
The dynamics of plant-herbivore interactions are essential for understanding ecosystem stability and resilience. This article investigated the effects of incorporating a harvesting effect on the dynamics of a discrete-time plant-herbivore system. An analysis was performed to determine the existence and stability of fixed points. In addition, studies have shown that the system experienced transcritical, period-doubling, and Neimark-Sacker bifurcations. Moreover, we provided numerical simulations to substantiate our theoretical results. Our research indicated that harvesting in excessive amounts may have negative effects on the populations of both plants and herbivores. However, when harvesting was done at moderate levels, it promoted the coexistence and stability of both populations. The findings of our analysis provided a deep understanding of the intricate dynamics of ecological systems and underscored the need to use sustainable harvesting methods for the management and preservation of ecosystems.
Citation: Mohammed Alsubhi, Rizwan Ahmed, Ibrahim Alraddadi, Faisal Alsharif, Muhammad Imran. Stability and bifurcation analysis of a discrete-time plant-herbivore model with harvesting effect[J]. AIMS Mathematics, 2024, 9(8): 20014-20042. doi: 10.3934/math.2024976
[1] | Song Lunji . A High-Order Symmetric Interior Penalty Discontinuous Galerkin Scheme to Simulate Vortex Dominated Incompressible Fluid Flow. AIMS Mathematics, 2016, 1(1): 43-63. doi: 10.3934/Math.2016.1.43 |
[2] | Dong Pan, Huizhen Qu . Finite-time boundary synchronization of space-time discretized stochastic fuzzy genetic regulatory networks with time delays. AIMS Mathematics, 2025, 10(2): 2163-2190. doi: 10.3934/math.2025101 |
[3] | Ailing Zhu, Yixin Wang, Qiang Xu . A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274 |
[4] | Tiantian Zhang, Wenwen Xu, Xindong Li, Yan Wang . Multipoint flux mixed finite element method for parabolic optimal control problems. AIMS Mathematics, 2022, 7(9): 17461-17474. doi: 10.3934/math.2022962 |
[5] | Zonghong Xiong, Wei Wei, Ying Zhou, Yue Wang, Yumei Liao . Optimal control for a phase field model of melting arising from inductive heating. AIMS Mathematics, 2022, 7(1): 121-142. doi: 10.3934/math.2022007 |
[6] | Şuayip Toprakseven, Seza Dinibutun . Error estimations of a weak Galerkin finite element method for a linear system of ℓ≥2 coupled singularly perturbed reaction-diffusion equations in the energy and balanced norms. AIMS Mathematics, 2023, 8(7): 15427-15465. doi: 10.3934/math.2023788 |
[7] | Essam R. El-Zahar, Ghaliah F. Al-Boqami, Haifa S. Al-Juaydi . Piecewise approximate analytical solutions of high-order reaction-diffusion singular perturbation problems with boundary and interior layers. AIMS Mathematics, 2024, 9(6): 15671-15698. doi: 10.3934/math.2024756 |
[8] | Junchi Ma, Lin Chen, Xinbo Cheng . Virtual element method for the Laplacian eigenvalue problem with Neumann boundary conditions. AIMS Mathematics, 2025, 10(4): 8203-8219. doi: 10.3934/math.2025377 |
[9] | Zuliang Lu, Xiankui Wu, Fei Huang, Fei Cai, Chunjuan Hou, Yin Yang . Convergence and quasi-optimality based on an adaptive finite element method for the bilinear optimal control problem. AIMS Mathematics, 2021, 6(9): 9510-9535. doi: 10.3934/math.2021553 |
[10] | Lingling Sun, Hai Bi, Yidu Yang . A posteriori error estimates of mixed discontinuous Galerkin method for a class of Stokes eigenvalue problems. AIMS Mathematics, 2023, 8(9): 21270-21297. doi: 10.3934/math.20231084 |
The dynamics of plant-herbivore interactions are essential for understanding ecosystem stability and resilience. This article investigated the effects of incorporating a harvesting effect on the dynamics of a discrete-time plant-herbivore system. An analysis was performed to determine the existence and stability of fixed points. In addition, studies have shown that the system experienced transcritical, period-doubling, and Neimark-Sacker bifurcations. Moreover, we provided numerical simulations to substantiate our theoretical results. Our research indicated that harvesting in excessive amounts may have negative effects on the populations of both plants and herbivores. However, when harvesting was done at moderate levels, it promoted the coexistence and stability of both populations. The findings of our analysis provided a deep understanding of the intricate dynamics of ecological systems and underscored the need to use sustainable harvesting methods for the management and preservation of ecosystems.
Let Ω be a convex polygonal domain in R2. In this paper, we consider the following Dirichlet boundary optimal control problem,
min{q} J(y,q)=12‖y−ˆy‖2L2(Ω)+α2‖q‖2L2(Γ) | (1.1) |
subject to the advection-diffusion equation
−Δy(x)+→β(x)⋅∇y(x)+c(x)y(x)=f(x),x∈Ω, | (1.2a) |
y(x)=q(x),x∈Γ. | (1.2b) |
Here, y(x) denotes the state variable, ˆy(x) is the desired state, (1.2a) and (1.2b) are called the state equation, q(x) is the control, Γ=∂Ω.
We assume the given functions f(x),ˆy(x)∈L2(Ω), →β(x)∈[W1∞(Ω)]2, c(x)∈L∞(Ω) with the assumption
c(x)−12∇⋅→β(x)≥0, |
and α>0 is a given scalar.
This problem is important in many applications, for example distribution of pollution in air [1] or water [2] and for problems in computational electro-dynamics, gas and fluid dynamics [3]. However, there are several challenges involved in solving this problem numerically. One problem arises for higher order elements and nonsmooth Dirichlet data which can cause serious problems in using standard finite element methods (see [4,5]). Another difficulty lies in the fact that Dirichlet boundary conditions do not enter the bilinear form naturally and that causes problems for analyzing the finite element method (see [6,7,8,9,10] for further discussion).
One faces another challenge in the presence of layers which are the regions where the gradient of the solution is large. Usually, the boundary layers occur because of the fact that problem has reduced to the first order PDEs and requires boundary conditions on inflow part of the boundary only. In this case, standard Galerkin methods fail when h|→β|>1, where h is mesh size, producing highly oscillatory solutions. A lot of research has been done in last 40 years to address this difficulty (see [3,4,11,12,13]).
We have an example to illustrate this difficulty in the following simple example,
Example 1.1.
−ϵy″(x)+y′(x)=1,x∈(0,1),y(0)=y(1)=0. | (1.3) |
The Figure 1 shows nonphysical oscillations of the standard Galerkin solution for h=0.1 and ϵ=0.0025.
One way to solve this problem is to use stabilized methods (see [14]). We will mention some of them. One of the first stable method of arbitrary order is SUPG (Streamline Upwind Petrov Galerkin) [11,15,16]. In this method, the space of test function is different from the space of trial function and chosen such that the method is stable and consistent. Other stabilized methods where the space of trial and test functions are the same and used upwind stabilization are HDG (Hybridizable Discontinuous Galerkin), [17,18,19,20,21], SIPG (Symmetric Interior Petrov Galerkin) [5,7,10], and LDG (Local Discontinuous Galerkin) [22,23,24]. Another popular stabilized method where the space of trial and test functions are the same is edge stabilization [25,26].
DG methods are shown to be robust for the advection-diffusion-reaction problem (see [7,27]) even for the advection-dominated case. DG methods were not only analyzed for the advection-diffusion-reaction problem but also for the optimal control problem of the advection-diffusion-reaction equation [28], (see other stabilized methods for the optimal control problem of the advection-diffusion-reaction equation [26,29,30]). In addition to being stable, the discontinuous Galerkin methods, such as SIPG, usually treat the boundary conditions weakly. The SIPG method was also analyzed for distributed optimal control problems and optimal local and global error estimates were obtained (see [28] but not for the boundary control problems. We would like to investigate the performance of the SIPG method applied to Dirichlet boundary control problem (1.1), (1.2a) and (1.2b) and prove a priori error estimates. We would also like to perform a number of numerical experiments to confirm our theoretical result which is the main subject of the current work.
In this paper, we analyze the SIPG solution of Dirichlet boundary control problem and the difficulties with dealing with the stability issues as well as with the difficulty of the treatment of Dirichlet boundary conditions. This method has some attractive features and offers some advantages. This method is stable and accurate, can be of arbitrary order and has been shown analytically that the boundary layers do not pollute the solution into the subdomain of smoothness [28]. Another attractive feature of the method is that Dirichlet boundary conditions are enforced weakly through the penalty term and not through the finite dimensional subspace [25]. As a result of the weak treatment of the boundary conditions, Dirichlet boundary control enters naturally into the bilinear form and makes analysis more natural [6,7,8,31]. Finally, the SIPG method has the property that two strategies optimize-then-discretize and discretize-then-optimize produce the same discrete optimality system (see [10,23]), which is not the case for other stabilized methods, for example, SUPG method (see [15]).
Let us show some features of SIPG method with Figure 2 in the previous example. Consider the problem 1.3 in the example 1 with the much more smaller diffiusion parameter 10−9 instead of −0.0025. Figure 2 shows the behavior of the SIPG solution for h=0.1 and ϵ=1e−9. As one can see the solution is stable. The Dirichlet boundary condition at x=1 is almost ignored by the method as a result of weak treatment.
Our choice of this particular DG method was motivated by good approximation and stabilization properties of the method. Additional attractive feature of the method is the weak treatment of the boundary conditions which allows us to set Dirichlet optimal control problem in natural the finite element frame work and to prove optimal convergence rates for on general convex polygonal domain. Moreover, we state the main result of the paper is valid for any general convex domain, there exists a positive constant C independent of h for the error between exact solution of the control function ˉq and its approximation ˉqh such that
‖ˉq−ˉqh‖L2(Γ)≤Ch1/2(|ˉq|H1/2(Γ)+‖ˉy‖H1(Ω)+‖ˆy‖L2(Ω)), |
for h small enough. Also, we performed several numerical examples to support our theoretical results, and additionally when we investigate numerically performance of the method in the advection-dominated case.
Throughout the paper, we will use standard notation for spaces, completeness and norms. We will use the standard notation for Lebesgue and Sobolev space, their suitable norms, and L2- inner product. Thus,
● (u,v)Ω=∫Ωuvdx and ⟨u,v⟩Γ=∫Γuvds are the inner products on the domain Ω and its boundary Γ, respectively.
The corresponding norms respectively are
‖u‖L2(Ω)=(∫Ω|u|2dx)1/2,‖u‖L2(Γ)=(∫Γ|u|2)ds)1/2. |
● H1/2(Γ)={u∈L2(Γ)|∃˜u∈H1(Ω):u=tr(˜u)}.
● ‖u‖H1/2(Γ)=inf{‖˜u‖H1(Ω)|tr(˜u)=u}.
● |u|H1/2(Γ)=inf{|˜u|H1(Ω)|tr(˜u)=u}.
First, let us consider the state equation,
−Δy+→β⋅∇y+cy=fin Ω,y=qon Γ. | (2.1) |
We review some regularity results for various conditions on data which we will use later in the analysis. The first result is standard and found in [32].
Theorem 2.1. Let f∈H−1(Ω) and q∈H1/2(Γ). Then Eq (2.1) admits a unique solution y∈H1(Ω). Moreover, the following estimate holds
‖y‖H1(Ω)≤C(‖f‖H−1(Ω)+‖q‖H12(Γ)). |
In the case of q=0 on Γ, f∈L2(Ω), and convex Ω, we can obtain a higher regularity of the solution (see [33]).
Theorem 2.2. Let f∈L2(Ω) and q=0 on Γ. Then, the Eq (2.1) admits a unique solution y∈H2(Ω) and the following estimate holds
‖y‖H2(Ω)≤C‖f‖L2(Ω). |
Remark 2.1. Since the adjoint equation defined by
−Δz−∇⋅(→βz)+cz=y−ˆyin Ωz=0on Γ, |
it is also an advection-diffusion equation and the results of the above theorems are valid for the adjoint equation with similar estimates as well. Also, notice that −→β⋅∇z+(c−∇⋅→β)z=−∇⋅(→βz)+cz.
The theory in the case of q∈L2(Γ) is more technical and to obtain the desired regularity result, we use the transposition method [34], which we will briefly describe next.
Suppose q is smooth enough having continuous derivatives up to the desired order, ϕ∈L2(Ω) and let y1 and y2 be the solutions of the following equations,
−Δy1+→β⋅∇y1+cy1=0 in Ω,y1=qon Γ,and−Δy2−∇⋅(→βy2)+cy2=ϕin Ω,y2=0on Γ, |
respectively. Then, by the integration by parts and using the fact that y2=0 on Γ, we obtain
0=(−Δy1+→β⋅∇y1+cy1,y2)Ω=(∇y1,∇y2)Ω−⟨∂y1∂n,y2⟩Γ+⟨y1→β⋅→n,y2⟩Γ−(y1,∇⋅(→βy2))Ω+(cy1,y2)Ω=(∇y1,∇y2)Ω−(y1,∇⋅(→βy2))Ω+(y1,cy2)Ω=(y1,−Δy2)Ω+⟨y1,∂y2∂n⟩Γ−(y1,∇⋅(→βy2))Ω+(y1,cy2)Ω=(y1,−Δy2−∇⋅(→βy2)+cy2)Ω+⟨y1,∂y2∂n⟩Γ=(y1,ϕ)Ω+⟨q,∂y2∂n⟩Γ, |
where in the last step we use that −Δy2−∇⋅(→βy2)+cy2=ϕ in Ω and y1=q on Γ. Hence we obtain
(y1,ϕ)Ω=−⟨q,∂y2∂n⟩Γ. |
The above formula defines a mapping Λ:ϕ→−∂y2∂n that is linear and continuous from L2(Ω) to H1/2(Γ). Since the embedding H1/2(Γ)↪L2(Γ) is compact, Λ is a compact operator from L2(Ω) to L2(Γ). Hence, its adjoint Λ∗ is a compact operator from L2(Γ) to L2(Ω).
Since (y1,ϕ)Ω=−∫Γq∂y2∂n=⟨q,Λϕ⟩Γ and ⟨q,Λϕ⟩Γ=(Λ∗q,ϕ)Ω, we conclude that y1=Λ∗q. Using the above, we can define an "ultra-weak" solution for the Eq (2.1) for Dirichlet data in L2(Γ) as follows.
Definition 2.1. We say that y∈L2(Ω) is a unique ultra-weak solution of the Eq (2.1) if
∫Ωyϕ=(f,p)(H−1(Ω),H10(Ω))−∫Γq∂p∂n,∀ϕ∈L2(Ω), |
where p satisfies
−Δp−∇⋅(→βp)+cp=ϕin Ω,p=0 on Γ. |
Now we are ready to provide the following regularity result.
Theorem 2.3. For any f∈H−1(Ω) and q∈L2(Γ), the Eq (2.1) admits a unique ultra-weak solution y∈L2(Ω). Moreover, the following estimate holds,
‖y‖L2(Ω)≤C(‖f‖H−1(Ω)+‖q‖L2(Γ)). | (2.2) |
Proof. Existence follows from the Definition (2.1). For the uniqueness, we assume that y1 and y2 are distinct solutions of the Eq (2.1) and let u=y1−y2, then
−Δu−∇⋅(→βu)+cu=0in Ω,u=0on Γ. |
Since H1(Ω) is dense in L2(Ω), it is enough to consider u∈H1(Ω). By the Theorem (2.1), we have
‖u‖H1(Ω)=0. |
As a result u=0, hence y1=y2 and this contradiction proves the uniqueness.
To show the desired estimate (2.2), we use a duality argument. Let w be the solution of the problem
−Δw−∇⋅(→βw)+cw=yin Ω,w=0on Γ. |
By using the above duality argument and using integration by parts and the fact that w=0 on Γ, we obtain
‖y‖2L2(Ω)=(y,−Δw−∇⋅(→βw)+cw)Ω=(∇y,∇w)Ω−⟨y,∂w∂n⟩Γ−⟨y,w(→β⋅→n)⟩Γ+(→β⋅∇y,w)Ω+(y,cw)Ω=(−Δy,w)Ω+⟨∂y∂n,w⟩Γ−⟨y,∂w∂n⟩Γ−⟨y,w(→β⋅→n)⟩Γ+(→β⋅∇y,w)Ω+(y,cw)Ω=(−Δy+→β⋅∇y+cy,w)Ω−⟨y,∂w∂n⟩Γ=(f,w)Ω−⟨q,∂w∂n⟩Γ, |
where in the last step we use −Δy+→β⋅∇y+cy=f.
By the trace and the Cauchy-Schwarz inequalities, and by using the Theorem (2.2), we have the following estimate
‖y‖2L2(Ω)≤‖f‖H−1(Ω)‖w‖H1(Ω)+‖q‖L2(Γ)‖∂w∂n‖L2(Γ)≤C(‖f‖H−1(Ω)+‖q‖L2(Γ))‖w‖H2(Ω)≤C(‖f‖H−1(Ω)+‖q‖L2(Γ))‖y‖L2(Ω). |
Canceling ‖y‖L2(Ω) on both sides, we prove the desired estimate (2.2).
Next we will provide the first order optimality conditions for the problem (1.1)
Theorem 3.1. Assume that f,ˆy∈L2(Ω) and let (ˉy,ˉq) be the optimal solution of the Eq (2.1). Then, the optimal control ˉq is given by ∂ˉz∂n=αˉq, where ˉz is the unique solution of the equation,
−Δˉz−∇⋅(→βˉz)+cˉz=ˉy−ˆyin Ω,ˉz=0 on Γ. | (3.1) |
Proof. Let (ˉy,ˉq) be an optimal solution of the Eq (1.1). We set
F(q)=J(y(q),q), |
where y(q) is the solution of the Eq (2.1) for a given q∈L2(Γ). Let yq be the solution of the problem
−Δyq+→β⋅∇yq+cyq=f in Ω,yq=q+ˉqon Γ. |
By the optimality of (ˉy,ˉq) and convexity of Ω, we have that 1λ(F(ˉq+λq)−F(ˉq))≥0 for all q and λ∈(0,1] [35]. For λ=1, yq=q+ˉq, and so F(ˉq+q)−F(ˉq)≥0.
Equivalently, if F(ˉq+q)−F(ˉq)≥0 for all q in L2(Γ), then ˉq is an optimal solution of the problem. We find
F(ˉq+q)−F(ˉq)=J(yq,q+ˉq)−J(ˉy,ˉq)=12∫Ω(yq−ˉy)(yq+ˉy−2ˆy)+α2∫Γ(2qˉq+q2)=12∫Ω(yq−ˉy)2+α2∫Γq2+∫Ω(yq−ˉy)(ˉy−ˆy)+α∫Γqˉq. |
Let ˉz be the solution of the Eq (3.1). Then, we can estimate the third term of the right hand side by using the Green's formula and using the fact that yq=ˉq+q and ˉz=0 on Γ. Thus, we obtain
∫Ω(yq−ˉy)(ˉy−ˆy)=∫Ω(yq−ˉy)(−Δˉz−∇⋅(→βˉz)+cˉz)=−∫Γ∂ˉz∂n(yq−ˉq)+∫Ω∇ˉz⋅∇(yq−ˉy)−∫Γ(yq−ˉy)ˉz(→β⋅→n)+∫Ωˉz(→β⋅∇(yq−ˉy))+∫Ω(yq−ˉy)cˉz=−∫Γ∂ˉz∂n(ˉq+q−ˉq)+∫Ω∇ˉz⋅∇(yq−ˉy)+∫Ωˉz(→β⋅∇(yq−ˉy))+∫Ω(yq−ˉy)cˉz=−∫Γq∂ˉz∂n+(∂yq∂n−∂ˉy∂n)ˉz|Γ+∫Ωˉz(−Δ(yq−ˉy)+→β⋅∇(yq−ˉy)+c(yq−ˉy))⏟=0. |
Notice that ∫Ω∇ˉz⋅∇(yq−ˉy)=(∂yq∂n−∂ˉy∂n)ˉz|Γ−∫ΩˉzΔ(yq−ˉy) by using integration by parts. By setting ∂ˉz∂n=αˉq, we have
∫Ω(yq−ˉy)(ˉy−ˆy)=−∫Γq∂ˉz∂n=−α∫Γqˉq. |
Putting all results together, we have
F(ˉq+q)−F(ˉq)=12∫Ω(yq−ˉy)2+α2∫Γq2−α∫Γqˉq+α∫Γqˉq=12∫Ω(yq−ˉy)2+α2∫Γq2≥0, |
i.e., (ˉy,ˉq) is the optimal solution to the Eq (2.1) with ˉq=1α∂ˉz∂n where α>0 given any scalar in the problem (1.1)
The first order optimality conditions in the strong form are as the following
Adjoint equation{−Δz−→β⋅∇z+(c−∇⋅→β)z=y−ˆyinΩ,z=0 onΓ. | (3.2) |
Gradient equation{∂z∂n=αqonΓ, | (3.3) |
State equation{−Δy+→β⋅∇y+cy=finΩ,y=qonΓ. | (3.4) |
In the next theorem, we establish the regularity of the optimal solution of the problem (1.2a) and (1.2b).
Theorem 3.2. Let (ˉy,ˉq)∈L2(Ω)×L2(Γ) be the optimal solution to the optimization problem (1.1) subject to the problem (1.2a) and (1.2b), and ˉz be the optimal adjoint state (3.1). Then,
(ˉy,ˉq,ˉz)∈H1(Ω)×H1/2(Γ)×H2(Ω). |
Proof. For ˉq∈L2(Γ), from the state Eq (3.4), ˉy∈L2(Ω) holds by Theorem (2.3).
Since ˉy,ˆy∈L2(Ω) and Ω is a convex domain, from the adjoint Eq (3.2), ˉz∈H2(Ω) holds by Theorem (2.2).
Since ˉz∈H2(Ω), we have ∂ˉz∂n∈H1/2(Γ), from the gradient Eq (3.3), ∂ˉz∂n=αq implies ˉq∈H1/2(Γ).
Since ˉq∈H1/2(Γ), from the state Eq (3.4), ˉy∈H1(Ω) holds by Theorem (2.1).
Remark 3.1. Using regularity results, we can generalize the regularity which depends on the largest interior angle of the polygonal domain in R2 [36].
The idea of the FEM is to construct Vh and Qh defined on a finite dimensional space that is well approximate the solution spaces V and Q. The Galerkin FEM is to find yh∈Vh and qh∈Qh such that
ah(yh,vh)=ℓh(f;qh,vh),∀vh∈Vh, | (4.1) |
where Vh is a finite dimensional space and h is a discretization parameter. We can easily see that if ah(⋅,⋅) satisfies the conditions of Lax-Milgram Lemma, the Eq (4.1) has a unique solution for each h.
To construct Vh, we consider a family of conforming quasi-uniform shape regular triangulations Th of Ω such that ˉΩ=∪τi∈Thτi and τi∩τj=0 ∀τi,τj∈Th, i≠j with a mesh size
h=supτi∈Thdiam(τi). |
We define Eh as a collection of all edges Eh=E0h∪E∂h where E0h and E∂h are the collections of interior and boundary edges, respectively, and we decompose the boundary edges as
E∂h=E+−hh, | (4.2) |
where E−h:={e∈E∂h:e⊂{x∈Γ:→β(x)⋅→n(x)<0}} and E+h:=E∂h∖E−h i.e. these are the collections of the edges that belong to the inflow and outflow part of the boundary, respectively. In other words, for a given elements τ∈Th and nτ indicates the outward normal to τ, then we can decompose its boundary ∂τ as ∂τ−={x∈∂τ:→β(x)⋅→nτ(x)<0} and ∂τ+={x∈∂τ:→β(x)⋅→nτ(x)≥0}.
We define the standard jumps and averages on the set of interior edges by
{φ}=φ1+φ22,[[φ]]=φ1→n1+φ2→n2,{→ϕ}=→ϕ1+→ϕ22,[[→ϕ]]=→ϕ1⋅→n1+→ϕ2⋅→n2, |
where →n1 and →n2 are outward normal vectors at the common boundary edge of neighboring elements τ1 and τ2, respectively. If e∈E∂h, then {φ}=[[φ]]=φ|e [37,38]. Define the discrete state and control spaces as
Vh:={yh∈L2(Ω):yh|τ∈Pk(τ)∀τ∈Th}, | (4.3) |
Qh:={qh∈L2(Γ):qh|τ∈Pl(τ)∀τ∈E∂h}, | (4.4) |
respectively. We denote by Pk, Pl the space of polynomials of degree at most k on each element and at most l on each edge, respectively. In general, the state and control variables can be approximated by polynomials of different degrees k, l∈N.
Here, we use the symmetric interior penalty Galerkin (SIPG) method to approximate to the problem. In deriving the SIPG method, we use the following identity
∑τ∈Th(→ϕ⋅→n,φ)∂τ=∑e∈Eh({→ϕ},[[φ]])e+∑e∈E0h([[→ϕ]],{φ})e=∑e∈E0h({→ϕ},[[φ]])e+([[→ϕ]],{φ})e+∑e∈E∂h(→ϕ⋅→n,φ)e. |
The SIPG solutions qh∈Qh, yh∈Vh and a constant advection field →β satisfies the Eq (4.1) for all vh∈Vh where
ah(yh,vh)=∑τ∈Th(∇yh,∇vh)τ +∑τ∈Th(→β⋅∇yh+cyh,vh)τ+∑e∈Eh[γh([[yh]],[[vh]])e−({∇yh},[[vh]])e−([[yh]],{∇vh})e]+∑e∈E0h(y+h−y−h,|→n⋅→β|v+h)e+∑e∈E−h(y+h,v+h|→n⋅→β|)e, | (4.5) |
where γ is the penalty parameter, which should be chosen sufficiently large to ensure the stability of the SIPG scheme [37,39,40], and y−h=limζ→0+yh(x−ζ→β), y+h(x)=limζ→0+yh(x+ζ→β),
ℓh(f;qh,vh)=∑τ∈Th(f,vh)τ+∑e∈E∂h(γh(qh,[[vh]])e−(qh,{∇vh})e)+∑e∈E−h(qh,v+h|→n⋅→β|)e. | (4.6) |
Then, DG solution is defined as a solution of ah(yh,vh)=ℓh(f;qh,vh) for al all vh∈Vh, and mesh dependent norm
|||vh|||2=‖vh‖2h=∑τ∈Th‖∇vh‖2τ+‖vh‖2τ+∑e∈E∂hγh‖[[vh]]‖2e, |
which is equivalent to the energy norm [38].
It has been shown, for example [7], that the bilinear form (4.5) is coercive and bounded on Vh i.e., ah(vh,vh)≥C|||vh|||2 and ah(yh,vh)≤C|||yh||||||vh|||, respectively. Thus, Lax-Milgram Lemma guarantees the existence of a unique solution yh∈Vh of the Eq (4.1) for all vh∈Vh.
We apply the SIPG discretization to the optimal control problem (1.1). Now, define the discrete Lagrangian as
Lh(ˉyh,ˉqh,ˉzh)=J(ˉyh,ˉqh)+ah(ˉyh,ˉzh)−ℓh(f,ˉqh). |
Then, setting the partial Frechet derivatives with respect to yh,qh and zh to be zero, we obtain the discrete optimality system.Then, the discretized optimal control problem has a unique solution (yh,qh)∈VhxQh if only if there exists zh∈Vh holds the following system:
∂Lh∂ˉyhψh=0⇒ah(ψh,ˉzh)=ℓh(ˆy−ˉyh;0,ψh)∀ψh∈Vh, | (4.7) |
∂Lh∂ˉqhϕh=0⇒⟨∂ˉzh∂n,ϕh⟩Γ=−⟨αˉqh,ϕh⟩Γ+γh⟨ˉzh,ϕh⟩Γ+⟨ˉzh|→n⋅→β|,ϕh⟩Γ ∀ϕh∈Qh, | (4.8) |
∂Lh∂ˉzhφh=0⇒ah(φh,ˉyh)=ℓh(f;qh,φh)∀φh∈Vh. | (4.9) |
We will need some auxiliary estimates that we will use in the proof of the main result. First, we have some standard estimates which are trace and inverse inequalities and the proofs can be found in [41,42,43].
Lemma 5.1. There exist positive constants Ctr and Cinv independent of τ and h such that for ∀τ∈Th,
‖v‖∂τ≤Ctr(h−1/2‖v‖τ+h1/2‖∇v‖τ),∀v∈Hk+1(τ), | (5.1) |
‖∇vh‖τ≤Cinvh−1‖vh‖τ,∀vh∈Vh, | (5.2) |
for integer k≥0
Then, we need some basic estimates for L2-Projection where Ph:L2(Ω)→Vh is the orthogonal projection such that (Phv,χ)τ=(v,χ)τ for all v∈L2(τ) and χ∈Vh.
Lemma 5.2. Let Ph be L2-projection. Then, we have that ∃Ph:Hk+1→Vh such that for any τ∈Th,
‖v−Phv‖L2(τ)≤Chk+1‖v‖Hk+1(τ),∀v∈Hk+1(τ),‖∇(v−Phv)‖L2(τ)≤Chk‖v‖Hk+1(τ),∀v∈Hk+1(τ), |
where integer k≥0.
Proof. From Local Approximation used in [30], we know that there exists a local interpolant operator Ph:Hk+1→Vh such that for any τ∈Th and ∀v∈Hk+1(τ),
h‖∇(v−Ph(v))‖τ+‖v−Ph(v)‖τ≤Chk+1‖v‖Hk+1(τ). |
Since h‖∇(v−Ph(v))‖τ≤h‖∇(v−Ph(v))‖τ+‖v−Ph(v)‖τ≤Chk+1‖v‖Hk+1(τ), we have
h‖∇(v−Ph(v))‖τ≤Chk+1‖v‖Hk+1(τ). |
Thus,
‖∇(v−Phv)‖L2(τ)≤Chk‖v‖Hk+1(τ). |
Likewise, we obtain ‖v−Phv‖L2(τ)≤Chk+1‖v‖Hk+1(τ).
Now, we are ready to show the error estimate of SIPG solution in the energy norm.
Lemma 5.3. Let v be the unique solution of the Eq (2.1) to satisfy v∈Hk+1(Ω) and vh∈Vh be the SIPG solution of the discretized state equation with piecewise polynomials of degree k. Then,
|||v−vh|||≤Chk‖v‖Hk+1(Ω), |
for integer k≥0.
The proof can be easily seen by using the well-posedness of the bilinear form (4.5), Lemmas (5.1) and (5.2), and it can be also found for example in [44,45]. Next, we will need the estimate of L2-Projection on the boundary Γ where P∂h:L2(Γ)→Qh is defined by ⟨q−P∂hq,ϕh⟩e=0 for all ϕh∈Ps(e).
Lemma 5.4. Let P∂h be L2−projection defined on the boundary. Then, for any edge e∈E∂h,
‖q−P∂q‖L2(e)+hs‖q−P∂q‖Ws,p(e)≤hs|q|Ws,p(e)∀e∈E∂h, |
where E∂h is the set of boundary edges which is described in the Eq (4.2), q∈Ws,p(e), 0≤s≤1, and 1<p<∞.
The proof can be found in [6].
Note that Lemmas (5.1)–(5.4) state for general reqularity which depends on the polynomial degree k used in SIPG, the regularity on the solution of the optimal control problem is (ˉy,ˉq,ˉz)∈H1(Ω)×H1/2(Γ)×H2(Ω) by Theorem (3.2). Thus, the following estimates and the main result will be done by using the regularity on the solution of the problem in Theorem (3.2).
Since SIPG method treats the boundary conditions weakly, SIPG solution is not zero on the boundary even if its continuous solution z is. However, the following result says that the norm of SIPG solution zh on the boundary is rather small.
Lemma 5.5. Let us define auxiliary variable ˜z to be a solution of the Eq (3.2)
−Δ˜z−∇⋅(→β˜z)+c˜z=ˆy−yh in Ω˜z=0on Γ, |
and ˜zh∈Vh be the SIPG approximation solution. Then,
‖˜zh‖L2(Γ)≤Ch3/2‖ˆy−yh‖L2(Ω). |
Proof. Let ˜z be a solution to the Eq (3.2). Since
‖˜zh‖L2(Γ)=‖˜zh−˜z‖L2(Γ)=‖[[˜zh−˜z]]‖L2(Γ), |
we can estimated that
‖[[˜zh−˜z]]‖L2(Γ)≤Ch1/2|||˜zh−˜z|||, |
by using the definition of the energy norm. Thus, by Theorems (2.2), (3.2) and Lemma (5.3), we have that
‖˜zh‖L2(Γ)≤Ch1/2|||˜zh−˜z|||≤Ch1/2h‖˜z‖H2(Ω)≤Ch3/2‖ˆy−yh‖L2(Ω). |
The estimate of |||y−yh||| is more involved because (y−yh) does not satisfy the Galerkin orthogonality by (y−yh)∉Vh and ah(y−yh,vh)≠0 for vh∈Vh. First, we can show the following result.
Lemma 5.6. Let y and yh satisfy
ah(y,v)=ℓh(f;q,v), ∀v∈H1(Ω),ah(yh,χ)=ℓh(f;qh,χ),∀χ∈Vh. |
Then,
|||y−yh|||≤C(h−1/2‖q−qh‖L2(Γ)+‖y‖H1(Ω)). |
Proof. By the coersivity, adding and subtracting Phy, we have
|||y−yh|||2≤ah(y−yh,y−yh)=ah(y−yh,Phy−yh)⏟I+ah(y−yh,y−Phy)⏟II. |
II:
By using the boundedness of ah(.,.), Theorem (3.2) and Lemma ( 5.3 ), k = 0 and we obtain
a_{h}(y-y_{h}, y-P_{h}y)\le{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-P_{h}y} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le C{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert { y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\|y\|_{H^1(\Omega)}. |
I:
Since (P_{h}y-y_{h})\in V_{h} , we have a_{h}(y-y_{h}, P_{h}y-y_{h}) = \ell_{h}(0;q-q_{h}, P_{h}y-y_{h}). Then, we have
\begin{aligned} \ell_{h}(0;q-q_{h}, P_{h}y-y_{h})& = \sum\limits_{e\in E_{h}^{\partial}}(\frac{\gamma}{h}(q-q_{h}, [[P_{h}y-y_{h}]])_{e}-(q-q_{h}, \{\nabla (P_{h}y-y_{h})\})_{e})\\ &+\sum\limits_{e\in E_{h}^{-}}(q-q_{h}, (P_{h}y-y_{h})^{+}|\vec n\cdot\vec\beta|)_{e}. \end{aligned} |
By the definition of \ell_{h}(, ) , we can see that \sum_{e}\frac{\gamma}{h}(q-q_{h}, [[P_{h}y-y_{h}]])_{e} is the dominating term by being \frac{\gamma}{h} large. Using the fact that \|[[P_{h}y-y_{h}]]\|_{L^2(\Gamma)} is a part of the energy norm and Lemma ( 5.3 ) for k = 0 since y\in H^1(\Omega) , we have
\begin{aligned} &\ell_{h}(0;q-q_{h}, P_{h}y-y_{h})\le C\sum\limits_{e}\frac{\gamma}{h}(q-q_{h}, [[P_{h}y-y_{h}]])_{e}\\ &\le Ch^{-1}\left(\sum\limits_{e}\|q-q_{h}\|^2_{L^2(e)}\right)^{1/2}\left(\sum\limits_{e}\|[[P_{h}y-y_{h}]]\|^2_{L^2(e)}\right)^{1/2}\\ &\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}\|[[P_{h}y-y_{h}]]\|_{L^2(\Gamma)}\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}h^{1/2}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {P_{h}y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\\ &\le Ch^{-1/2}\|q-q_{h}\|_{L^2(\Gamma)}( {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {P_{h}y-y} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} + {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert})\\ &\le Ch^{-1/2}\|q-q_{h}\|_{L^2(\Gamma)}( \|y\|_{H^1(\Omega)} + {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}). \end{aligned} |
The other terms in \ell_{h}(0;q-q_{h}, P_{h}y-y_{h}) can be estimated with the similar way. Thus,
\begin{aligned} &{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^2\le I+II\\ &\le C\|y\|_{H^1(\Omega)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}+Ch^{-\frac{1}{2}}\|q-q_{h}\|_{L^2(\Gamma)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}+Ch^{-\frac{1}{2}}\|q-q_{h}\|_{L^2(\Gamma)}\|y\|_{H^1(\Omega)}\\ &\le\frac{1}{4}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^2 + Ch^{-1}\|q-q_{h}\|^{2}_{L^2(\Gamma)} + C\|y\|^2_{H^1(\Omega)}. \end{aligned} |
By first taking the square root and then canceling {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} , we obtain
{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le C(h^{-1/2}\|q-q_{h}\|_{L^2(\Gamma)} + \|y\|_{H^1(\Omega)}). |
Using a duality, we can show better estimate in L^2 norm.
Lemma 5.7. Let y be the solution of the Eq (2.1) and y_{h} in V_{h} satisfy the bilinear form ( 4.5 ). Then,
\|y-y_{h}\|_{L^2(\Omega)}\le C(h^{1/2}\|q-q_{h}\|_{L^2(\Gamma)} + h\|y\|_{H^1(\Omega)}). |
Proof. Since y_{h} is not a Galerkin projection of y , let us define \tilde y_{h} by a_{h}(y-\tilde y_{h}, \chi) = 0 for \chi\in V_{h}. Then, by the triangle inequality, we have
\|y-y_{h}\|^2_{L^2(\Omega)}\le\underbrace{\|y-\tilde{y}_{h}\|^2_{L^2(\Omega)}}_{K_{1}} + \underbrace{\|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)}}_{K_{2}}. |
K_{1}
Consider the following equation,
\begin{aligned} -\Delta t-\nabla\cdot(\vec{\beta} t)+ct& = y-\tilde {y}_{h}\ \text{in}\ \Omega\\ t& = 0\qquad\ \text{on}\ \Gamma. \end{aligned} |
By the boundedness of the bilinear form and using the Galerkin orthogonality,
\begin{aligned} \|y-\tilde{y}_{h}\|^2_{L^2(\Omega)}& = a_{h}(y-\tilde{y}_{h}, t)\\ & = a_{h}(y-\tilde{y}_{h}, t-P_{h}t) + \underbrace{a_{h}(y-\tilde{y}_{h}, P_{h}t)}_{ = 0}\\ &\le C{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {t-P_{h}t} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}.{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-\tilde{y}_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le Ch\|t\|_{H^2(\Omega)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert { y-\tilde{y}_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}.\\ \end{aligned} |
By using Theorem ( 2.2 ) and Lemma ( 5.3 ), we obtain
\begin{aligned} K_{1}&\le Ch\|y-\tilde{y}_{h}\|_{L^2(\Omega)}\|y\|_{H^1(\Omega)}\le \frac{1}{4}\|y-\tilde{y}_{h}\|^2_{L^2(\Omega)} +Ch^2\|y\|^2_{H^1(\Omega)}. \end{aligned} |
By canceling \|y-\tilde{y}_{h}\|^2_{L^2(\Omega)} , we obtain that
K_{1}\le Ch^2\|y\|^2_{H^1(\Omega)}. |
K_{2}:
Let us define another dual equation,
\begin{aligned} -\Delta v-\nabla\cdot(\vec{\beta}v)+cv& = \tilde y_{h}-y_{h}\quad \text{in}\ \Omega\\ v& = 0\qquad\qquad\text{on}\ \Gamma. \end{aligned} |
\begin{aligned} \|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)}& = a_{h}(\tilde{y}_{h}-y_{h}, v)\\ & = \underbrace{a_{h}(\tilde{y_{h}}-y, v)}_{K_{21}} + \underbrace{a_{h}(y-y_{h}, v)}_{K_{22}}. \end{aligned} |
K_{21}:
Likewise K_{1} ,
\begin{aligned} K_{21}& = a_{h}(\tilde y_{h}-y, v) = a_{h}(\tilde{y}_{h}-y, v-P_{h}v) + \underbrace{a_{h}(\tilde y_{h}-y, P_{h}v)}_{ = 0}\\ &\le C{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {v-P_{h}v} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {\tilde{y}_{h}-y} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le Ch\|v\|_{H^2(\Omega)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {\tilde{y}_{h}-y} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}. \end{aligned} |
By using Theorem (2.2) and Lemma (5.3), we obtain
K_{21}\le Ch\|\tilde y_{h}-y_{h}\|_{L^2(\Omega)}\|y\|_{H^1(\Omega)}. |
K_{22}:
K_{22} = a_{h}(y-y_{h}, v) = \underbrace{a_{h}(y-y_{h}, v-P_{h}v)}_{K_{221}} + \underbrace{a_{h}(y-y_{h}, P_{h}v)}_{K_{222}}.
By using the boundedness of the bilinear form, Theorem ( 2.2 ) and Lemma ( 5.3 ),
\begin{aligned} K_{221}& = a_{h}(y-y_{h}, v-P_{h}v)\le C{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {v-P_{h}v} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} \le Ch\|v\|_{H^2(\Omega)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\\ & \le Ch\|\tilde{y}_{h}-y_{h}\|_{L^2(\Omega)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}.\\ \end{aligned} |
By using Lemma ( 5.6 ), we obtain
\begin{aligned} K_{221}&\le Ch\|\tilde y_{h}-y_{h}\|_{L^2(\Omega)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\\ &\le Ch\|\tilde y_{h}-y_{h}\|_{L^2(\Omega)}(h^{-1/2}\|q-q_{h}\|_{L^2(\Gamma)} +\|y\|_{H^1(\Omega)}) \\ &\le C\|\tilde{y}_{h}-y_{h}\|_{L^2(\Omega)}(h^{1/2}\|q-q_{h}\|_{L^2(\Gamma)} + h\|y\|_{H^1(\Omega)}). \end{aligned} |
K_{222}:
Using the fact that v = 0 on \Gamma , Theorems ( 2.2 ), ( 3.2 ) and Lemma ( 5.3 ), we have that
\begin{aligned} K_{222}& = a_{h}(y-y_{h}, P_{h}v) = \ell_{h}(0;q-q_{h}, P_{h}v)\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}\|P_{h}v\|_{L^2(\Gamma)}\\ &\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}\|[[P_{h}v-v]]\|_{L^2(\Gamma)}\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}h^{1/2}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {P_{h}v-v} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\\ &\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}h^{1/2}h\| v\|_{H^2(\Omega)}\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}h^{3/2}\|\tilde y_{h}-y_{h}\|_{L^2(\Omega)}. \end{aligned} |
Then, we obtain
K_{222}\le Ch^{1/2}\|q-q_{h}\|_{L^2(\Gamma)}\|\tilde y_{h}-y_{h}\|_{L^2(\Omega)}. |
Thus, we have
\begin{aligned} \|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)}&\le K_{21} +\underbrace{K_{22}}_{K_{221}+ K_{222}} \\ &\le Ch^2\|y\|_{H^1(\Omega)}+ C\|\tilde{y}_{h}-y_{h}\|_{L^2(\Omega)}\big(h^{1/2}\|q-q_{h}\|_{L^2(\Gamma)} + h\|y\|_{H^1(\Omega)}\big)\\ &\le \frac{1}{4}\|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)}+ Ch^2\|y\|^2_{H^1(\Omega)}+ Ch\|q-q_{h}\|^2_{L^2(\Gamma)}.\\ \end{aligned} |
By canceling \|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)} , we obtain
\|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)}\le Ch^2\|y\|^2_{H^1(\Omega)}+ Ch\|q-q_{h}\|^2_{L^2(\Gamma)}. |
Finally, we obtain
\begin{aligned} \|y-y_{h}\|^2_{L^2(\Omega)}&\le\|y-\tilde{y}_{h}\|^2_{L^2(\Omega)} + \|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)}\\ &\le C(h\|q-q_{h}\|^2_{L^2(\Gamma)}+h^2\|y\|^2_{H^1(\Omega)}). \end{aligned} |
By taking the square root, we conclude
\|y-y_{h}\|_{L^2(\Omega)}\le C(h^{1/2}\|q-q_{h}\|_{L^2(\Gamma)} + h\|y\|_{H^1(\Omega)}). |
Now, we are ready to prove the main result of the paper. We will state it in the next theorem.
Theorem 5.1. Let \Omega be a convex polygonal domain, \bar q be the optimal control of the problem (1.1) and \bar{q}_{h} be its optimal SIPG solution. Then, for h sufficiently small, there exists a positive constant C independent of h such that
\begin{equation} \|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\le Ch^{1/2}\big(|\bar q|_{H^{1/2}(\Gamma)} + \|\bar y\|_{H^1(\Omega)} +\|\hat y\|_{L^2(\Omega)}\big), \end{equation} | (5.3) |
where (\bar y, \bar q, \bar z) \in H^1(\Omega)\times H^{1/2}(\Gamma)\times H^2(\Omega) and \hat y\in L^2(\Omega) .
Proof. Since \bar q is the optimal solution of the problem (1.1) and \bar q satisfies the Eq (3.3) , we have
\begin{equation} \alpha\langle \bar q, \phi_{h}\rangle_{\Gamma}+\langle\phi_{h}, \frac{\partial\bar z}{\partial n}\rangle_{\Gamma} = 0, \quad \forall \mathit{ ϕ}_{h}\in Q_{h} . \end{equation} | (5.4) |
Since \bar q_{h} is the approximate solution of the problem (1.1) and \bar q_{h} satisfies the Eq (4.8) , we have
\begin{equation} \alpha\langle \bar q_{h}, \phi_{h}\rangle_{\Gamma}+\langle\phi_{h}, \frac{\partial\bar z_{h}}{\partial n}\rangle_{\Gamma}-\frac{\gamma}{h}\langle\phi_{h}, \bar z_{h}\rangle_{\Gamma}-\langle\bar z_{h}|\vec{n}\cdot\vec{\beta}|, \phi_{h}\rangle_{\Gamma^{-}} = 0, \quad \forall \mathit{ ϕ}_{h}\in\ Q_{h} . \end{equation} | (5.5) |
Subtracting the Eq (5.4) from the Eq (5.5) , for any \phi_{h}\in Q_{h} , we have
\begin{equation} \begin{aligned} \alpha\langle\bar q-\bar q_{h}, \phi_{h}\rangle_{\Gamma}+\langle\phi_{h}, \frac{\partial(\bar z-\bar z_{h})}{\partial n}\rangle_{\Gamma}+\frac{\gamma}{h}\langle\phi_{h}, \bar z_{h}\rangle_{\Gamma}+\langle\bar z_{h}|\vec{n}\cdot\vec{\beta}|, \phi_{h}\rangle_{\Gamma^{-}} = 0 . \end{aligned} \end{equation} | (5.6) |
Taking \phi_{h} = P^{\partial}_{h}(\bar q-\bar q_{h}) = P^{\partial}_{h}\bar q-P^{\partial}_{h}\bar q_{h} = P^{\partial}_{h}\bar q-\bar q_{h} in the Eq (5.6) and splitting
P^{\partial}_{h}\bar q-\bar q_{h} = (P^{\partial}_{h}\bar q-\bar q)+(\bar q-\bar q_{h}), |
we obtain
\begin{equation} \begin{aligned} \alpha\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)}& = \alpha\langle\bar q-\bar q_{h}, \bar q-\bar q_{h}\rangle\\ &\le\boxed{\alpha\langle\bar q-\bar q_{h}, P^{\partial}_{h}\bar q-\bar q\rangle_{\Gamma}}_{J_{1}}+\boxed{\langle P^{\partial}_{h}\bar q-\bar q, \frac{\partial (\bar z-\bar z_{h})}{\partial n}\rangle_{\Gamma}}_{J_{2}}\\ &+\boxed{\frac{\gamma}{h}\langle P^{\partial}_{h}\bar q-\bar q, \bar z_{h}\rangle_{\Gamma}}_{J_{3}}+\boxed{\langle P^{\partial}_{h}\bar q-\bar q, \bar z_{h}|\vec{n}\cdot\vec{\beta}|\rangle_{\Gamma^{-}}}_{J_{4}}\\ &+\boxed{\langle \bar q-\bar q_{h}, \frac{\partial (\bar z-\bar z_{h})}{\partial n}\rangle_{\Gamma}}_{J_{5}}+\boxed{\frac{\gamma}{h}\langle \bar q-\bar q_{h}, \bar z_{h}\rangle_{\Gamma}}_{J_{6}}\\ &+\boxed{\langle \bar q-\bar q_{h}, \bar z_{h}|\vec{n}\cdot\vec{\beta}|\rangle_{\Gamma^{-}}}_{J_{7}}\\ & = J_{1}+J_{2}+J_{3}+J_{4}+J_{5}+J_{6}+J_{7}.\\ \end{aligned} \end{equation} | (5.7) |
Now, we shall estimate each term separately. Most terms can be estimated by using the estimate of the L^2 -projection. However, the term (\bar z- \bar z_{h}) in J_{2} and J_{5} is not in the discrete space, so additional arguments are needed to treat these terms.
Estimate for J_{1} : By the Cauchy-Schwarz inequality and using Lemma (5.4) ,
\begin{aligned} J_{1} = \alpha\langle \bar q-\bar q_{h}, P^{\partial}_{h}\bar q-\bar q\rangle_{\Gamma}&\le \alpha\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\|P^{\partial}_{h}\bar q-\bar q\|_{L^2(\Gamma)}\\ &\le C_{1}h^{1/2}|\bar q|_{H^{1/2}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}, \end{aligned} |
where C_{1} depends on \alpha .
Estimates for J_{3} and J_{6} : Using Lemma (5.5) to estimate \|\bar z_{h}\|_{L^2(\Gamma)} , the Cauchy-Schwarz inequality, Lemma (5.7) and the regularity of \bar y , then we have
\begin{aligned} J_{3}& = \frac{\gamma}{h}\langle P^{\partial}_{h}\bar q-\bar q, \bar z_{h}\rangle_{\Gamma}\le\frac{\gamma}{h}\|P^{\partial}_{h}\bar q-\bar q\|_{L^2(\Gamma)}\|\bar z_{h}\|_{L^2(\Gamma)}.\\ &\le C_{3}h^{-1}h^{1/2}|\bar q|_{H^{1/2}(\Gamma)}h^{3/2}\|\hat y-\bar y_{h}\|_{L^2(\Omega)}\\ &\le C_{3}h|\bar q|_{H^{1/2}}\|\hat y-\bar y_{h}\|_{L^2(\Omega)}\le C_{3}h|q|_{H^{1/2}}(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+\|\bar y-\bar y_{h}\|_{L^2(\Omega)})\\ &\le C_{3}h|q|_{H^{1/2}}(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}). \end{aligned} |
Likewise,
\begin{aligned} J_{6}& = \frac{\gamma}{h}\langle \bar q-\bar q_{h}, \bar z_{h}\rangle_{\Gamma}\le\frac{\gamma}{h}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\|\bar z_{h}\|_{L^2(\Gamma)}\\ &\le C_{6}h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\|\hat y-\bar y_{h}\|_{L^2(\Omega)}\\ &\le C_{6}h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\big(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+\|\bar y-\bar y_{h}\|_{L^2(\Omega)}\big)\\ &\le C_{6}h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\big(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}\big), \end{aligned} |
where C_{3} and C_{6} depend on \gamma .
Estimates for J_{4} and J_{7} : By using the Cauchy-Schwarz inequality, Lemmas ( 5.5 ) and (5.7), we have
\begin{aligned} J_{4}& = \langle P^{\partial}_{h}\bar q-\bar q, \bar z_{h}|\vec{n}\cdot\vec{\beta}|\rangle_{\Gamma^{-}}\le C_{4}h^{1/2}|\bar q|_{H^{1/2}(\Gamma)}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\|\bar z_{h}\|_{L^2(\Gamma)}\\ &\le C_{4}h^2|q|_{H^{1/2}(\Gamma)}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\|\hat y-\bar y_{h}\|_{L^2(\Omega)}\\ &\le C_{4}h^2|\bar q|_{H^{1/2}(\Gamma)}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\big(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+\|\bar y-\bar y_{h}\|_{L^2(\Omega)}\big)\\ &\le C_{4}h^2|\bar q|_{H^{1/2}(\Gamma)}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\big(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}\big). \end{aligned} |
Likewise,
\begin{aligned} J_{7}& = \langle\bar q-\bar q_{h}, \bar z_{h}|\vec{n}\cdot\vec{\beta}|\rangle_{\Gamma^{-}}\le C_{7}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\|\bar z_{h}\|_{L^2(\Gamma)}\\ &\le C_{7}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}h^{3/2}\|\hat y-\bar y_{h}\|_{L^2(\Omega)}\\ &\le C_{7}h^{3/2}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\big(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+\|\bar y-\bar y_{h}\|_{L^2(\Omega)}\big)\\ &\le C_{7}h^{3/2}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\big(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}\big). \end{aligned} |
Estimate for J_{5} : By the Cauchy-Schwarz inequality,
J_{5} = \langle \bar q-\bar q_{h}, \frac{\partial (\bar z-\bar z_{h})}{\partial n}\rangle_{\Gamma}\le\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\|\frac{\partial (\bar z-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)}. |
Let us define \tilde {z}_{h}\in V_{h} to be the SIPG solution to \bar z i.e. a_{h}(\chi, \tilde z_{h}) = (\hat y-\bar y, \chi) , \forall\chi\in V_{h} .
In particular, a_{h}(\chi, \bar z-\tilde{z}_{h}) = 0 by the Galerkin orthogonality. Thus, we continue as following,
\langle \bar q-\bar q_{h}, \frac{\partial(\bar z-\bar z_{h})}{\partial n}\rangle_{\Gamma}\le\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\left(\underbrace{\|\frac{\partial (\bar z-\tilde{z}_{h})}{\partial n}\|_{L^2(\Gamma)}}_{J_{51}}+\underbrace{\|\frac{\partial (\tilde{z}_{h}-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)}}_{J_{52}}\right). |
J_{51} :
By the triangle inequality, we have
\|\frac{\partial (\bar z-\tilde{z}_{h})}{\partial n}\|_{L^2(\Gamma)}\le\underbrace{\|\frac{\partial (\bar z-P_{h}\bar z)}{\partial n}\|_{L^2(\Gamma)}}_{J_{511}}+\underbrace{\|\frac{\partial (P_{h}\bar z-\tilde{z}_{h})}{\partial n}\|_{L^2(\Gamma)}}_{J_{512}}. |
J_{511}:
By the trace inequality, Theorem ( 2.2 ) and Lemma (5.2), we obtain
\begin{aligned} J_{511}& = \|\frac{\partial (\bar z-P_{h}\bar z)}{\partial n}\|^2_{L^2(\Gamma)} = \sum\limits_{e\in\Gamma}\|\frac{\partial (\bar z-P_{h}\bar z)}{\partial n}\|^2_{L^2(e)}\\ &\le\sum\limits_{\tau\in T_{h}}(Ch^{-1}\|\bar z-P_{h}\bar z\|^2_{H^1(\tau)}+Ch\|\bar z-P_{h}\bar z\|^2_{H^2(\tau)})\\ &\le\sum\limits_{\tau\in T_{h}}Ch\|\bar z\|^2_{H^2(\tau)} = Ch\|\bar z\|^2_{H^2(\Omega)}\le Ch\|\hat y-\bar y\|^2_{L^2(\Omega)}. \end{aligned} |
Thus,
J_{511} = \|\frac{\partial (\bar z-P_{h}\bar z)}{\partial n}\|_{L^2(\Gamma)}\le Ch^{1/2}\|\hat y-\bar y\|_{L^2(\Omega)}. |
J_{512}:
Since (P_{h}\bar z-\tilde{z}_{h})\in V_{h} , we can apply the trace theorem for discrete function and by using the inverse inequality and Lemma (5.2), we obtain that
\begin{aligned} \|\frac{\partial (P_{h}\bar z-\tilde{z}_{h})}{\partial n}\|_{L^2(\Gamma)}&\le Ch^{-1/2}\|P_{h}\bar z-\tilde{z}_{h}\|_{H^1(\Omega)}\\ &\le Ch^{-1/2}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {P_{h}\bar z-\tilde{z}_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le Ch^{-1/2}({\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {P_{h}\bar z-\bar z} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} + {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {\bar z-\tilde{z}_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert})\\ &\le Ch^{-1/2}h\|\bar z\|_{H^2(\Omega)}\le Ch^{1/2}\|\hat y-\bar y\|_{L^2(\Omega)}, \end{aligned} |
where we have used Lemma ( 5.3 ) for k = 1 by Theorem ( 2.2 ) and Lemma (5.2).
Thus,
\|\frac{\partial (P_{h}\bar z-\tilde{z}_{h})}{\partial n}\|_{L^2(\Gamma)}\le Ch^{1/2}\|\hat y-\bar y\|_{L^2(\Omega)}. |
Since J_{51} = J_{511}+J_{512} , we obtain
J_{51} = \|\frac{\partial (\bar z-\tilde{z}_{h})}{\partial n}\|_{L^2(\Gamma)}\le Ch^{1/2}\|\hat y-\bar y\|_{L^2(\Omega)}\le Ch^{1/2}(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}). |
J_{52}:
Since we have
\begin{aligned} a_{h}(\chi, \bar z_{h})& = (\hat y-\bar y_{h}, \chi), \\ a_{h}(\chi, \tilde{z}_{h})& = (\hat y-\bar y, \chi), \end{aligned} |
where \forall\chi\in V_{h} . We obtain
\begin{equation} a_{h}(\chi, \tilde{z}_{h}-\bar z_{h}) = (\bar {y}_{h}-\bar y, \chi), \qquad \forall\chi\in V_{h}. \end{equation} | (5.8) |
Now, let us define the following equation
\begin{aligned} -\Delta w-\nabla\cdot(\vec{\beta}w) +cw& = \bar y_{h}-\bar y\quad\text{in}\ \Omega\\ w& = 0\qquad \text{on}\ \Gamma. \end{aligned} |
By using the Eq (5.8) ,
a_{h}(\chi, \tilde{z}_{h}-\bar z_{h}) = a_{h}(\chi, \tilde{z}_{h})-a_{h}(\chi, \bar z_{h}) = (\hat y-\bar y, \chi)-(\hat y-\bar y_{h}, \chi) = (\bar y_{h}-\bar y, \chi) = a_{h}(\chi, w_{h}). |
The above equality shows that w_h = \tilde{z}_{h}-\bar z_{h} .
Now, using the inverse inequality and the fact that w = 0 on \Gamma , we obtain
\begin{aligned} \|\frac{\partial (\tilde{z}_{h}-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)}&\le Ch^{-1}\|\tilde{z}_{h}-\bar z_{h}\|_{L^2(\Gamma)} = Ch^{-1}\|\tilde{z}_{h}-\bar z_{h}-w\|_{L^2(\Gamma)}\\ &\le Ch^{-1}h^{1/2}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {(\tilde{z}_{h}-\bar z_{h})-w} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\\ &\le Ch^{-1/2}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {w_{h}-w} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le Ch^{-1/2}h\|w\|_{H^2(\Omega)}\\ &\le Ch^{1/2}\|\bar y_{h}-\bar y\|_{L^2(\Omega)}\\ &\le Ch^{1/2}(h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}), \end{aligned} |
where we have used Theorem ( 2.2 ) and Lemma ( 5.3 ) for k = 1 by Lemmas (5.2) and (5.7) in the last step.
Thus,
J_{52} = \|\frac{\partial (\tilde{z}_{h}-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)}\le Ch^{1/2}(h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}). |
Finally, we obtain
J_{5}\le \|\bar q-\bar q_{h}\|_{L^2(\Gamma)}(J_{51}+J_{52})\le C_{5}h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}). |
Estimate for J_{2} : By using the the estimation of \|\frac{\partial (\bar z-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)} in J_{5} , Cauchy-Schwarz inequality and Lemma (5.4), we have
\begin{aligned} J_{2} = \langle P^{\partial}_{h}\bar q-\bar q, \frac{\partial (\bar z-\bar z_{h})}{\partial n}\rangle_{\Gamma}&\le\| P^{\partial}_{h}\bar q-\bar q\|_{L^2(\Gamma)}\|\frac{\partial (\bar z-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)}\\ &\le C_{2}h^{1/2}|\bar q|_{H^{1/2}(\Gamma)}\|\frac{\partial (\bar z-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)}\\ &\le C_{2}h^{1/2}|\bar q|_{H^{1/2}(\Gamma)}h^{1/2}(\|\hat y\|_{L^(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}) \\ & = C_{2}h|\bar q|_{H^{1/2}(\Gamma)}(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}). \end{aligned} |
Thus,
J_{2}\le C_{2}h|q|_{H^{1/2}(\Gamma)}(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}). |
After using Lemma (5.7) to estimate \|\bar y-\bar y_{h}\|_{L^2(\Omega)} and combining J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{6}, J_{7} in the Eq (5.7), we obtain
{ \begin{aligned} &\alpha\|\bar q-\bar q_{h}\|^2_{L^2(\Omega)}\le J_{1}+J_{2}+J_{3}+J_{4}+J_{5}+J_{6}+J_{7}\\ &\le C_{1}h^{\frac{1}{2}}|\bar q|_{H^{1/2}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} \\ &+C_{2}h|\bar q|_{H^{1/2}(\Gamma)}(\|\hat y\|_{L^2(\Omega)}+\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)})\\ &+C_{3}h|\bar q|_{H^{1/2}}( \|\hat y\|_{L^2(\Omega)} + \|\bar y\|_{H^1(\Omega)}+ h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)})\\ &+C_{4}h^2|\bar q|_{H^{1/2}(\Gamma)}\|\beta\|^{\frac{1}{2}}_{L^{\infty}(\Gamma)}( \|\hat y\|_{L^2(\Omega)} + \|\bar y\|_{H^1(\Omega)} + h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)})\\ &+C_{5}h^{\frac{1}{2}}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}(\|\hat y\|_{H^1(\Omega)}+\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)})\\ &+C_{6}h^{\frac{1}{2}}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}( \|\hat y\|_{H^1(\Omega)} + \|\bar y\|_{H^1(\Omega)} + h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)})\\ &+C_{7}h^{\frac{3}{2}}\|\beta\|^{\frac{1}{2}}_{L^{\infty}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^{2}(\Gamma)}\big(\|\hat y\|_{L^{2}(\Omega)}+\|\bar y\|_{H^{1}(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}+h\|\bar y\|_{H^{1}(\Omega)}\big). \end{aligned} } |
Notice that we can rewrite the above inequality as
{ \begin{aligned} &\alpha\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)}\le C_{I}h|\bar q|^2_{H^{1/2}(\Gamma)}+\frac{\alpha}{4}\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)}\\ &+C_{II}h\big(\|\hat y\|_{L^2(\Omega)}+\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}+h\|\bar y\|_{H^1(\Omega)}\big)^2+\frac{\alpha}{4}\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)}\\ &+C_{III}h\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)}. \end{aligned} } |
After all simplification, we obtain
\alpha\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)}\le Ch(|\bar q|_{H^{1/2}(\Gamma)} + \|\hat y\|_{L^2(\Omega)} + \|\bar y\|_{H^1(\Omega)})^2 + C'h\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}^2, |
where h is sufficiently small such that C'h\le\frac{\alpha}{2} to absorb C'h\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)} to the left hand side. Thus, we conclude that there exists a positive constant C such that
\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\le Ch^{1/2}\big(|\bar q|_{H^{1/2}(\Gamma)}+\|\hat y\|_{L^2(\Omega)}+\|\bar y\|_{H^1(\Omega)}\big), |
provided h is sufficiently small.
In this section, we show the features of the method and some numerical examples to support our theoretical results by the method described for the main problem (1.1) , \rm (1.2a) and \rm (1.2b) . Here, we present numerical results depending on different kinds of domain as the following.
Since the domain is one dimensional and the boundary is consisting of two points, there is no regularity limitation due to geometry restriction. Thus, we do not expect an optimal convergence rate, but we observe that the method is still stable and convergent in Tables 1–3 and Figures 3–4.
h | L^2-y_{rate} | H^1-y_{rate} | Left-q_{rate} | Right-q_{rate} |
5.00e-01 | 1.959 | 1.002 | 2.007 | 1.965 |
2.50e-01 | 1.979 | 1.001 | 2.006 | 1.982 |
1.25e-01 | 1.990 | 1.001 | 2.004 | 1.991 |
6.25e-02 | 1.995 | 1.000 | 2.002 | 1.996 |
3.12e-02 | 1.997 | 1.001 | 2.001 | 1.998 |
1.56e-03 | 1.999 | 1.000 | 2.001 | 1.999 |
h | L^2-y_{rate} | H^1-y_{rate} | Left-q_{rate} | Right-q_{rate} |
5.00e-01 | 2.999 | 2.013 | 2.025 | 2.982 |
2.50e-01 | 2.999 | 2.007 | 2.683 | 2.991 |
1.25e-01 | 3.000 | 2.004 | 2.864 | 2.996 |
6.25e-02 | 3.000 | 2.002 | 2.937 | 2.998 |
3.12e-02 | 2.998 | 2.001 | 2.969 | 2.999 |
1.56e-03 | 1.938 | 2.001 | 2.985 | 2.999 |
h | L^2-y_{rate} | H^1-y_{rate} | Left-q_{rate} | Right-q_{rate} |
5.00e-01 | 4.436 | 2.436 | 3.970 | 3.866 |
2.50e-01 | 4.425 | 3.423 | 3.985 | 3.983 |
1.25e-01 | 4.380 | 3.385 | 3.992 | 3.991 |
6.25e-02 | 1.188 | 3.320 | 3.996 | 3.996 |
3.12e-02 | -0.777 | 3.223 | 3.998 | 3.998 |
1.56e-03 | -1.119 | 1.268 | 3.999 | 3.999 |
By setting \Omega = [0, 1] , \epsilon = 1 , \alpha = 1 , \vec{\beta} = [1] , \bar q = (1-x)^2(x^2) , c = 0 , \bar y = x^4-\frac{e^{\frac{x-1}{\epsilon}}-e^{\frac{-1}{\epsilon}}}{1-e^{\frac{-1}{\epsilon}}} , and \bar z = \frac{\alpha}{\epsilon}(1-x)^2x^2 .
By setting the problem as the following,
\begin{aligned} \Omega& = [0, 1]\times[0, 1], \ \vec{\beta} = [1;1], \ c = 1, \alpha = 1, \ \bar q = \frac{-1}{\epsilon}(x(1-x)+y(1-y)), \\ \bar y& = \frac{-1}{\epsilon}(x(1-x)+y(1-y)), \ \bar z = \frac{\alpha}{\epsilon}(xy(1-x)(1-y)). \end{aligned} |
Here, we consider piecewise linear continuous functions to approximate the optimal control.
The first order conditions allow us deduce the regularity results of the optimal control and so the expected convergence rate has agreed well with the rate in [6] as \|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\le {\it Ch} by the square domain with the largest interior angle w_{max} = \frac{\pi}{2} .
Lemma (5.7) and \|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\le {\it Ch} yield \|\bar y-\bar y_{h}\|_{L^2(\Omega)}\le{\it Ch^{3/2}} . Since the power of h on the right-hand side drops for one for each derivative of the error (\bar y-\bar y_{h}) , \|\bar y-\bar y_{h}\|_{H^1(\Omega)}\le{\it Ch^{1/2}} by Lemma (5.2). Likewise, From Lemma (5.2) and z\in H^2 , \|\bar z-\bar z_{h}\|_{L^2(\Omega)}\le{\it Ch^2} , and so \|\bar z-\bar z_{h}\|_{H^1(\Omega)}\le{\it Ch} as our expected convergence rates indicated in Tables 4 and 5. Also, the expected rates have agreed well with the rates for the different densities of the meshes in [6]. Also, we can see the stability of the method in Figure 5.
h | \|\bar y-\bar y_{h}\|_{L^2} | \|\bar y-\bar y_{h}\|_{H^1} | \|\bar q-\bar q_{h}\|_{L^2} | \|\bar z-\bar z_{h}\|_{L^2} | \|\bar z-\bar z_{h}\|_{H^1} |
5.00e-01 | 1.92e-01 | 3.91e+00 | 1.07e+00 | 4.31e-02 | 9.19e-01 |
2.50e-01 | 8.44e-02 | 2.25e+00 | 4.86e-01 | 1.38e-02 | 5.06e-01 |
1.25e-01 | 3.14e-02 | 1.27e+00 | 2.29e-01 | 4.21e-03 | 2.62e-01 |
6.25e-02 | 1.10e-02 | 7.33e-01 | 1.09e-01 | 1.22e-03 | 1.32e-01 |
3.12e-02 | 3.80e-03 | 4.49e-01 | 5.20e-02 | 3.32e-04 | 6.66e-02 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 1.19 | 0.80 | 1.13 | 1.64 | 0.86 |
1.25e-01 | 1.43 | 0.83 | 1.08 | 1.72 | 0.95 |
6.25e-02 | 1.51 | 0.79 | 1.08 | 1.79 | 0.98 |
3.12e-02 | 1.53 | 0.71 | 1.06 | 1.87 | 0.99 |
expected | 1.50 | 0.50 | 1.00 | 2.00 | 1.00 |
Since \epsilon is too small for this case such as \epsilon = 10^{-5} , \frac{h{|\vec{\beta}|}}{\epsilon} > 1 which means the advection-diffusion dominated case occurs. The norm of y depends on \epsilon such that \|\bar y\|_{H^{k+1}(\Omega)}\le\frac{C}{\epsilon^{k+1/2}} . Since the convergence rate of \bar q depends on data of \bar y from the main result, we do not expect any convergence rate and so this case does not contradict with our main result. Also, the feature of the method shows itself that Dirichlet boundary condition is almost ignored by the method as a result of weak treatment and it does not resolve the layers and causes oscillations on the boundary. It can be seen in Figure 6 and Tables 6 and 7 that some oscillatory solutions and non-convergent rate of q appear on the inflow boundary, caused by non-stabilized terms of boundary edges E_{h}^{\partial} represented by E_{h}^{-} in the bilinear form (4.6) and (4.5), whereas it is stable on both the interior edges E_{h}^0 and the stabilized boundary edges E_{h}^{\partial} by the penalty term in the form.
h | \|\bar y-\bar y_{h}\|_{L^2} | \|\bar y-\bar y_{h}\|_{H^1} | \|\bar q-\bar q_{h}\|_{L^2} | \|\bar z-\bar z_{h}\|_{L^2} | \|\bar z-\bar z_{h}\|_{H^1} |
5.00e-01 | 4.29e+00 | 2.68e+01 | 8.15e+00 | 5.66e+01 | 9.52e+02 |
2.50e-01 | 7.69e-01 | 1.32e+01 | 2.22e+00 | 1.51e+01 | 5.15e+02 |
1.25e-01 | 4.72e-01 | 1.58e+01 | 9.70e-01 | 3.85e+00 | 2.63e+02 |
6.25e-02 | 3.78e-01 | 2.36e+01 | 6.66e-01 | 9.64e-01 | 1.32e+02 |
3.12e-02 | 2.55e-01 | 2.88e+01 | 6.37e-01 | 2.40e-01 | 6.62e+01 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 2.48 | 1.02 | 1.87 | 1.91 | 0.89 |
1.25e-01 | 0.71 | -0.26 | 1.20 | 1.97 | 0.97 |
6.25e-02 | 0.32 | -0.58 | 0.54 | 2.00 | 0.99 |
3.12e-02 | 0.57 | -0.28 | 0.06 | 2.01 | 1.00 |
By a transformation from the unit square domain to obtain a diamond shaped domain \Omega with \frac{\pi}{4} , \frac{\pi}{8} and \frac{\pi}{10} angles, while the angle of the domain is getting smaller, we expect that the error rate is getting close to the predicted optimal error rate.
After the transformation from the unit square domain to obtain a diamond shaped domain \Omega with \frac{\pi}{4} , \frac{\pi}{8} and \frac{\pi}{10} angles, we can observe from tables 8–10 that the regularity of the state is reducing sharply close to 1 and that we will obtain the predicted rate i.e., \|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\le {\it Ch^{1/2}} yields \|\bar y-\bar y_{h}\|_{L^2(\Omega)}\le{\it Ch^1} by Theorem (5.7). There are many researches, see [6,31,46], which obtained an error estimate for the optimal control of order depends on the largest angle of the boundary polygon. Also, we can see the stable behavior of the method in Figures 7–9.
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 1.51 | 0.80 | 0.65 | 1.43 | 1.78 |
1.25e-01 | 1.47 | 0.84 | 0.96 | 1.75 | 1.91 |
6.25e-02 | 1.69 | 0.85 | 1.05 | 1.89 | 1.96 |
3.12e-02 | 1.75 | 0.81 | 1.05 | 1.95 | 1.98 |
1.56e-02 | 1.73 | 0.74 | 1.03 | 1.97 | 1.99 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 1.75 | 0.72 | 0.32 | 1.11 | 0.76 |
1.25e-01 | 1.16 | 0.41 | 0.72 | 1.63 | 0.95 |
6.25e-02 | 1.60 | 0.50 | 0.97 | 1.88 | 0.99 |
3.12e-02 | 1.70 | 0.55 | 1.01 | 1.96 | 1.00 |
1.56e-02 | 1.66 | 0.53 | 1.02 | 1.99 | 1.00 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 0.85 | 0.17 | 0.17 | 1.03 | 0.61 |
1.25e-01 | 0.92 | 0.17 | 1.59 | 1.60 | 1.04 |
6.25e-02 | 1.32 | 0.26 | 0.90 | 1.89 | 1.14 |
3.12e-02 | 1.50 | 0.42 | 1.00 | 1.98 | 1.10 |
1.56e-02 | 1.55 | 0.50 | 1.02 | 2.00 | 1.05 |
While the method still works, likewise the frame in the unit square domain, it can be seen in Figure 10 and Table 11 that some oscillatory solutions and non-convergent rate of q appear on the inflow boundary whereas it is stable on the interior edges and the stabilized boundary edges as a result of weak treatment because of not resolving the layers and causing oscillations on the boundary.
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 3.35 | 2.45 | 3.36 | 2.87 | 1.89 |
1.25e-01 | 0.31 | 0.23 | 1.41 | 2.96 | 1.97 |
6.25e-02 | -0.01 | -0.64 | 0.81 | 2.97 | 1.99 |
3.12e-02 | 0.01 | -0.68 | 0.45 | 2.45 | 2.00 |
In this paper, we consider Dirichlet boundary optimal control problem governed by the advection-diffusion equation and apply the DG methods to the problem. We show some attractive features of the method such as the stable behavior of the SIPG method into the domain of the smoothness and for the advection dominated case except on the boundary as a result of the boundary weak treatments. We have proven that the convergence rate for the SIPG method is optimal in the interior of the general convex domain. However, all convergence rates in numerical examples are higher than predicted by the main result because the predicted order exists for general convex domain, but obtaining the predicted optimal convergence rate depends on the maximal angle of the domain because of the regularity [6,36,47], which is an interesting topic for future work. Also, for general polygonal domains and Laplace equations it has been shown [6] that
\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\le {\it C}h^{1-\frac{1}{p}}, |
where p > 2 depends on the largest angle, and obtaining optimal convergence rates for the p = 2 case is another interesting topic for future work.
I would like to thank to Prof. Dmitriy Leykekhman, my thesis advisor, for helpful discussions and his advisement on my academic journey.
The author declares no conflict of interest.
[1] |
D. Choquenot, J. Parkes, Setting thresholds for pest control: How does pest density affect resource viability?, Biol. Conserv., 99 (2001), 29–46. https://doi.org/10.1016/S0006-3207(00)00186-5 doi: 10.1016/S0006-3207(00)00186-5
![]() |
[2] |
L. Edelstein-Keshet, Mathematical theory for plant-herbivore systems, J. Math. Biol., 24 (1986), 25–58. https://doi.org/10.1007/bf00275719 doi: 10.1007/bf00275719
![]() |
[3] |
E. P. Holland, R. P. Pech, W. A. Ruscoe, J. P. Parkes, G. Nugent, R. P. Duncan, Thresholds in plant-herbivore interactions: predicting plant mortality due to herbivore browse damage, Oecologia, 172 (2013), 751–766. https://doi.org/10.1007/s00442-012-2523-5 doi: 10.1007/s00442-012-2523-5
![]() |
[4] |
Z. Feng, Z. Qiu, R. Liu, D. L. DeAngelis, Dynamics of a plant-herbivore-predator system with plant-toxicity, Math. Biosci., 229 (2011), 190–204. https://doi.org/10.1016/j.mbs.2010.12.005 doi: 10.1016/j.mbs.2010.12.005
![]() |
[5] |
K. C. Abbott, G. Dwyer, Food limitation and insect outbreaks: complex dynamics in plant-herbivore models, J. Anim. Ecol., 76 (2007), 1004–1014. https://doi.org/10.1111/j.1365-2656.2007.01263.x doi: 10.1111/j.1365-2656.2007.01263.x
![]() |
[6] |
G. Sui, M. Fan, I. Loladze, Y. Kuang, The dynamics of a stoichiometric plant-herbivore model and its discrete analog, Math. Biosci. Eng., 4 (2007), 29–46. https://doi.org/10.3934/mbe.2007.4.29 doi: 10.3934/mbe.2007.4.29
![]() |
[7] |
Y. Kang, D. Armbruster, Y. Kuang, Dynamics of a plant-herbivore model, J. Biol. Dynam., 2 (2008), 89–101. https://doi.org/10.1080/17513750801956313 doi: 10.1080/17513750801956313
![]() |
[8] |
Q. Din, A. A. Elsadany, H. Khalil, Neimark-Sacker bifurcation and chaos control in a fractional-order plant-herbivore model, Discrete Dyn. Nat. Soc., 2017 (2017), 6312964. https://doi.org/10.1155/2017/6312964 doi: 10.1155/2017/6312964
![]() |
[9] |
M. S. Khan, M. Samreen, M. Ozair, T. Hussain, E. M. Elsayed, J. F. Gomez-Aguilar, On the qualitative study of a two-trophic plant-herbivore model, J. Math. Biol., 85 (2022), 34. https://doi.org/10.1007/s00285-022-01809-0 doi: 10.1007/s00285-022-01809-0
![]() |
[10] |
E. Beso, S. Kalabusic, E. Pilav, Food-limited plant-herbivore model: bifurcations, persistence, and stability, Math. Biosci., 370 (2024), 109157. https://doi.org/10.1016/j.mbs.2024.109157 doi: 10.1016/j.mbs.2024.109157
![]() |
[11] |
M. S. Shabbir, Q. Din, M. D. la Sen, J. F. Gómez-Aguilar, Exploring dynamics of plant-herbivore interactions: bifurcation analysis and chaos control with Holling type-Ⅱ functional response, J. Math. Biol., 88 (2024), 8. https://doi.org/10.1007/s00285-023-02020-5 doi: 10.1007/s00285-023-02020-5
![]() |
[12] | Z. Feng, D. L. DeAngelis, Mathematical models of plant-herbivore interactions, Chapman and Hall/CRC, 2017. https://doi.org/10.1201/9781315154138 |
[13] |
S. Kartal, A. Debbouche, Dynamics of a plant-herbivore model with differential-difference equations, Cogent Mathematics, 3 (2016), 1136198. https://doi.org/10.1080/23311835.2015.1136198 doi: 10.1080/23311835.2015.1136198
![]() |
[14] |
E. Beso, S. Kalabusic, E. Pilav, A. Bilgin, Dynamics of a plant-herbivore model subject to Allee effects with logistic growth of plant biomass, Int. J. Bifurcat. Chaos, 33 (2023), 2330026. https://doi.org/10.1142/s0218127423300264 doi: 10.1142/s0218127423300264
![]() |
[15] |
Q. Din, Global behavior of a plant-herbivore model, Adv. Differ. Equ., 2015 (2015), 119. https://doi.org/10.1186/s13662-015-0458-y doi: 10.1186/s13662-015-0458-y
![]() |
[16] |
A. Q. Khan, J. Ma, D. Xiao, Bifurcations of a two-dimensional discrete time plant-herbivore system, Commun. Nonlinear Sci., 39 (2016), 185–198. https://doi.org/10.1016/j.cnsns.2016.02.037 doi: 10.1016/j.cnsns.2016.02.037
![]() |
[17] |
M. Y. Hamada, Dynamical analysis of a discrete-time plant-herbivore model, Arab. J. Math., 13 (2024), 121–131. https://doi.org/10.1007/s40065-023-00442-z doi: 10.1007/s40065-023-00442-z
![]() |
[18] |
T. Saha, M. Bandyopadhyay, Dynamical analysis of a plant-herbivore model bifurcation and global stability, J. Appl. Math. Comput., 19 (2005), 327–344. https://doi.org/10.1007/bf02935808 doi: 10.1007/bf02935808
![]() |
[19] |
Y. Li, Z. Feng, R. Swihart, J. Bryant, N. Huntly, Modeling the impact of plant toxicity on plant-herbivore dynamics, J. Dyn. Diff. Equat., 18 (2006), 1021–1042. https://doi.org/10.1007/s10884-006-9029-y doi: 10.1007/s10884-006-9029-y
![]() |
[20] |
C. Castillo-Chavez, Z. Feng, W. Huang, Global dynamics of a plant-herbivore model with toxin-determined functional response, SIAM J. Appl. Math., 72 (2012), 1002–1020. https://doi.org/10.1137/110851614 doi: 10.1137/110851614
![]() |
[21] |
E. M. Elsayed, Q. Din, Period-doubling and Neimark-Sacker bifurcations of plant-herbivore models, Adv. Differ. Equ., 2019 (2019), 271. https://doi.org/10.1186/s13662-019-2200-7 doi: 10.1186/s13662-019-2200-7
![]() |
[22] |
Q. Din, M. S. Shabbir, M. A. Khan, K. Ahmad, Bifurcation analysis and chaos control for a plant-herbivore model with weak predator functional response, J. Biol. Dynam., 13 (2019), 481–501. https://doi.org/10.1080/17513758.2019.1638976 doi: 10.1080/17513758.2019.1638976
![]() |
[23] |
S. Kalabusic, E. Pilav, Bifurcations, permanence and local behavior of the plant-herbivore model with logistic growth of plant biomass, Qual. Theory Dyn. Syst., 21 (2022), 26. https://doi.org/10.1007/s12346-022-00561-6 doi: 10.1007/s12346-022-00561-6
![]() |
[24] |
L. J. Allen, M. J. Strauss, H. G. Thorvilson, W. N. Lipe, A preliminary mathematical model of the apple twig borer (Coleoptera: Bostrichidae) and grapes on the texas high plains, Ecol. Model., 58 (1991), 369–382. https://doi.org/10.1016/0304-3800(91)90046-4 doi: 10.1016/0304-3800(91)90046-4
![]() |
[25] |
L. J. Allen, M. K. Hannigan, M. J. Strauss, Mathematical analysis of a model for a plant-herbivore system, Bull. Math. Biol., 55 (1993), 847–864. https://doi.org/10.1016/S0092-8240(05)80192-2 doi: 10.1016/S0092-8240(05)80192-2
![]() |
[26] |
H. P. Benoit, D. P. Swain, Impacts of environmental change and direct and indirect harvesting effects on the dynamics of a marine fish community, Can. J. Fish. Aquat. Sci., 65 (2008), 2088–2104. https://doi.org/10.1139/f08-112 doi: 10.1139/f08-112
![]() |
[27] |
S. A. Khamis, J. M. Tchuenche, M. Lukka, M. Heilio, Dynamics of fisheries with prey reserve and harvesting, Int. J. Comput. Math., 88 (2011), 1776–1802. https://doi.org/10.1080/00207160.2010.527001 doi: 10.1080/00207160.2010.527001
![]() |
[28] |
C. K. Yosi, R. J. Keenan, J. C. Fox, Forest dynamics after selective timber harvesting in Papua New Guinea, Forest Ecol. Manag., 262 (2011), 895–905. https://doi.org/10.1016/j.foreco.2011.06.007 doi: 10.1016/j.foreco.2011.06.007
![]() |
[29] |
D. N. Rasquinha, D. R. Mishra, Impact of wood harvesting on mangrove forest structure, composition and biomass dynamics in india, Estuar. Coast. Shelf Sci., 248 (2021), 106974. https://doi.org/10.1016/j.ecss.2020.106974 doi: 10.1016/j.ecss.2020.106974
![]() |
[30] |
R. Ahmed, Complex dynamics of a fractional-order predator-prey interaction with harvesting, Open Journal of Discrete Applied Mathematics, 3 (2020), 24–32. https://doi.org/10.30538/psrp-odam2020.0040 doi: 10.30538/psrp-odam2020.0040
![]() |
[31] |
Y. Tian, H. M. Li, The study of a predator-prey model with fear effect based on state-dependent harvesting strategy, Complexity, 2022 (2022), 9496599. https://doi.org/10.1155/2022/9496599 doi: 10.1155/2022/9496599
![]() |
[32] |
M. Imran, M. B. Almatrafi, R. Ahmed, Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with harvesting effect, Commun. Math. Biol. Neurosci., 2024 (2024), 11. https://doi.org/10.28919/cmbn/8313 doi: 10.28919/cmbn/8313
![]() |
[33] |
M. Virtala, Optimal harvesting of a plant-hervibore system: lichen and reindeer in northern Finland, Ecol. Model., 60 (1992), 233–255. https://doi.org/10.1016/0304-3800(92)90035-d doi: 10.1016/0304-3800(92)90035-d
![]() |
[34] |
M. D. Asfaw, S. M. Kassa, E. M. Lungu, Co-existence thresholds in the dynamics of the plant-herbivore interaction with Allee effect and harvest, Int. J. Biomath., 11 (2018), 1850057. https://doi.org/10.1142/s1793524518500572 doi: 10.1142/s1793524518500572
![]() |
[35] |
M. Xiao, J. Cao, Hopf bifurcation and non-hyperbolic equilibrium in a ratio-dependent predator-prey model with linear harvesting rate: analysis and computation, Math. Comput. Model., 50 (2009), 360–379. https://doi.org/10.1016/j.mcm.2009.04.018 doi: 10.1016/j.mcm.2009.04.018
![]() |
[36] |
L. Ji, C. Wu, Qualitative analysis of a predator-prey model with constant-rate prey harvesting incorporating a constant prey refuge, Nonlinear Anal.-Real, 11 (2010), 2285–2295. https://doi.org/10.1016/j.nonrwa.2009.07.003 doi: 10.1016/j.nonrwa.2009.07.003
![]() |
[37] |
D. Jana, R. Agrawal, R. K. Upadhyay, G. Samanta, Ecological dynamics of age selective harvesting of fish population: maximum sustainable yield and its control strategy, Chaos Soliton. Fract., 93 (2016), 111–122. https://doi.org/10.1016/j.chaos.2016.09.021 doi: 10.1016/j.chaos.2016.09.021
![]() |
[38] |
A. Xiao, C. Lei, Dynamic behaviors of a non-selective harvesting single species stage-structured system incorporating partial closure for the populations, Adv. Differ. Equ., 2018 (2018), 245. https://doi.org/10.1186/s13662-018-1709-5 doi: 10.1186/s13662-018-1709-5
![]() |
[39] | L. J. S. Allen, An introduction to mathematical biology, Pearson/Prentice Hall, 2007. |
[40] |
Q. Din, Neimark-Sacker bifurcation and chaos control in Hassell-Varley model, J. Differ. Equ. Appl., 23 (2017), 741–762. https://doi.org/10.1080/10236198.2016.1277213 doi: 10.1080/10236198.2016.1277213
![]() |
[41] |
Q. Din, M. I. Khan, A discrete-time model for consumer-resource interaction with stability, bifurcation and chaos control, Qual. Theor. Dyn. Syst., 20 (2021), 56. https://doi.org/10.1007/s12346-021-00488-4 doi: 10.1007/s12346-021-00488-4
![]() |
[42] |
A. A. Khabyah, R. Ahmed, M. S. Akram, S. Akhtar, Stability, bifurcation, and chaos control in a discrete predator-prey model with strong Allee effect, AIMS Mathematics, 8 (2023), 8060–8081. https://doi.org/10.3934/math.2023408 doi: 10.3934/math.2023408
![]() |
[43] |
R. Ahmed, M. B. Almatrafi, Complex dynamics of a predator-prey system with Gompertz growth and herd behavior, Int. J. Anal. Appl., 21 (2023), 100. https://doi.org/10.28924/2291-8639-21-2023-100 doi: 10.28924/2291-8639-21-2023-100
![]() |
[44] |
R. Ahmed, M. Rafaqat, I. Siddique, M. A. Arefin, Complex dynamics and chaos control of a discrete-time predator-prey model, Discrete Dyn. Nat. Soc., 2023 (2023), 8873611. https://doi.org/10.1155/2023/8873611 doi: 10.1155/2023/8873611
![]() |
[45] | A. C. J. Luo, Regularity and complexity in dynamical systems, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-1524-4 |
[46] | J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2 |
[47] | S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, New York: Springer, 2003. https://doi.org/10.1007/b97481 |
[48] |
W. Yao, X. Li, Complicate bifurcation behaviors of a discrete predator-prey model with group defense and nonlinear harvesting in prey, Appl. Anal., 102 (2023), 2567–2582. https://doi.org/10.1080/00036811.2022.2030724 doi: 10.1080/00036811.2022.2030724
![]() |
[49] |
P. A. Naik, M. Amer, R. Ahmed, S. Qureshi, Z. Huang, Stability and bifurcation analysis of a discrete predator-prey system of Ricker type with refuge effect, Math. Biosci. Eng., 21 (2024), 4554–4586. https://doi.org/10.3934/mbe.2024201 doi: 10.3934/mbe.2024201
![]() |
1. | Divay Garg, Kamana Porwal, Unified discontinuous Galerkin finite element methods for second order Dirichlet boundary control problem, 2023, 185, 01689274, 336, 10.1016/j.apnum.2022.12.001 | |
2. | Kumar Rajeev Ranjan, S. Gowrisankar, Error analysis of discontinuous Galerkin methods on layer adapted meshes for two dimensional turning point problem, 2024, 70, 1598-5865, 2453, 10.1007/s12190-024-02054-y |
h | L^2-y_{rate} | H^1-y_{rate} | Left-q_{rate} | Right-q_{rate} |
5.00e-01 | 1.959 | 1.002 | 2.007 | 1.965 |
2.50e-01 | 1.979 | 1.001 | 2.006 | 1.982 |
1.25e-01 | 1.990 | 1.001 | 2.004 | 1.991 |
6.25e-02 | 1.995 | 1.000 | 2.002 | 1.996 |
3.12e-02 | 1.997 | 1.001 | 2.001 | 1.998 |
1.56e-03 | 1.999 | 1.000 | 2.001 | 1.999 |
h | L^2-y_{rate} | H^1-y_{rate} | Left-q_{rate} | Right-q_{rate} |
5.00e-01 | 2.999 | 2.013 | 2.025 | 2.982 |
2.50e-01 | 2.999 | 2.007 | 2.683 | 2.991 |
1.25e-01 | 3.000 | 2.004 | 2.864 | 2.996 |
6.25e-02 | 3.000 | 2.002 | 2.937 | 2.998 |
3.12e-02 | 2.998 | 2.001 | 2.969 | 2.999 |
1.56e-03 | 1.938 | 2.001 | 2.985 | 2.999 |
h | L^2-y_{rate} | H^1-y_{rate} | Left-q_{rate} | Right-q_{rate} |
5.00e-01 | 4.436 | 2.436 | 3.970 | 3.866 |
2.50e-01 | 4.425 | 3.423 | 3.985 | 3.983 |
1.25e-01 | 4.380 | 3.385 | 3.992 | 3.991 |
6.25e-02 | 1.188 | 3.320 | 3.996 | 3.996 |
3.12e-02 | -0.777 | 3.223 | 3.998 | 3.998 |
1.56e-03 | -1.119 | 1.268 | 3.999 | 3.999 |
h | \|\bar y-\bar y_{h}\|_{L^2} | \|\bar y-\bar y_{h}\|_{H^1} | \|\bar q-\bar q_{h}\|_{L^2} | \|\bar z-\bar z_{h}\|_{L^2} | \|\bar z-\bar z_{h}\|_{H^1} |
5.00e-01 | 1.92e-01 | 3.91e+00 | 1.07e+00 | 4.31e-02 | 9.19e-01 |
2.50e-01 | 8.44e-02 | 2.25e+00 | 4.86e-01 | 1.38e-02 | 5.06e-01 |
1.25e-01 | 3.14e-02 | 1.27e+00 | 2.29e-01 | 4.21e-03 | 2.62e-01 |
6.25e-02 | 1.10e-02 | 7.33e-01 | 1.09e-01 | 1.22e-03 | 1.32e-01 |
3.12e-02 | 3.80e-03 | 4.49e-01 | 5.20e-02 | 3.32e-04 | 6.66e-02 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 1.19 | 0.80 | 1.13 | 1.64 | 0.86 |
1.25e-01 | 1.43 | 0.83 | 1.08 | 1.72 | 0.95 |
6.25e-02 | 1.51 | 0.79 | 1.08 | 1.79 | 0.98 |
3.12e-02 | 1.53 | 0.71 | 1.06 | 1.87 | 0.99 |
expected | 1.50 | 0.50 | 1.00 | 2.00 | 1.00 |
h | \|\bar y-\bar y_{h}\|_{L^2} | \|\bar y-\bar y_{h}\|_{H^1} | \|\bar q-\bar q_{h}\|_{L^2} | \|\bar z-\bar z_{h}\|_{L^2} | \|\bar z-\bar z_{h}\|_{H^1} |
5.00e-01 | 4.29e+00 | 2.68e+01 | 8.15e+00 | 5.66e+01 | 9.52e+02 |
2.50e-01 | 7.69e-01 | 1.32e+01 | 2.22e+00 | 1.51e+01 | 5.15e+02 |
1.25e-01 | 4.72e-01 | 1.58e+01 | 9.70e-01 | 3.85e+00 | 2.63e+02 |
6.25e-02 | 3.78e-01 | 2.36e+01 | 6.66e-01 | 9.64e-01 | 1.32e+02 |
3.12e-02 | 2.55e-01 | 2.88e+01 | 6.37e-01 | 2.40e-01 | 6.62e+01 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 2.48 | 1.02 | 1.87 | 1.91 | 0.89 |
1.25e-01 | 0.71 | -0.26 | 1.20 | 1.97 | 0.97 |
6.25e-02 | 0.32 | -0.58 | 0.54 | 2.00 | 0.99 |
3.12e-02 | 0.57 | -0.28 | 0.06 | 2.01 | 1.00 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 1.51 | 0.80 | 0.65 | 1.43 | 1.78 |
1.25e-01 | 1.47 | 0.84 | 0.96 | 1.75 | 1.91 |
6.25e-02 | 1.69 | 0.85 | 1.05 | 1.89 | 1.96 |
3.12e-02 | 1.75 | 0.81 | 1.05 | 1.95 | 1.98 |
1.56e-02 | 1.73 | 0.74 | 1.03 | 1.97 | 1.99 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 1.75 | 0.72 | 0.32 | 1.11 | 0.76 |
1.25e-01 | 1.16 | 0.41 | 0.72 | 1.63 | 0.95 |
6.25e-02 | 1.60 | 0.50 | 0.97 | 1.88 | 0.99 |
3.12e-02 | 1.70 | 0.55 | 1.01 | 1.96 | 1.00 |
1.56e-02 | 1.66 | 0.53 | 1.02 | 1.99 | 1.00 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 0.85 | 0.17 | 0.17 | 1.03 | 0.61 |
1.25e-01 | 0.92 | 0.17 | 1.59 | 1.60 | 1.04 |
6.25e-02 | 1.32 | 0.26 | 0.90 | 1.89 | 1.14 |
3.12e-02 | 1.50 | 0.42 | 1.00 | 1.98 | 1.10 |
1.56e-02 | 1.55 | 0.50 | 1.02 | 2.00 | 1.05 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 3.35 | 2.45 | 3.36 | 2.87 | 1.89 |
1.25e-01 | 0.31 | 0.23 | 1.41 | 2.96 | 1.97 |
6.25e-02 | -0.01 | -0.64 | 0.81 | 2.97 | 1.99 |
3.12e-02 | 0.01 | -0.68 | 0.45 | 2.45 | 2.00 |
h | L^2-y_{rate} | H^1-y_{rate} | Left-q_{rate} | Right-q_{rate} |
5.00e-01 | 1.959 | 1.002 | 2.007 | 1.965 |
2.50e-01 | 1.979 | 1.001 | 2.006 | 1.982 |
1.25e-01 | 1.990 | 1.001 | 2.004 | 1.991 |
6.25e-02 | 1.995 | 1.000 | 2.002 | 1.996 |
3.12e-02 | 1.997 | 1.001 | 2.001 | 1.998 |
1.56e-03 | 1.999 | 1.000 | 2.001 | 1.999 |
h | L^2-y_{rate} | H^1-y_{rate} | Left-q_{rate} | Right-q_{rate} |
5.00e-01 | 2.999 | 2.013 | 2.025 | 2.982 |
2.50e-01 | 2.999 | 2.007 | 2.683 | 2.991 |
1.25e-01 | 3.000 | 2.004 | 2.864 | 2.996 |
6.25e-02 | 3.000 | 2.002 | 2.937 | 2.998 |
3.12e-02 | 2.998 | 2.001 | 2.969 | 2.999 |
1.56e-03 | 1.938 | 2.001 | 2.985 | 2.999 |
h | L^2-y_{rate} | H^1-y_{rate} | Left-q_{rate} | Right-q_{rate} |
5.00e-01 | 4.436 | 2.436 | 3.970 | 3.866 |
2.50e-01 | 4.425 | 3.423 | 3.985 | 3.983 |
1.25e-01 | 4.380 | 3.385 | 3.992 | 3.991 |
6.25e-02 | 1.188 | 3.320 | 3.996 | 3.996 |
3.12e-02 | -0.777 | 3.223 | 3.998 | 3.998 |
1.56e-03 | -1.119 | 1.268 | 3.999 | 3.999 |
h | \|\bar y-\bar y_{h}\|_{L^2} | \|\bar y-\bar y_{h}\|_{H^1} | \|\bar q-\bar q_{h}\|_{L^2} | \|\bar z-\bar z_{h}\|_{L^2} | \|\bar z-\bar z_{h}\|_{H^1} |
5.00e-01 | 1.92e-01 | 3.91e+00 | 1.07e+00 | 4.31e-02 | 9.19e-01 |
2.50e-01 | 8.44e-02 | 2.25e+00 | 4.86e-01 | 1.38e-02 | 5.06e-01 |
1.25e-01 | 3.14e-02 | 1.27e+00 | 2.29e-01 | 4.21e-03 | 2.62e-01 |
6.25e-02 | 1.10e-02 | 7.33e-01 | 1.09e-01 | 1.22e-03 | 1.32e-01 |
3.12e-02 | 3.80e-03 | 4.49e-01 | 5.20e-02 | 3.32e-04 | 6.66e-02 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 1.19 | 0.80 | 1.13 | 1.64 | 0.86 |
1.25e-01 | 1.43 | 0.83 | 1.08 | 1.72 | 0.95 |
6.25e-02 | 1.51 | 0.79 | 1.08 | 1.79 | 0.98 |
3.12e-02 | 1.53 | 0.71 | 1.06 | 1.87 | 0.99 |
expected | 1.50 | 0.50 | 1.00 | 2.00 | 1.00 |
h | \|\bar y-\bar y_{h}\|_{L^2} | \|\bar y-\bar y_{h}\|_{H^1} | \|\bar q-\bar q_{h}\|_{L^2} | \|\bar z-\bar z_{h}\|_{L^2} | \|\bar z-\bar z_{h}\|_{H^1} |
5.00e-01 | 4.29e+00 | 2.68e+01 | 8.15e+00 | 5.66e+01 | 9.52e+02 |
2.50e-01 | 7.69e-01 | 1.32e+01 | 2.22e+00 | 1.51e+01 | 5.15e+02 |
1.25e-01 | 4.72e-01 | 1.58e+01 | 9.70e-01 | 3.85e+00 | 2.63e+02 |
6.25e-02 | 3.78e-01 | 2.36e+01 | 6.66e-01 | 9.64e-01 | 1.32e+02 |
3.12e-02 | 2.55e-01 | 2.88e+01 | 6.37e-01 | 2.40e-01 | 6.62e+01 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 2.48 | 1.02 | 1.87 | 1.91 | 0.89 |
1.25e-01 | 0.71 | -0.26 | 1.20 | 1.97 | 0.97 |
6.25e-02 | 0.32 | -0.58 | 0.54 | 2.00 | 0.99 |
3.12e-02 | 0.57 | -0.28 | 0.06 | 2.01 | 1.00 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 1.51 | 0.80 | 0.65 | 1.43 | 1.78 |
1.25e-01 | 1.47 | 0.84 | 0.96 | 1.75 | 1.91 |
6.25e-02 | 1.69 | 0.85 | 1.05 | 1.89 | 1.96 |
3.12e-02 | 1.75 | 0.81 | 1.05 | 1.95 | 1.98 |
1.56e-02 | 1.73 | 0.74 | 1.03 | 1.97 | 1.99 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 1.75 | 0.72 | 0.32 | 1.11 | 0.76 |
1.25e-01 | 1.16 | 0.41 | 0.72 | 1.63 | 0.95 |
6.25e-02 | 1.60 | 0.50 | 0.97 | 1.88 | 0.99 |
3.12e-02 | 1.70 | 0.55 | 1.01 | 1.96 | 1.00 |
1.56e-02 | 1.66 | 0.53 | 1.02 | 1.99 | 1.00 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 0.85 | 0.17 | 0.17 | 1.03 | 0.61 |
1.25e-01 | 0.92 | 0.17 | 1.59 | 1.60 | 1.04 |
6.25e-02 | 1.32 | 0.26 | 0.90 | 1.89 | 1.14 |
3.12e-02 | 1.50 | 0.42 | 1.00 | 1.98 | 1.10 |
1.56e-02 | 1.55 | 0.50 | 1.02 | 2.00 | 1.05 |
h | L^2-y_{rate} | H^1-y_{rate} | L^2-q_{rate} | L^2-z_{rate} | H^1-z_{rate} |
5.00e-01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2.50e-01 | 3.35 | 2.45 | 3.36 | 2.87 | 1.89 |
1.25e-01 | 0.31 | 0.23 | 1.41 | 2.96 | 1.97 |
6.25e-02 | -0.01 | -0.64 | 0.81 | 2.97 | 1.99 |
3.12e-02 | 0.01 | -0.68 | 0.45 | 2.45 | 2.00 |