The green transformation of agri-food supply chains is vital for reducing environmental burdens and ensuring food safety. However, research lacks a comprehensive understanding of how environmental regulations and digital technologies synergistically drive this transformation under market uncertainties and stakeholder behavioral complexities. This research gap limits the development of effective policies and strategies for sustainable agricultural development. To address this gap, we adopted an integrated perspective of environmental regulation and digital empowerment to construct a tripartite evolutionary game model involving farmers, wholesalers, and government. Based on evolutionary game theory and stochastic differential equations, we analyzed how strategies evolve and reach equilibrium under the combined influence of policy interventions, market dynamics, and technological adoption. Through sensitivity analysis of key parameters, the results revealed that green production costs, digital technology costs, market premiums, and regulatory intensity significantly determine the system's evolutionary trajectory. The initial strategy distribution affects convergence speed, while market volatility and bounded rationality may cause fluctuations or destabilization. This research advances theoretical understanding of sustainable transformation mechanisms in agri-food supply chains and provides practical insights for developing resilient green supply systems and targeted agricultural policies.
Citation: Zheng Wen, Ming Mo. The impact of environmental regulations and digital empowerment on agri-food supply chains under stochastic market demand conditions[J]. AIMS Mathematics, 2025, 10(9): 22731-22768. doi: 10.3934/math.20251011
The green transformation of agri-food supply chains is vital for reducing environmental burdens and ensuring food safety. However, research lacks a comprehensive understanding of how environmental regulations and digital technologies synergistically drive this transformation under market uncertainties and stakeholder behavioral complexities. This research gap limits the development of effective policies and strategies for sustainable agricultural development. To address this gap, we adopted an integrated perspective of environmental regulation and digital empowerment to construct a tripartite evolutionary game model involving farmers, wholesalers, and government. Based on evolutionary game theory and stochastic differential equations, we analyzed how strategies evolve and reach equilibrium under the combined influence of policy interventions, market dynamics, and technological adoption. Through sensitivity analysis of key parameters, the results revealed that green production costs, digital technology costs, market premiums, and regulatory intensity significantly determine the system's evolutionary trajectory. The initial strategy distribution affects convergence speed, while market volatility and bounded rationality may cause fluctuations or destabilization. This research advances theoretical understanding of sustainable transformation mechanisms in agri-food supply chains and provides practical insights for developing resilient green supply systems and targeted agricultural policies.
| [1] |
M. McNutt, M. Climate change impacts, Science, 341 (2013), 435–435. https://doi.org/10.1126/science.1243256 doi: 10.1126/science.1243256
|
| [2] |
M. Li, C. Işık, J. Yan, R. Wu, The nexus between clean energy market risk and US business environment: evidence from wavelet coherence and variance analysis, Stoch. Environ. Res. Risk Assess., 38 (2024), 4415–4430. https://doi.org/10.1007/s00477-024-02810-3 doi: 10.1007/s00477-024-02810-3
|
| [3] |
R. Wu, H. Zeng, M. Z. Abedin, A. D. Ahmed, The impact of extreme climate on tourism sector international stock markets: A quantile and time–frequency perspective, Tourism Econ., 2025. https://doi.org/10.1177/13548166241311633 doi: 10.1177/13548166241311633
|
| [4] |
S. Pete, M. Daniel, C. Zucong, G. Daniel, J. Henry, K. Pushpam, et al., Greenhouse gas mitigation in agriculture, Philos. Trans. Royal Soc. B: Biol. Sci., 363 (2008), 789–813. https://doi.org/10.1098/rstb.2007.2184 doi: 10.1098/rstb.2007.2184
|
| [5] |
J. A. Foley, N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston, et al., Solutions for a cultivated planet, Nature, 478 (2011), 337–342. https://doi.org/10.1038/nature10452 doi: 10.1038/nature10452
|
| [6] | F. N. Tubiello, G. Fischer, Reducing climate change impacts on agriculture: Global and regional effects of mitigation, 2000–2080, Technol. Forecast. Soc. Change, 74 (2007), 1030–1056. https://doi.org/10.1016/j.techfore.2006.05.027 |
| [7] |
D. Li, X. Wang, H. K. Chan, R. Manzini, Sustainable food supply chain management, Int. J. Product. Econ., 152 (2014), 1–8. https://doi.org/10.1016/j.ijpe.2014.04.003 doi: 10.1016/j.ijpe.2014.04.003
|
| [8] |
M. Rizou, I. M. Galanakis, T. M. Aldawoud, C. M. Galanakis, Safety of foods, food supply chain and environment within the COVID–19 pandemic, Trends Food Sci. Technol., 102 (2020), 293–299. https://doi.org/10.1016/j.tifs.2020.06.008 doi: 10.1016/j.tifs.2020.06.008
|
| [9] |
R. Wu, M. Li, The impact of blockchain on carbon reduction in remanufacturing supply chains within the carbon trading market: A chaos and bifurcation analysis, Nonlinear Dyn., 113 (2025), 20329–20362. https://doi.org/10.1007/s11071-025-11183-3 doi: 10.1007/s11071-025-11183-3
|
| [10] |
C. Wu, C. Xu, Q. Zhao, J. Zhu, Research on financing strategy under the integration of green supply chain and blockchain technology, Comput. Indust. Eng., 184 (2023), 109598. https://doi.org/10.1016/j.cie.2023.109598 doi: 10.1016/j.cie.2023.109598
|
| [11] |
R. Wu, M. Li, Optimization of shipping freight forwarding services considering consumer rebates under the impact of carbon tax policy, Ocean Coastal Manag., 258 (2024), 107361. https://doi.org/10.1016/j.ocecoaman.2024.107361 doi: 10.1016/j.ocecoaman.2024.107361
|
| [12] |
A. Kamilaris, A. Fonts, F. X. Prenafeta-Bold, The rise of blockchain technology in agriculture and food supply chains, Trends Food Sci. Technol., 91 (2019), 640–652. https://doi.org/10.1016/j.tifs.2019.07.034 doi: 10.1016/j.tifs.2019.07.034
|
| [13] |
Z. Zheng, S. Xie, H. N. Dai, X. Chen, H. Wang, Blockchain challenges and opportunities: A survey, Int. J. Web Grid Services, 14 (2018), 352–375. https://doi.org/10.1504/IJWGS.2018.095647 doi: 10.1504/IJWGS.2018.095647
|
| [14] | P. Dutta, T. M. Choi, S. Somani, R. Butala, Blockchain technology in supply chain operations: Applications, challenges and research opportunities, Trans. Res. Part E: Logist. Transport. Rev., 142 (2020), 102067. https://doi.org/10.1016/j.tre.2020.102067 |
| [15] |
M. M. Queiroz, R. Telles, S. H. Bonilla, Blockchain and supply chain management integration: A systematic review of the literature, Supply Chain Manag.: Int. J., 25 (2020), 241–254. https://doi.org/10.1108/SCM-03-2018-0143 doi: 10.1108/SCM-03-2018-0143
|
| [16] |
M. Massaro, Digital transformation in the healthcare sector through blockchain technology. Insights from academic research and business developments, Technovation, 120 (2023), 102386. https://doi.org/10.1016/j.technovation.2021.102386 doi: 10.1016/j.technovation.2021.102386
|
| [17] | G. Tadasse, B. Algieri, M. Kalkuhl, J. Von Braun, Drivers and triggers of international food price spikes and volatility, In: Food price volatility and its implications for food security and policy, Cham: Springer International Publishing, 2016, 59–82. |
| [18] |
D. K. Ray, J. S. Gerber, G. K. MacDonald, P. C. West, Climate variation explains a third of global crop yield variability, Nat. Commun., 6 (2015), 6989. https://doi.org/10.1038/ncomms6989 doi: 10.1038/ncomms6989
|
| [19] | Simon, A. Herbert, A behavioral model of rational choice, Quart. J. Econ., 69 (1955): 99–118. https://doi.org/10.2307/1884852 |
| [20] |
J. H. Dyer, H. Singh, The relational view: Cooperative strategy and sources of interorganizational competitive advantage, Acad. Manag. Rev., 23 (1998), 660–679. https://doi.org/10.5465/amr.1998.1255632 doi: 10.5465/amr.1998.1255632
|
| [21] |
A. Kamilaris, A. Kartakoullis, F. X. Prenafeta-Boldú, A review on the practice of big data analysis in agriculture, Comput. Elect. Agric., 143 (2017), 23–37. https://doi.org/10.1016/j.compag.2017.09.037 doi: 10.1016/j.compag.2017.09.037
|
| [22] |
R. Wu, M. Li, F. Liu, H. Zeng, X. Cong, Adjustment strategies and chaos in duopoly supply chains: The impacts of carbon trading markets and emission reduction policies, Int. Rev. Econ. Finance, 95 (2024), 103482. https://doi.org/10.1016/j.iref.2024.103482 doi: 10.1016/j.iref.2024.103482
|
| [23] |
G. Chiaraluce, D. Bentivoglio, A. Finco, M. Fiore, F. Contò, A. Galati, Exploring the role of blockchain technology in modern high–value food supply chains: Global trends and future research directions, Agric. Econ., 12 (2024), 6. https://doi.org/10.1186/s40100-024-00301-1 doi: 10.1186/s40100-024-00301-1
|
| [24] | Blockchain in agriculture for farm to fork traceability, Folio3 AgTech, 2024. Available from: https://agtech.folio3.com/blogs/blockchain-in-agriculture/. |
| [25] |
A. Hamidoğlu, Ö. M. Gül, S. N. Kadry, A game-theoretical approach for the adoption of government–supported blockchain application in the IoT-enabled agricultural supply chain, Int. Things, 26 (2024), 101163. https://doi.org/10.1016/j.iot.2024.101163 doi: 10.1016/j.iot.2024.101163
|
| [26] | J. Wang, Digital transformation, environmental regulation and enterprises' ESG performance: Evidence from China, Corp. Soc. Respons. Environ. Manag., 32 (2025), 1567–1582. https://doi.org/10.1002/csr.3029 |
| [27] |
M. Dhanaraju, P. Chenniappan, K. Ramalingam, S. Pazhanivelan, R. Kaliaperumal, Smart farming: Internet of Things (IoT)-based sustainable agriculture, Agriculture, 12 (2022), 1745. https://doi.org/10.3390/agriculture12101745 doi: 10.3390/agriculture12101745
|
| [28] |
R. Wu, H. Zeng, J. Yan, C. Işık, Introducing the environmental governance policy uncertainty (EGPU) for China, J. Environ. Manag., 386 (2025), 125748. https://doi.org/10.1016/j.jenvman.2025.125748 doi: 10.1016/j.jenvman.2025.125748
|
| [29] |
H. R. Hasan, A. Musamih, K. Salah, R. Jayaraman, M. Omar, J. Arshad, et al., Smart agriculture assurance: IoT and blockchain for trusted sustainable produce, Comput. Electron.Agricult., 224 (2024), 109184. https://doi.org/10.1016/j.compag.2024.109184 doi: 10.1016/j.compag.2024.109184
|
| [30] |
A. Hamidoğlu, G. W. Weber, A novel Nash-based low-carbon implementation in agricultural supply chain management, J. Cleaner Product., 449 (2024), 141846. https://doi.org/10.1016/j.jclepro.2024.141846 doi: 10.1016/j.jclepro.2024.141846
|
| [31] |
M. Vahdanjoo, C. G. Sorensen, M. Norremark, Digital transformation of the agri-food system, Current Opinion Food Sci., (2025), 101287. https://doi.org/10.1016/j.cofs.2025.101287 doi: 10.1016/j.cofs.2025.101287
|
| [32] |
C. S. Sullivan, M. Gemtou, E. Anastasiou, S. Fountas, Building trust: A systematic review of the drivers and barriers of agricultural data sharing, Smart Agricult. Technol., 8 (2024), 100477. https://doi.org/10.1016/j.atech.2024.100477 doi: 10.1016/j.atech.2024.100477
|
| [33] |
G. Büyüközkan, D. Uztürk, Integrated design framework for smart agriculture: Bridging the gap between digitalization and sustainability, J. Cleaner Product., 449 (2024), 141572. https://doi.org/10.1016/j.jclepro.2024.141572 doi: 10.1016/j.jclepro.2024.141572
|
| [34] |
W. A. P. Dania, K. Xing, Y. Amer, Collaboration behavioural factors for sustainable agri-food supply chains: A systematic review, J. Cleaner Product., 186 (2018), 851–864. https://doi.org/10.1016/j.jclepro.2018.03.148 doi: 10.1016/j.jclepro.2018.03.148
|
| [35] |
A. Rejeb, K. Rejeb, S. J. Simske, H. Treiblmaier, Drones for supply chain management and logistics: a review and research agenda, Int. J. Logist. Res. Appl., 26 (2023), 708–731. https://doi.org/10.1080/13675567.2021.1981273 doi: 10.1080/13675567.2021.1981273
|
| [36] | M. E. Porter, C. V. D. Linde, Toward a new conception of the environment-competitiveness relationship, J. Econ. Perspect., 9 (1995), 97–118. |
| [37] |
M. Gong, Y. Gao, L. Koh, C. Sutcliffe, J. Cullen, The role of customer awareness in promoting firm sustainability and sustainable supply chain management, Int. J. Product. Econ., 217 (2019), 88–96. https://doi.org/10.1016/j.ijpe.2019.01.033 doi: 10.1016/j.ijpe.2019.01.033
|
| [38] | D. Friedman, Evolutionary games in economics, Econometrica, 1991,637–666. |
| [39] |
Q. Long, X. Tao, Y. Shi, S. Zhang, Evolutionary game analysis among three green-sensitive parties in green supply chains, IEEE Trans. Evolut. Comput., 25 (2021), 508–523. https://doi.org/10.1109/TEVC.2021.3052173 doi: 10.1109/TEVC.2021.3052173
|
| [40] | S. S. Kamble, A. Gunasekaran, R. Sharma, Modeling the blockchain enabled traceability in agriculture supply chain, Int. J. Inform. Manag., 52 (2020), 101967. |
| [41] |
A. Hamidoğlu, A game-theoretical approach on the construction of a novel agri-food supply chain model supported by the government, Expert Syst. Appl., 237 (2024), 121353. https://doi.org/10.1016/j.eswa.2023.121353 doi: 10.1016/j.eswa.2023.121353
|
| [42] |
H. Wang, L. Li, C. Guo, R. Zhu, Research on stochastic evolutionary game and simulation of carbon emission reduction among participants in prefabricated building supply chains, Appl. Sci., 15 (2025), 4982. https://doi.org/10.3390/app15094982 doi: 10.3390/app15094982
|
| [43] |
C. Wang, J. Weng, J. He, X. Wang, H. Ding, Q. Zhu, Stability analysis of the credit market in supply chain finance based on stochastic evolutionary game theory, Mathematics, 12 (2024), 1764. https://doi.org/10.3390/math12111764 doi: 10.3390/math12111764
|
| [44] |
J. Du, J. Li, J. Li, W. Li, Competition-cooperation mechanism of online supply chain finance based on a stochastic evolutionary game, Oper. Res. Int. J., 23 (2023), 55. https://doi.org/10.1007/s12351-023-00792-8 doi: 10.1007/s12351-023-00792-8
|
| [45] |
H. Wang, L. Li, C. Guo, R. Zhu, Research on stochastic evolutionary game and simulation of carbon emission reduction among participants in prefabricated building supply chains, Appl. Sci., 15 (2025), 4982. https://doi.org/10.3390/app15094982 doi: 10.3390/app15094982
|
| [46] |
S. N. Shan, Z. C. Zhang, W. Y. Ji, H. Wang, Analysis of collaborative urban public crisis governance in complex system: A multi–agent stochastic evolutionary game approach, Sust. Cit. Soc., 91 (2023), 104418. https://doi.org/10.1016/j.scs.2023.104418 doi: 10.1016/j.scs.2023.104418
|