Ideal matrices, which generalize circulant and $ r- $circulant matrices, play a key role in Ajtai's construction of collision-resistant hash functions. In this paper, we study ideal matrices whose entries are the generalized $ k- $Horadam numbers, which represent a generalization of second-order sequences and include many well-known sequences such as Fibonacci, Lucas, and Pell numbers as special cases. We derive two explicit formulas for calculating the eigenvalues and determinants of these matrices. Additionally, we obtain upper bounds for the spectral norm and the Frobenius norm of ideal matrices with generalized $ k- $Horadam number entries. These results not only extend existing findings on ideal matrices but also highlight the versatility and applicability of generalized $ k- $Horadam numbers in matrix theory and related fields.
Citation: Man Chen, Huaifeng Chen. On ideal matrices whose entries are the generalized $ k- $Horadam numbers[J]. AIMS Mathematics, 2025, 10(2): 1981-1997. doi: 10.3934/math.2025093
Ideal matrices, which generalize circulant and $ r- $circulant matrices, play a key role in Ajtai's construction of collision-resistant hash functions. In this paper, we study ideal matrices whose entries are the generalized $ k- $Horadam numbers, which represent a generalization of second-order sequences and include many well-known sequences such as Fibonacci, Lucas, and Pell numbers as special cases. We derive two explicit formulas for calculating the eigenvalues and determinants of these matrices. Additionally, we obtain upper bounds for the spectral norm and the Frobenius norm of ideal matrices with generalized $ k- $Horadam number entries. These results not only extend existing findings on ideal matrices but also highlight the versatility and applicability of generalized $ k- $Horadam numbers in matrix theory and related fields.
| [1] |
W. M. Abd-Elhameed, A. K. Amin, N. A. Zeyada, Some new identities of a type of generalized numbers involving four parameters, AIMS Mathematics, 7 (2022), 12962–12980. http://dx.doi.org/10.3934/math.2022718 doi: 10.3934/math.2022718
|
| [2] |
W. M. Abd-Elhameed, A. N. Philippou, N. A. Zeyada, Novel results for two generalized classes of Fibonacci and Lucas polynomials and their uses in the reduction of some radicals, Mathematics, 10 (2022), 2342. https://doi.org/10.3390/math10132342 doi: 10.3390/math10132342
|
| [3] |
E. Andrade, D. Carrasco-Olivera, C. Manzaneda, On circulant like matrices properties involving Horadam, Fibonacci, Jacobsthal and Pell numbers, Linear Algebra Appl., 617 (2021), 100–120. http://dx.doi.org/10.1016/j.laa.2021.01.016 doi: 10.1016/j.laa.2021.01.016
|
| [4] |
M. Baldi, F. Bambozzi, F. Chiaraluce, On a family of circulant matrices for quasi-cyclic low-density generator matrix codes, IEEE Trans. Inform. Theory, 57 (2011), 6052–6067. http://dx.doi.org/10.1109/TIT.2011.2161953 doi: 10.1109/TIT.2011.2161953
|
| [5] | A. $\ddot{B}$ottcher, B. Silbermann, Introduction to large truncated Toeplitz matrices, New York: Springer, 1999. http://dx.doi.org/10.1007/978-1-4612-1426-7 |
| [6] |
P. J. Davis, Circulant matrices, Math. Comp., 35 (1980), 1438–1439. http://dx.doi.org/10.2307/2006411 doi: 10.2307/2006411
|
| [7] |
R. Frontczak, A short remark on Horadam identities with binomial coefficients, Ann. Math. Inform., 54 (2021), 5–13. http://dx.doi.org/10.33039/ami.2021.03.016 doi: 10.33039/ami.2021.03.016
|
| [8] |
A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart., 3 (1965), 161–176. http://dx.doi.org/10.1080/00150517.1965.12431416 doi: 10.1080/00150517.1965.12431416
|
| [9] |
I. Kaddoura, B. Mourad, On a class of matrices generated by certain generalized permutation matrices and applications, Linear Multilinear Algebra, 67 (2019), 2117–2134. http://info:doi/10.1080/03081087.2018.1484420 doi: 10.1080/03081087.2018.1484420
|
| [10] |
H. Li, W. Zhang, P. Yuan, On Q-circulant matrices, Comput. Appl. Math., 43 (2024), 154. http://dx.doi.org/10.1007/s40314-024-02683-w doi: 10.1007/s40314-024-02683-w
|
| [11] |
L. Liu, On the spectrum and spectral norms of $r-$circulant matrices with generalized $k-$Horadam numbers entries, Int. J. Comput. Math., 2014 (2014), 795175. http://dx.doi.org/10.1155/2014/795175 doi: 10.1155/2014/795175
|
| [12] | D. Micciancio, O.Regev, Lattice-based Cryptography, In: Post-quantum cryptography, Heidelberg: Springer, 2009,147–191. https://doi.org/10.1007/978-3-540-88702-7_5 |
| [13] |
Z. Pucanović, M. Pešović, Chebyshev polynomials and r-circulant matrices, Appl. Math. Comput., 437 (2023), 127521. https://doi.org/10.1016/j.amc.2022.127521 doi: 10.1016/j.amc.2022.127521
|
| [14] |
B. Radicic, On k-circulant matrices involving the Fibonacci numbers, Miskolc Math. Notes., 19 (2018), 505–515. http://dx.doi.org/10.18514/MMN.2018.1779 doi: 10.18514/MMN.2018.1779
|
| [15] |
G. Y. Şentürk, N. Gürses, S. Yüce, Fundamental properties of extended Horadam numbers, Notes Number Theory Discrete Math., 27 (2021), 219–235. http://dx.doi.org/10.7546/nntdm.2021.27.4.219-235 doi: 10.7546/nntdm.2021.27.4.219-235
|
| [16] |
S. Shen, J. Cen, On the bounds for the norms of $r-$circulant matrices with the Fibonacci and Lucas numbers, Appl. Math. Comput., 216 (2010), 2891–2897. http://dx.doi.org/10.1016/j.amc.2010.03.140 doi: 10.1016/j.amc.2010.03.140
|
| [17] |
S. Shen, J. Cen, Y. Hao, On the determinants and inverses of circulant matrices with Fibonacci and Lucas numbers, Appl. Math. Comput., 217 (2011), 9790–9797. https://doi.org/10.1016/j.amc.2011.04.072 doi: 10.1016/j.amc.2011.04.072
|
| [18] | D. Stehlé, R. Steinfeld, Making NTRU as secure as worst-case problems over ideal lattices, In: Advances in cryptology – EUROCRYPT 2011, Heidelberg: Springer, 6632 (2011), 27–47. https://doi.org/10.1007/978-3-642-20465-4_4 |
| [19] |
B. Shi, The spectral norms of geometric circulant matrices with the generalized $k-$Horadam numbers, J. Inequal. Appl., 2018 (2018), 14. https://doi.org/10.1186/s13660-017-1608-4 doi: 10.1186/s13660-017-1608-4
|
| [20] |
N. A. Woods, N. P. Galatsanos, A. K. Katsaggelos, Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images, IEEE Trans. Image Process., 15 (2006), 201–213. http://dx.doi.org/10.1109/TIP.2005.860355 doi: 10.1109/TIP.2005.860355
|
| [21] |
Y. Yang, R. S. Blum, Minimax robust MIMO radar waveform design, IEEE J. Sel. Top. Signal Process., 1 (2007), 147–155. http://dx.doi.org/10.1109/JSTSP.2007.897056 doi: 10.1109/JSTSP.2007.897056
|
| [22] |
Y. Yazlik, N. Taskara, A note on generalized $k-$Horadam sequence, Comput. Math. Appl., 63 (2012), 36–41. http://dx.doi.org/10.1016/j.camwa.2011.10.055 doi: 10.1016/j.camwa.2011.10.055
|
| [23] | Y. Yazlik, N. Taskara, Spectral norm, eigenvalues and determinant of circulant matrix involving generalized $k-$Horadam numbers, Ars Combin., 104 (2012), 505–512. |
| [24] |
Y. Yazlik, N. Taskara, On the inverse of circulant matrix via generalized $k-$Horadam numbers, Appl. Math. Comput., 223 (2013), 191–196. http://dx.doi.org/10.1016/j.amc.2013.07.078 doi: 10.1016/j.amc.2013.07.078
|
| [25] |
Y. Yazlik, N. Taskara, On the norms of an r-circulant matrix with the generalized k-Horadam numbers, J. Inequal. Appl., 2013 (2013), 394. http://dx.doi.org/10.1186/1029-242X-2013-394 doi: 10.1186/1029-242X-2013-394
|
| [26] | G. Zhao, The improved nonsingularity on the r-circulant matrices in signal processing, In: 2009 International conference on computer technology and development, 2009,564–567. http://dx.doi.org/10.1109/icctd.2009.218 |
| [27] |
Z. Zheng, F. Liu, W. Huang, J. Xu, K. Tian, A generalization of NTRUEncrypt—cryptosystem based on ideal lattice, J. Inf. Secur., 13 (2022), 165–180. http://dx.doi.org/10.4236/jis.2022.133010 doi: 10.4236/jis.2022.133010
|