Research article Special Issues

Two improved extrapolated gradient algorithms for pseudo-monotone variational inequalities

  • Received: 13 November 2024 Revised: 14 January 2025 Accepted: 24 January 2025 Published: 08 February 2025
  • MSC : 47J20

  • In this paper, the approximation problem for pseudo-monotonic variational inequalities is studied. With the help of the reciprocal form of parameters and the golden section ratio, two kinds of algorithms are introduced, and their strong convergence is proved under certain appropriate conditions.

    Citation: Haoran Tang, Weiqiang Gong. Two improved extrapolated gradient algorithms for pseudo-monotone variational inequalities[J]. AIMS Mathematics, 2025, 10(2): 2064-2082. doi: 10.3934/math.2025097

    Related Papers:

  • In this paper, the approximation problem for pseudo-monotonic variational inequalities is studied. With the help of the reciprocal form of parameters and the golden section ratio, two kinds of algorithms are introduced, and their strong convergence is proved under certain appropriate conditions.



    加载中


    [1] P. N. Anh, Relaxed projection methods for solving variational inequality problems, J. Glob. Optim., 90 (2024), 909–930. https://doi.org/10.1007/s10898-024-01398-w doi: 10.1007/s10898-024-01398-w
    [2] W. Singh, S. Chandok, Mann-type extragradient algorithm for solving variational inequality and fixed point problems, Comp. Appl. Math., 43 (2024), 259. https://doi.org/10.1007/s40314-024-02785-5 doi: 10.1007/s40314-024-02785-5
    [3] S. F. Liu, W. Wang, Y. Jia, H. B. Bian, W. Q. Shen, Modeling of hydro-mechanical coupled fracture propagation in quasi-brittle rocks using a variational phase-field method, Rock. Mech. Rock Eng., 57 (2024), 7079–7101. https://doi.org/10.1007/s00603-024-03896-5 doi: 10.1007/s00603-024-03896-5
    [4] X. Zhang, D. Hou, Q. Mao, Z. Wang, Predicting microseismic sensitive feature data using variational mode decomposition and transformer, J. Seismol., 28 (2024), 229–250. https://doi.org/10.1007/s10950-024-10193-9 doi: 10.1007/s10950-024-10193-9
    [5] G. Arenas-Henriquez, A. Cisterna, F. Diaz, R. Gregory, Accelerating black holes in 2 + 1 dimensions: holography revisited, J. High Energ. Phys., 2023 (2023), 122. https://doi.org/10.1007/JHEP09(2023)122 doi: 10.1007/JHEP09(2023)122
    [6] J. E. Brasil, E. R. Oliveira, R. R. Souza, Thermodynamic formalism for general iterated function systems with measures, Qual. Theory Dyn. Syst., 22 (2023), 19. https://doi.org/10.1007/s12346-022-00722-7 doi: 10.1007/s12346-022-00722-7
    [7] J. Jeon, G. Kim, Variational inequality arising from variable annuity with mean reversion environment, J. Inequal. Appl., 2023 (2023), 99–119. https://doi.org/10.1186/s13660-023-03015-y doi: 10.1186/s13660-023-03015-y
    [8] G. Valencia-Ortega, A. M. A. de Parga-Regalado, M. A. Barranco-Jiménez, On thermo-economic optimization effects in the balance price-demand of generation electricity for nuclear and fossil fuels power plants, Energy Syst., 14 (2023), 1163–1184. https://doi.org/10.1007/s12667-022-00537-0 doi: 10.1007/s12667-022-00537-0
    [9] A. Barbagallo, S. Guarino Lo Bianco, A random time-dependent noncooperative equilibrium problem, Comput. Optim. Appl., 84 (2023), 27–52. https://doi.org/10.1007/s10589-022-00368-w doi: 10.1007/s10589-022-00368-w
    [10] M. B. Donato, M. Milasi, A. Villanacci, Restricted participation on financial markets: a general equilibrium approach using variational inequality methods, Netw. Spat. Econ., 22 (2022), 327–359. https://doi.org/10.1007/s11067-019-09491-4 doi: 10.1007/s11067-019-09491-4
    [11] Y. Censor, A. Gibali, S. Reich, Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space, Optimization, 61 (2012), 1119–1132. https://doi.org/10.1080/02331934.2010.539689 doi: 10.1080/02331934.2010.539689
    [12] S. V. Denisov, V. V. Semenov, L. M. Chabak, Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51 (2015), 757–765. https://doi.org/10.1007/s10559-015-9768-z doi: 10.1007/s10559-015-9768-z
    [13] F. Facchinei, J. S. Pang, Finite-dimensional varitional inequalities and complementarity problems, In: Springer series in operations research and financial engineering, New York: Springer, 2003. https://doi.org/10.1007/b97543
    [14] M. C. Ferris, J. S. Pang, Engineering and economic applications of complementarity problems, SIAM Rev., 39 (1997), 669–713. https://doi.org/10.1137/S0036144595285963 doi: 10.1137/S0036144595285963
    [15] G. M. Korpelevich, The extragradient method for finding saddle points and other problem, Matecon, 12 (1976), 747–756.
    [16] P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38 (2000), 431–446. https://doi.org/10.1137/S0363012998338806 doi: 10.1137/S0363012998338806
    [17] D. V. Thong, D. V. Hieu, Weak and strong convergence theorems for variational inequality problems, Numer. Algor., 78 (2018), 1045–1060. https://doi.org/10.1007/S11075-017-0412-z doi: 10.1007/S11075-017-0412-z
    [18] S. Yekini, S. I. Olaniyi, Strong convergence result for monotone variational inequalities, Numer. Algor., 76 (2017), 259–282. https://doi.org/10.1007/s11075-016-0253-1 doi: 10.1007/s11075-016-0253-1
    [19] Y. Censor, A. Gibali, S. Reich, The subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory. Appl., 148 (2011), 318–335. https://doi.org/10.1007/s10957-010-9757-3 doi: 10.1007/s10957-010-9757-3
    [20] J. Yang, H. Liu, Strong convergence result for solving monotone variational inequalities in Hilbert space, Numer. Algor., 80 (2019), 741–752. https://doi.org/10.1007/s11075-018-0504-4 doi: 10.1007/s11075-018-0504-4
    [21] Y. Malitsky, Golden ratio algorithms for variational inequalities, Math. Program., 184 (2020), 383–410. https://doi.org/10.1007/s10107-019-01416-w doi: 10.1007/s10107-019-01416-w
    [22] K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, New York: Marcel Dekker, 1984.
    [23] S. Seajung, P. Yotkaew, Approximation of zeros of inverse strongly monotone operators in Banach spaces, Nonlinear Anal.-Theory, Methods Appl., 75 (2012), 742–750. https://doi.org/10.1016/j.na.2011.09.005 doi: 10.1016/j.na.2011.09.005
    [24] J. Mashreghi, M. Nasri, Forcing strong convergence of Korpelevich's method in Banach spaces with its applications in game theory, Nonlinear Anal.-Theory, Methods Appl., 72 (2010), 2086–2099. https://doi.org/10.1016/j.na.2009.10.009 doi: 10.1016/j.na.2009.10.009
    [25] R. W. Cottle, J. C. Yao, Pseudo-monotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75 (1992), 281–295. https://doi.org/10.1007/BF00941468 doi: 10.1007/BF00941468
    [26] P. E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899–912. https://doi.org/10.1007/s11228-008-0102-z doi: 10.1007/s11228-008-0102-z
    [27] H. K. Xu, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66 (2002), 240–256. https://doi.org/10.1112/S0024610702003332 doi: 10.1112/S0024610702003332
    [28] Q. L. Dong, Y. J. Cho, L. L. Zhong, T. M. Rassias, Inertial projection and contraction algorithms for variational inequalities, J. Glob. Optim., 70 (2018), 687–704. https://doi.org/10.1007/s10898-017-0506-0 doi: 10.1007/s10898-017-0506-0
    [29] L. Liu, X. Qin, A stochastic projection and contraction algorithm with inertial effects for stochastic variational inequalities, J. Nonlinear Var. Anal., 7 (2023), 995–1016. https://doi.org/10.23952/jnva.7.2023.6.08 doi: 10.23952/jnva.7.2023.6.08
    [30] Y. Shehu, Q. L. Dong, L. Liu, Fast alternated inertial projection algorithms for pseudo-monotone variational inequalities, J. Comput. Appl. Math., 415 (2022), 114517. https://doi.org/10.1016/j.cam.2022.114517 doi: 10.1016/j.cam.2022.114517
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1044) PDF downloads(65) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog