.134688
|
| [132] |
P. Giudici, Safe machine learning, Statistics, 58 (2024), 473–477. https://doi.org/10.1080/02331888.2024.2361481 doi: 10.1080/02331888.2024.2361481
|