Loading [MathJax]/jax/output/SVG/jax.js
Research article

Fractional Milne-type inequalities for twice differentiable functions

  • Received: 10 May 2024 Revised: 31 May 2024 Accepted: 04 June 2024 Published: 17 June 2024
  • MSC : 26D15, 26D10, 26D07

  • In this study, a specific identity was derived for functions that possess two continuous derivatives. Through the utilization of this identity and Riemann-Liouville fractional integrals, several fractional Milne-type inequalities were established for functions whose second derivatives inside the absolute value are convex. Additionally, an example and a graphical representation are included to clarify the core findings of our research.

    Citation: Areej A. Almoneef, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat. Fractional Milne-type inequalities for twice differentiable functions[J]. AIMS Mathematics, 2024, 9(7): 19771-19785. doi: 10.3934/math.2024965

    Related Papers:

    [1] Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat . Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions. AIMS Mathematics, 2024, 9(5): 11228-11246. doi: 10.3934/math.2024551
    [2] Hüseyin Budak, Abd-Allah Hyder . Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities. AIMS Mathematics, 2023, 8(12): 30760-30776. doi: 10.3934/math.20231572
    [3] Areej A Almoneef, Abd-Allah Hyder, Hüseyin Budak . Weighted Milne-type inequalities through Riemann-Liouville fractional integrals and diverse function classes. AIMS Mathematics, 2024, 9(7): 18417-18439. doi: 10.3934/math.2024898
    [4] Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara . New Simpson type inequalities for twice differentiable functions via generalized fractional integrals. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218
    [5] Muhammad Umar, Saad Ihsan Butt, Youngsoo Seol . Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus. AIMS Mathematics, 2024, 9(12): 34090-34108. doi: 10.3934/math.20241625
    [6] Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392
    [7] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [8] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
    [9] Hüseyin Budak, Fatma Ertuğral, Muhammad Aamir Ali, Candan Can Bilişik, Mehmet Zeki Sarikaya, Kamsing Nonlaopon . On generalizations of trapezoid and Bullen type inequalities based on generalized fractional integrals. AIMS Mathematics, 2023, 8(1): 1833-1847. doi: 10.3934/math.2023094
    [10] Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379
  • In this study, a specific identity was derived for functions that possess two continuous derivatives. Through the utilization of this identity and Riemann-Liouville fractional integrals, several fractional Milne-type inequalities were established for functions whose second derivatives inside the absolute value are convex. Additionally, an example and a graphical representation are included to clarify the core findings of our research.



    Numerous mathematicians have delved into exploring error upper bounds utilizing numerical integration formulas and diverse methodologies. The pursuit of error bounds by numerical integration involves an examination of mathematical inequalities across distinct function categories including convex, bounded, and Lipschitzian functions. This paper focuses specifically on investigating bounds pertaining to functions whose derivatives or second derivatives achieve the convexity condition.

    To begin, let's provide an overview of various numerical integration methods along with their associated upper error bounds:

    (i) The subsequent expression represents Simpson's quadrature formula, often denoted as Simpson's 1/3 rule:

    ηγP(ψ)dψηγ6[P(γ)+4P(γ+η2)+P(η)]. (1.1)

    (ii) The characterization of Simpson's second formula, also known as the Newton-Cotes quadratic formula or Simpson's 3/8 rule (see [1]), is given as follows:

    ηγP(ψ)dψηγ8[P(γ)+3P(2γ+η3)+3P(γ+2η3)+P(η)]. (1.2)

    Equations (1.1) and (1.2) are valid for any function P that possesses a continuous fourth derivative within the interval [γ,η].

    The traditional statement of the Simpson inequality is presented as follows:

    Theorem 1.1. When considering P:[γ,η]R, a function with four continuous derivatives within the interval (γ,η), and P(4)=supψ(γ,η)|P(4)(ψ)|<, the subsequent inequality holds:

    |16[P(γ)+4P(γ+η2)+P(η)]1ηγηγP(ψ)dψ|12880P(4)(ηγ)4.

    The initial proof of the Simpson-type inequality utilizing convex functions was established by Sarikaya et al. in [2]. Within the domain of Riemann-Liouville fractional integrals, three variations of the Simpson inequality exist, categorized by the representation of fractional integrals. These distinct inequalities were established in the works [3,4,5]. Moreover, specific attention has been dedicated to Simpson-type inequalities applicable to twice differentiable functions in papers such as [6,7,8].

    The classical Newton inequality is defined as follows:

    Theorem 1.2. [See [1]] If P:[γ,η]R represents a function with a continuous fourth derivative defined over (γ,η), and P(4)=supψ(γ,η)|P(4)(ψ)|<, then the inequality presented below is valid:

    |18[P(γ)+3P(2γ+η3)+3P(γ+2η3)+P(η)]1ηγηγP(ψ)dψ|16480P(4)(ηγ)4.

    The works referenced as [9,10,11] present Newton-type inequalities utilizing convex functions for local fractional integrals. In the paper [12], the initial proofs of Newton-type inequalities for Riemann-Liouville fractional integrals were established. Subsequently, several papers have focused on deriving Newton-type inequalities for Riemann-Liouville fractional integrals [13,14]. Additionally, Gao and Shi provided proofs of Newton-type inequalities applicable to twice-differentiable functions in [15].

    The classical Milne inequality is formulated as follows:

    Theorem 1.3. [See [16]] Let P:[γ,η]R be a function with a continuous fourth derivative over (γ,η), and P(4)=supψ(γ,η)|P(4)(ψ)|<. In such a case, the subsequent inequality is valid:

    |13[2P(γ)P(γ+η2)+2P(η)]1ηγηγP(ψ)dψ|7(ηγ)423040P(4).

    Djenaoui and Meftah initially established Milne-type inequalities using convexity in [17]. Budak et al. expanded upon these inequalities, extending their applicability to Riemann-Liouville fractional integrals in [18]. Within the same study, a diverse array of Milne-type inequalities was introduced, encompassing varied function classes like bounded functions, Lipschitz functions, and functions of bounded variation. Recent research efforts, notably in [19,20], have introduced novel fractional variations of Milne-type inequalities, utilizing differentiable convex functions and exploring several function classes such as bounded functions, Lipschitz functions, and functions of bounded variation. For further exploration of Milne-type inequalities, references like [21,22,23] provide additional insights.

    This paper aims to derive fractional Milne-type inequalities applicable to mappings characterized by convex second derivatives. To achieve this objective, we begin by outlining the definition of Riemann-Liouville fractional integrals. The widely recognized Riemann-Liouville fractional integrals are defined as follows:

    Definition 1.1. [[24,25]] The Riemann-Liouville integrals Jμγ+P and JμηP, both of order μ>0 with γ0, are expressed as follows

    Jμγ+P(ψ)=1Γ(μ)ψγ(ψξ)μ1P(ξ)dξ,  ψ>γ,

    and

    JμηP(ψ)=1Γ(μ)ηψ(ξψ)μ1P(ξ)dξ,  ψ<η,

    respectively. Here, P belongs to the space L1[γ,η], and Γ(μ) denotes the Gamma function, defined as:

    Γ(μ):=0euuμ1du.

    The fractional integrals in Definition 1.1 equate to the classical integral when μ=1.

    The main point of interest here is the investigation of certain fractional Milne-type inequalities that apply to twice-differentiable functions in particular, whose second derivatives exhibit convex properties when contained in absolute value. This implies that an emphasis should be placed on comprehending and measuring the behavior of these functions within the context of fractional calculus, since this could provide light on their characteristics and potential uses in a variety of mathematical settings. To further clarify the key conclusions, the study also provides a graphical representation and an example.

    Within this section, we introduce multiple fractional Milne-type inequalities applicable to twice-differentiable functions.

    Lemma 2.1. If P:[γ,η]R is absolutely continuous over (γ,η) and PL1([γ,η]), then the following holds:

    Γ(μ+1)2(ηγ)μ[Jμγ+P(η)+JμηP(γ)]13[2P(γ)P(γ+η2)+2P(η)]=(ηγ)22(μ+1)4k=1Ik, (2.1)

    where

    I1=120(ξμ+1μ+43ξ)P(ξη+(1ξ)γ)dξ,I2=120(ξμ+1μ+43ξ)P(ξγ+(1ξ)η)dξ,I3=112(ξμ+1ξ)P(ξη+(1ξ)γ)dξ,I4=112(ξμ+1ξ)P(ξγ+(1ξ)η)dξ.

    Proof. Through the utilization of integration by parts, we derive:

    I1=120(ξμ+1μ+43ξ)P(ξη+(1ξ)γ)dξ=1ηγ(ξμ+1μ+43ξ)P(ξη+(1ξ)γ)|1201ηγ120((μ+1)ξμμ+43)P(ξη+(1ξ)γ)dξ=1ηγ(12μ+1μ+46)P(γ+η2)1ηγ[1ηγ((μ+1)ξμμ+43)P(ξη+(1ξ)γ)|120μ(μ+1)ηγ120ξμ1P(ξη+(1ξ)γ)dξ ]=1ηγ(12μ+1μ+46)P(γ+η2)1(ηγ)2(μ+12μμ+43)P(γ+η2)μ+43(ηγ)2P(γ)+μ(μ+1)(ηγ)2120ξμ1P(ξη+(1ξ)γ)dξ. (2.2)

    Likewise, we acquire:

    I2=120(ξμ+1μ+43ξ)P(ξγ+(1ξ)η)dξ=1ηγ(12μ+1μ+46)P(γ+η2)1(ηγ)2(μ+12μμ+43)P(γ+η2)μ+43(ηγ)2P(η)+μ(μ+1)(ηγ)2120ξμ1P(ξγ+(1ξ)η)dξ. (2.3)
    I3=112(ξμ+1ξ)P(ξη+(1ξ)γ)dξ=1ηγ(12μ+112)P(γ+η2)μ(ηγ)2P(η)+1(ηγ)2(μ+12μ1)P(γ+η2)+μ(μ+1)(ηγ)2112ξμ1P(ξη+(1ξ)γ)dξ, (2.4)

    and

    I4=112(ξμ+1ξ)P(ξγ+(1ξ)η)dξ=1ηγ(12μ+112)P(γ+η2)μ(ηγ)2P(γ)+1(ηγ)2(μ+12μ1)P(γ+η2)+μ(μ+1)(ηγ)2112ξμ1P(ξγ+(1ξ)η)dξ. (2.5)

    Summing (2.2)–(2.5) results in:

    4k=1Ik=μ(μ+1)(ηγ)2[10ξμ1P(ξη+(1ξ)γ)dξ+10ξμ1P(ξγ+(1ξ)η)dξ]2(μ+1)3(ηγ)2[2P(γ)P(γ+η2)+2P(η)]=μ(μ+1)Γ(μ)(ηγ)μ+2[1Γ(μ)ηγ(ψγ)μ1P(ψ)dψ+1Γ(μ)ηγ(ηψ)μ1P(ψ)dψ]2(μ+1)3(ηγ)2[2P(γ)P(γ+η2)+2P(η)]=(μ+1)Γ(μ+1)(ηγ)μ+2[JμηP(γ)+Jμγ+P(η)]2(μ+1)3(ηγ)2[2P(γ)P(γ+η2)+2P(η)]. (2.6)

    By multiplying both sides of (2.6) with (ηγ)22(μ+1), we arrive at (2.1). This concludes the proof.

    Theorem 2.1. Assume the conditions of Lemma 2.1 are satisfied. Furthermore, if |P| exhibits convexity over [γ,η], then:

    |Γ(μ+1)2(ηγ)μ[Jμγ+P(η)+JμηP(γ)]13[2P(γ)P(γ+η2)+2P(η)]|(ηγ)248(μ2+15μ+2(μ+1)(μ+2))[|P(γ)|+|P(η)|]. (2.7)

    Proof. On applying the modulus operation to Lemma 2.1, we obtain:

    |Γ(μ+1)2(ηγ)μ[Jμγ+P(η)+JμηP(γ)]13[2P(γ)P(γ+η2)+2P(η)]|(ηγ)22(μ+1)[120|ξμ+1μ+43ξ||P(ξη+(1ξ)γ)|dξ+120|ξμ+1μ+43ξ||P(ξγ+(1ξ)η)|dξ+112|ξμ+1ξ||P(ξη+(1ξ)γ)|dξ+112|ξμ+1ξ||P(ξγ+(1ξ)η)|dξ]. (2.8)

    Leveraging the convexity property of |P|, we derive

    |Γ(μ+1)2(ηγ)μ[Jμγ+P(η)+JμηP(γ)]13[2P(γ)P(γ+η2)+2P(η)]|(ηγ)22(μ+1)[120(μ+43ξξμ+1)[ξ|P(η)|+(1ξ)|P(γ)|]dξ+120(μ+43ξξμ+1)[ξ|P(γ)|+(1ξ)|P(η)|]dξ+112(ξξμ+1)[ξ|P(η)|+(1ξ)|P(γ)|]dξ+112(ξξμ+1)[ξ|P(γ)|+(1ξ)|P(η)|]dξ]=(ηγ)22(μ+1)[120(μ+43ξξμ+1)dξ+112(ξξμ+1)dξ](|P(γ)|+|P(η)|)=(ηγ)22(μ+1)(μ+13241μ+2)(|P(γ)|+|P(η)|).

    This concludes the proof of Theorem 2.1.

    Remark 2.1. When setting μ=1 in Theorem 2.1, we derive the midpoint-type inequality.

    |1ηγηγP(ξ)dξ13[2P(γ)P(γ+η2)+2P(η)]|(ηγ)216(|P(γ)|+|P(η)|),

    which is proved by Demir et al. in [21].

    Example 2.1. Let's consider the interval [γ,η]=[1,3] and define the function P:[1,3]R as P(ξ)=ξ4. This gives us P(ξ)=12ξ2 and |P| exhibits convexity over the interval [1,3]. Under these conditions, we obtain

    13[2P(γ)P(γ+η2)+2P(η)]=1483.

    Employing the definition of the Riemann-Liouville fractional integral, we achieve:

    Jμγ+P(η)=Jμ1+P(3)=1Γ(μ)31(3ξ)μ1ξ4dξ=2μ(μ4+18μ3+155μ2+786μ+1944)Γ(μ+5),

    and

    JμηP(γ)=Jμ3P(1)=1Γ(μ)31(ξ1)μ1ξ4dξ=32μ(27μ4+198μ3+441μ2+294μ+8)Γ(μ+5).

    Therefore, the left-hand side of inequality (2.7) simplifies to:

    |Γ(μ+1)2(ηγ)μ[Jμγ+P(η)+JμηP(γ)]13[2P(γ)P(γ+η2)+2P(η)]|=|Γ(μ+1)2μ+12μ(82μ4+612μ3+1478μ2+1668μ+1968)Γ(μ+5)1483|=|(41μ4+306μ3+739μ2+834μ+984)(μ+1)(μ+2)(μ+3)(μ+4)1483|. (2.9)

    Similarly, the right-hand side of inequality (2.7) was reduced to:

    (ηγ)248(μ2+15μ+2(μ+1)(μ+2))[|P(γ)|+|P(η)|]=10(μ2+15μ+2)(μ+1)(μ+2).

    Thus, from inequality (2.7), we derive the following inequality:

    |(41μ4+306μ3+739μ2+834μ+984)(μ+1)(μ+2)(μ+3)(μ+4)1483|10(μ2+15μ+2)(μ+1)(μ+2). (2.10)

    Observing Figure 1, it is evident that the left-hand side of (2.10) consistently remains below the corresponding right-hand side across all values of μ(0,10].

    Figure 1.  MATLAB was utilized for the computation and visualization of both sides of (2.10).

    Theorem 2.2. Assuming the conditions of Lemma 2.1 are met and, additionally, if |P|q, where q>1, exhibits convexity over the interval [γ,η], then

    |Γ(μ+1)2(ηγ)μ[Jμγ+P(η)+JμηP(γ)]13[2P(γ)P(γ+η2)+2P(η)]|(ηγ)22(μ+1)[(120(μ+43ξξμ+1)pdξ)1p+(1μB(p+1,p+1μ,1(12)μ))1p]×[(3|P(η)|q+|P(γ)|q8)1q+(3|P(γ)|q+|P(η)|q8)1q](ηγ)223q1(μ+1)[(120(μ+43ξξμ+1)pdξ)1p+(1μB(p+1,p+1μ,1(12)μ))1p](|P(η)|+|P(γ)|),

    where 1p+1q=1 and B represents the incomplete beta function, defined as:

    B(κ,y,r)=r0ξκ1(1ξ)y1dξ.

    Proof. Applying Hölder's inequality to (2.8), we derive:

    |Γ(μ+1)2(ηγ)μ[Jμγ+P(η)+JμηP(γ)]13[2P(γ)P(γ+η2)+2P(η)]|(ηγ)22(μ+1)[(120|ξμ+1μ+43ξ|pdξ)1p(120|P(ξη+(1ξ)γ)|qdξ)1q+(120|ξμ+1μ+43ξ|pdξ)1p(120|P(ξγ+(1ξ)η)|qdξ)1q+ (112|ξμ+1ξ|pdξ)1p(112|P(ξη+(1ξ)γ)|qdξ)1q+(112|ξμ+1ξ|pdξ)1p(112|P(ξγ+(1ξ)η)|qdξ)1q].

    Utilizing the convexity of |P|q, we obtain

    |Γ(μ+1)2(ηγ)μ[Jμγ+P(η)+JμηP(γ)]13[2P(γ)P(γ+η2)+2P(η)]|(ηγ)22(μ+1)[(120(μ+43ξξμ+1)pdξ)1p(120[ξ|P(η)|q+(1ξ)|P(γ)|q]dξ)1q+(120(μ+43ξξμ+1)pdξ)1p(120[ξ|P(γ)|q+(1ξ)|P(η)|q]dξ)1q+(112(ξξμ+1)pdξ)1p(112[ξ|P(η)|q+(1ξ)|P(γ)|q]dξ)1q+(112(ξξμ+1)pdξ)1p(112[ξ|P(γ)|q+(1ζ)|P(η)|q]dξ)1q]=(ηγ)22(μ+1)[(120(μ+43ξξμ+1)pdξ)1p+(1μB(p+1,p+1μ,1(12)μ))1p]×[(3|P(η)|q+|P(γ)|q8)1q+(3|P(γ)|q+|P(η)|q8)1q].

    Regarding the proof of the second inequality, let γ1=|P(γ)|q, η1=3|P(η)|q, γ2=3|P(γ)|q and η2=|P(η)|q. Leveraging the given facts that

    nk=1(γk+ηk)snk=1γsk+nk=1ηsk, 0s<1,

    and 1+31q4, the desired result can be acquired straightforwardly. That concludes the proof.

    Remark 2.2. When setting μ=1 in Theorem 2.2, we arrive at the inequalities

    |1(ηγ)ηγP(ξ)dξ13[2P(γ)P(γ+η2)+2P(η)]|(ηγ)24[(120(53ξξ2)pdξ)1p+(B(p+1,p+1,12))1p]×[(3|P(η)|q+|P(γ)|q8)1q+(3|P(γ)|q+|P(η)|q8)1q](ηγ)223q[(120(53ξξ2)pdξ)1p+(B(p+1,p+1,12))1p](|P(η)|+|P(γ)|).

    Theorem 2.3. Assuming the conditions of Lemma 2.1 are satisfied, if |P|q, where q1, has convex behavior over [γ,η], then

    |Γ(μ+1)2(ηγ)μ[Jμγ+P(η)+JμηP(γ)]13[2P(γ)P(γ+η2)+2P(η)]|(ηγ)22(μ+1)[(Φ5(μ))11q(Φ1(μ)|P(η)|q+Φ2(μ)|P(γ)|q)1q+(Φ5(μ))11q(Φ1(μ)|P(γ)|q+Φ2(μ)|P(η)|q)1q+(Φ6(μ))11q(Φ3(μ)|P(η)|q+Φ4(μ)|P(γ)|q)1q+(Φ6(μ))11q(Φ3(μ)|P(γ)|q+Φ4(μ)|P(η)|q)1q,

    where

    Φ1(μ)=μ+4721(μ+3)2μ+3,Φ2(μ)=μ+436+1(μ+3)2μ+31(μ+2)2μ+2,Φ3(μ)=7μ324(μ+3)+1(μ+3)2μ+3,Φ4(μ)=μ2+5μ612(μ+2)(μ+3)+1(μ+2)2μ+21(μ+3)2μ+3,Φ5(μ)=μ+4241(μ+2)2μ+2,Φ6(μ)=3μ28(μ+2)+1(μ+2)2μ+2.

    Proof. By applying the power-mean inequality in (2.8), we have

    |Γ(μ+1)2(ηγ)μ[Jμγ+P(η)+JμηP(γ)]13[2P(γ)P(γ+η2)+2P(η)]|(ηγ)22(μ+1)[(120|ξμ+1μ+43ξ|dξ)11q(120|ξμ+1μ+43ξ||P(ξη+(1ξ)γ)|qdξ)1q+(120|ξμ+1μ+43ξ|dξ)11q(120|ξμ+1μ+43ξ||P(ξγ+(1ξ)η)|qdξ)1q+ (112|ξμ+1ξ|dξ)11q (112|ξμ+1ξ||P(ξη+(1ξ)γ)|qdξ)1q+ (112|ξμ+1ξ|dξ)11q (112|ξμ+1ξ||P(ξγ+(1ξ)η)|qdξ)1q]. (2.11)

    Since |P|q is convex, we obtain

    120|ξμ+1μ+43ξ||P(ξη+(1ξ)γ)|qdξ120(μ+43ξξμ+1)[ξ|P(η)|q+(1ξ)|P(γ)|q]dξ=(μ+4721(μ+3)2μ+3)|P(η)|q+(μ+436+1(μ+3)2μ+31(μ+2)2μ+2)|P(γ)|q=Φ1(μ)|P(η)|q+Φ2(μ)|P(γ)|q. (2.12)

    Similarly, we have

    120|ξμ+1μ+43ξ||P(ξγ+(1ξ)η)|qdξ(μ+4721(μ+3)2μ+3)|P(γ)|q+(μ+436+1(μ+3)2μ+31(μ+2)2μ+2)|P(η)|q=Φ1(μ)|P(γ)|q+Φ2(μ)|P(η)|q, (2.13)
    112|ξμ+1ξ||P(ξη+(1ξ)γ)|qdξ(7μ324(μ+3)+1(μ+3)2μ+3)|P(η)|q+(μ2+5μ612(μ+2)(μ+3)+1(μ+2)2μ+21(μ+3)2μ+3)|P(γ)|q=Φ3(μ)|P(η)|q+Φ4(μ)|P(γ)|q, (2.14)

    and

    112|ξμ+1ξ||P(ξγ+(1ξ)η)|qdξ(7μ324(μ+3)+1(μ+3)2μ+3)|P(γ)|q+(μ2+5μ612(μ+2)(μ+3)+1(μ+2)2μ+21(μ+3)2μ+3)|P(η)|q=Φ3(μ)|P(γ)|q+Φ4(μ)|P(η)|q. (2.15)

    Moreover, we also have

    120|ξμ+1μ+43ξ|dξ=120(μ+43ξξμ+1)dξ=μ+4241(μ+2)2μ+2=Φ5(μ), (2.16)

    and

    112|ξμ+1ξ|dξ=112(ξξμ+1)dξ=3μ28(μ+2)+1(μ+2)2μ+2=Φ6(μ). (2.17)

    If we substitute (2.12)–(2.17) in (2.11), then we obtain the desired inequality.

    Remark 2.3. If we let μ=1 in Theorem 2.3, then we have the midpoint-type inequality

    |12(ηγ)μ[Jμγ+P(η)+JμηP(γ)]13[2P(γ)P(γ+η2)+2P(η)]|(ηγ)248[2(31|P(η)|q+65|P(γ)|q96)1q+2(31|P(γ)|q+65|P(η)|q96)1q+(11|P(η)|q+2|P(γ)|q16)1q+(11|P(γ)|q+2|P(η)|q16)1q].

    This study established an identity suitable for functions possessing two continuous derivatives, facilitating the validation of multiple Milne-type inequalities applicable to functions showcasing convex second derivatives within Riemann-Liouville fractional integrals. The inclusion of an illustrative example and corresponding graphical representation enhances the comprehension of our primary findings, emphasizing the significance of the derived identity in elucidating these functions' behavior. Future investigations could explore enhancements or extensions of our outcomes by examining various convex function classes or alternative fractional integral operators.

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under grant (RGP.2/82/45). The authors would like to acknowledge the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R337), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

    Areej A. Almoneef, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat: Methodology, Conceptualization, Data curation, Writing-original draft, Investigation, Visualization, Validation, Writing-reviewing, Editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare that there are no conflicts of interest regarding the publication of this article.



    [1] P. J. Davis, P. Rabinowitz, Methods of numerical integration, Chelmsford: Courier Corporation, 2007.
    [2] M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
    [3] J. H. Chen, X. J. Huang, Some new inequalities of Simpson's type for s-convex functions via fractional integrals, Filomat, 31 (2017), 4989–4997. https://doi.org/10.2298/FIL1715989C doi: 10.2298/FIL1715989C
    [4] M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 23 (2017), 1137–1145.
    [5] X. R. Hai, S. H. Wang, Simpson type inequalities for convex function based on the generalized fractional integrals, Turkish J. Ineq., 5 (2021), 1–15.
    [6] J. Park, Hermite-Hadamard and Simpson-Like type inequalities for differentiable (α, m)-convex mappings, Int. J. Math. Math. Sci., 2012 (2012), 809689. https://doi.org/10.1155/2012/809689 doi: 10.1155/2012/809689
    [7] M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inf., 9 (2013), 37–45.
    [8] X. M. Yuan, L. Xu, T. S. Du, Simpson-like inequalities for twice differentiable (s,P)-convex mappings involving with AB-fractional integrals and their applications, Fractals, 31 (2023), 2350024. https://doi.org/10.1142/S0218348X2350024X doi: 10.1142/S0218348X2350024X
    [9] S. Iftikhar, P. Kumam, S. Erden, Newton's-type integral inequalities via local fractional integrals, Fractals, 28 (2020), 2050037. https://doi.org/10.1142/S0218348X20500371 doi: 10.1142/S0218348X20500371
    [10] Y. M. Li, S. Rashid, Z. Hammouch, D. Baleanu, Y. M. Chu, New Newton's type estimates pertaining to local fractional integral via generalized p-convexity with applications, Fractals, 29 (2021), 2140018. https://doi.org/10.1142/S0218348X21400181 doi: 10.1142/S0218348X21400181
    [11] S. Iftikhar, S. Erden, P. Kumam, M. U. Awan, Local fractional Newton's inequalities involving generalized harmonic convex functions, Adv. Differ. Equ., 2020 (2020), 1–14. https://doi.org/10.1186/s13662-020-02637-6 doi: 10.1186/s13662-020-02637-6
    [12] T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, H. Budak, Riemann-liouville fractional Newton's type inequalities for differentiable convex functions, Fractal Fract., 6 (2022), 175. https://doi.org/10.3390/fractalfract6030175 doi: 10.3390/fractalfract6030175
    [13] L. L. Zhang, Y. Peng, T. S. Du, On multiplicative Hermite-Hadamard-and Newton-type inequalities for multiplicatively (P,m)-convex functions, J. Math. Anal. Appl., 534 (2024), 128117. https://doi.org/10.1016/j.jmaa.2024.128117 doi: 10.1016/j.jmaa.2024.128117
    [14] F. Hezenci, H. Budak, Some perturbed Newton type inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., 53 (2023), 1117–1127. https://doi.org/10.1216/rmj.2023.53.1117 doi: 10.1216/rmj.2023.53.1117
    [15] S. Q. Gao, W. Y. Shi, On new inequalities of Newton's type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math., 74 (2012), 33–41.
    [16] M. Shepherd, R. Skinner, A. D. Booth, A numerical method for calculating Green's functions, Can. Elect. Eng. J., 1 (1976), 14–17. https://doi.org/10.1109/CEEJ.1976.6830834 doi: 10.1109/CEEJ.1976.6830834
    [17] M. Djenaoui, Milne type inequalities for differentiable s-convex functions, Honam Math. J., 44 (2022), 325–338. https://doi.org/10.5831/HMJ.2022.44.3.325 doi: 10.5831/HMJ.2022.44.3.325
    [18] H. Budak, P. Kösem, H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., 2023 (2023), 10. https://doi.org/10.1186/s13660-023-02921-5 doi: 10.1186/s13660-023-02921-5
    [19] M. A. Ali, Z. Y. Zhang, M. Fečkan, On some error bounds for Milne's formula in fractional calculus, Mathematics, 11 (2023), 146. https://doi.org/10.3390/math11010146 doi: 10.3390/math11010146
    [20] H. Budak, A. A. Hyder, Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities, AIMS Math., 8 (2023), 30760–30776. https://doi.org/10.3934/math.20231572 doi: 10.3934/math.20231572
    [21] İ. Demir, A new approach of Milne-type inequalities based on proportional Caputo-Hybrid operator, J. Adv. Appl. Comput. Math., 10 (2023), 102–119. https://doi.org/10.15377/2409-5761.2023.10.10 doi: 10.15377/2409-5761.2023.10.10
    [22] T. S. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities considering generalized m-convexity on fractal sets and their applications, Fractals, 27 (2019), 1950117. https://doi.org/10.1142/S0218348X19501172 doi: 10.1142/S0218348X19501172
    [23] I. B. Siala, H. Budakb, M. A. Alic, Some Milne's rule type inequalities in quantum calculus, Filomat, 37 (2023), 9119–9134. https://doi.org/10.2298/FIL2327119S doi: 10.2298/FIL2327119S
    [24] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Vienna: Springer, 1997.
    [25] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
  • This article has been cited by:

    1. Esra Üneş, İzzettin Demir, Error estimates for perturbed Milne-type inequalities by twice-differentiable functions using conformable fractional integrals, 2025, 2025, 1687-2770, 10.1186/s13661-025-02049-z
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1031) PDF downloads(49) Cited by(1)

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog