Research article Special Issues

The method of judging satisfactory consistency of linguistic judgment matrix based on adjacency matrix and 3-loop matrix

  • Received: 10 January 2024 Revised: 29 April 2024 Accepted: 13 May 2024 Published: 05 June 2024
  • MSC : 15, 94D05

  • Language phrases are an effective way to express uncertain pieces of information, and easily conforms to the language habits of decision makers to describe the evaluation of things. The consistency judgment of a linguistic judgment matrices is the key to analytic hierarchy process (AHP). If a linguistic judgment matrix has a satisfactory consistency, then the rank of the decision schemes can be determined. In this study, the comparison relation between the decision schemes is first represented by a directed graph. The preference relation matrix of the linguistic judgment matrix is the adjacency matrix of the directed graph. We can use the n1 st power of the preference relation to judge the linguistic judgment matrix whether has a satisfactory consistency. The method is utilized if there is one and only one element in the n1 st power of the preference relation, and the element 1 is not on the main diagonal. Then the linguistic judgment matrix has a satisfactory consistency. If there are illogical judgments, the decision schemes that form a 3-loop can be identified and expressed through the second-order sub-matrix of the preference relation matrix. The feasibility of this theory can be verified through examples. The corresponding schemes for illogical judgments are represented in spatial coordinate system.

    Citation: Fengxia Jin, Feng Wang, Kun Zhao, Huatao Chen, Juan L.G. Guirao. The method of judging satisfactory consistency of linguistic judgment matrix based on adjacency matrix and 3-loop matrix[J]. AIMS Mathematics, 2024, 9(7): 18944-18967. doi: 10.3934/math.2024922

    Related Papers:

    [1] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
    [2] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
    [3] Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Hassen Aydi, Manuel De La Sen . Rational contractions on complex-valued extended b-metric spaces and an application. AIMS Mathematics, 2023, 8(2): 3338-3352. doi: 10.3934/math.2023172
    [4] Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy b-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885
    [5] Naeem Saleem, Hüseyin Işık, Sana Khaleeq, Choonkil Park . Interpolative Ćirić-Reich-Rus-type best proximity point results with applications. AIMS Mathematics, 2022, 7(6): 9731-9747. doi: 10.3934/math.2022542
    [6] Afrah A. N. Abdou, Maryam F. S. Alasmari . Fixed point theorems for generalized α-ψ-contractive mappings in extended b-metric spaces with applications. AIMS Mathematics, 2021, 6(6): 5465-5478. doi: 10.3934/math.2021323
    [7] Wasfi Shatanawi, Taqi A. M. Shatnawi . Some fixed point results based on contractions of new types for extended b-metric spaces. AIMS Mathematics, 2023, 8(5): 10929-10946. doi: 10.3934/math.2023554
    [8] Menaha Dhanraj, Arul Joseph Gnanaprakasam, Gunaseelan Mani, Rajagopalan Ramaswamy, Khizar Hyatt Khan, Ola Ashour A. Abdelnaby, Stojan Radenović . Fixed point theorem on an orthogonal extended interpolative ψF-contraction. AIMS Mathematics, 2023, 8(7): 16151-16164. doi: 10.3934/math.2023825
    [9] Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for b-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728
    [10] Hongyan Guan, Jinze Gou, Yan Hao . On some weak contractive mappings of integral type and fixed point results in b-metric spaces. AIMS Mathematics, 2024, 9(2): 4729-4748. doi: 10.3934/math.2024228
  • Language phrases are an effective way to express uncertain pieces of information, and easily conforms to the language habits of decision makers to describe the evaluation of things. The consistency judgment of a linguistic judgment matrices is the key to analytic hierarchy process (AHP). If a linguistic judgment matrix has a satisfactory consistency, then the rank of the decision schemes can be determined. In this study, the comparison relation between the decision schemes is first represented by a directed graph. The preference relation matrix of the linguistic judgment matrix is the adjacency matrix of the directed graph. We can use the n1 st power of the preference relation to judge the linguistic judgment matrix whether has a satisfactory consistency. The method is utilized if there is one and only one element in the n1 st power of the preference relation, and the element 1 is not on the main diagonal. Then the linguistic judgment matrix has a satisfactory consistency. If there are illogical judgments, the decision schemes that form a 3-loop can be identified and expressed through the second-order sub-matrix of the preference relation matrix. The feasibility of this theory can be verified through examples. The corresponding schemes for illogical judgments are represented in spatial coordinate system.



    Breast cancer is the second most commonly diagnosed cancer in women worldwide. Approximately 75% of breast cancers are estrogen receptor positive (ER+) [1]. Estrogen receptors are activated by estradiol binding leading to tumor growth. Standard treatment for ER+ breast cancer involves the use of endocrine therapy after surgery or chemotherapy [2,3] to reduce the risk of breast cancer relapse and lead to prolonged life. There are two types of Endocrine therapy for breast cancer including drugs that lower estrogen levels and drugs that block ERs on breast cancer cells. The aromatase inhibitors (AIs) inhibit estrogen biosynthesis leading to reduction of estradiol (E2) levels. The selective ER modulators (SERMs) block ERs and reduce ER activity. The best known SERM is tamoxifen which binds to the ER and modulates its function leading to reduction of tumor cell division rate and slows tumor growth. Tamoxifen has been proven to be effective but most patients eventually develop resistance resulting in tumor recurrence [2,3,4,5,6]. It has been reported that tamoxifen may switch the mode of action from antagonism to agonism promoting turmor growth [7].

    Fulvastrant is the first selective ER degrader (SERD), a pure antagonist which blocks and damages ERs, approved by FDA in 2002 [8]. It has been shown that fulvastrant has higher affinity for ERs than tamoxifen [3] and has been proven to be effective in patients with ER+ breast cancer after progression on other endocrine therapies such as tamoxifen or AIs [4,9]. The maximum feasible dose for fulvestrant is 500 mg given by monthly intramuscular injections [7,10,11]. However, fulvestrant gives low bioavailability and a long period of time (3-6 months) to reach steady state plasma concentration [5,10]. These disadvantages of fulvestrant result in limitations in its clinical benefit. Therefore, there has been a compelling clinical need to develop oral SERDs to overcome these limitations [4,9].

    AZD9496 is a new oral SERD and is a potent antagonist and degrader of ERs with high oral bioavailability, rapid absorption [5,9,10]. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors in combination with endocrine therapy have shown increased progression-free survival in ER+ breast cancer compared with endocrine therapy alone [5,12,13]. Experimental study by Weir et al [5] has shown that AZD9496 gives greater tumor growth inhibition compared with fulvestrant. Further study has shown tumor regression in combination therapy using AZD9496 and CDK4/6 [5].

    A mathematical model of tumor growth in MCF-7 breast cancer cell line with interaction among the cancer cells and immune cells has been developed by Wei [14]. The model was based on several experimental results using MCF-7 breast cancer cells. Multistability which resembles the 3 E's of cancer immunoediting (elimination, equilibrium, and escape) was observed in the mathematical model. In this study, treatment terms are to be incorporated into the mathematical model for the study of outcome of treatment using combination therapy with AZD9496 and CDK4/6. To provide details, the mathematical model is presented in Section 2. Numerical simulations and discussion are given in Section 3. Finally, a brief conclusion is made in Section 4.

    A first-in-human study of AZD9496 has reported a mean terminal half-life (t1/2) of 1.4 to 5.7 hours and a rapid absorption with a median tmax, the time to reach the peak plasma concentration, of 1.33-3.00 hours [9, 10]. Let U in mg be the amount of AZD9496 in the body but has not entered the circulation, Z in mg the amount of AZD9496 in the circulation, α7 the absorption rate constant, and β7 the elimination rate constant. The dynamics of AZD9496 are described by the following equations:

    dUdt=α7U, (2.1)
    dZdt=α7Uβ7Z. (2.2)

    The value for β7 is determined by ln2/t1/2. If t1/2=3.5, then β7=ln2/(3.5/24)=4.7541. The value for α7 is obtained by solving Eqs. (2.1) and (2.2) followed by setting Z(tmax)=0 to find α7. This gives α7=24.3659.

    Palbociclib, which has been shown to arrest tumor growth, is a CDK4/6 inhibitor administered orally and absorbed slowly from intestine in 6-12 hours with a median tmax=5.5 ranging from 2.0 to 9.8, a terminal terminal half life of 25.9±7.5 (mean±SD) hours, and a bioavailability of 46% [15]. Let P in mg be the amount of palbociclib in the body but has not entered the circulation, Q in mg the amount of palbociclib in the circulation, α8 the absorption rate constant, and β8 the elimination rate constant. The dynamics of palbociclib are described by the following equations:

    dPdt=α8P, (2.3)
    dQdt=k1α8Pβ8Q. (2.4)

    The parameter values α8=14.1512 and β8=ln2/1.08=0.64 are obtained in a similar way used in Section 2.1. Because the bioavailability of palbociclib is 46%, about half amount of the drug enters the circulation and k1=0.5 is used throughout the paper.

    Let α9 and α10 be the constants for tumor growth inhibition induced by palbociclib and AZD9496, respectively. The combination treatment using AZD9496 and palbociclib incorporated into the mathematical model proposed by Wei [14] is as follows:

    dTdt=T(aeα9Q+ceα10ZET1+α1E+β1T2)(1T/K)p1TN21+α2T+β2N2p6T2L1+α6T2+β6L. (2.5)
    dNdt=eCfNp2NT+p3NT1+α3T+β3N, (2.6)
    dCdt=αβC, (2.7)
    dLdt=(p4LN+p5Iα4+IL)(1L/KL)Tα5+TdL, (2.8)
    dUdt=α7U+M1i=0siδ(t1i),0t10<t11<<t1M1 (2.9)
    dZdt=α7Uβ7Z, (2.10)
    dPdt=α8P+M2i=0viδ(t2i),0t20<t21<<t2M2 (2.11)
    dQdt=0.5α8Pβ8Q, (2.12)
    E(t)=˜E(tnτ),t[nτ,(n+1)τ),n=0,1,2,, (2.13)

    where E(t) is a periodic function and t is in days. The variables and parameter values are summarized in Table 1. The parameter values α9 and α10 are to be determined using experimental data.

    Table 1.  Parameter values in Eqs. (2.5)-(2.13).
    Parameter/Variable Value Units Description
    T Variable Cell MCF-7 tumor cell population
    N Variable Cell L1 NK cell population
    C Variable Cell L1 WBC population
    L Variable Cell L1 CTL population
    E Variable pmol L1 Estradiol in circulation
    U Variable mg AZD9496 not in circulation
    Z Variable mg AZD9496 in circulation
    P Variable mg Palbociclib not in circulation
    Q Variable mg Palbociclib in circulation
    a 0.066 Day1 Tumor growth rate
    c 0.00147 L Cell1 Day1 pmol1 Tumor growth rate induced by E2
    α1 0.507 L pmol1 Half saturation constant
    β1 7.08×108 Cell2 Half saturation constant
    K 109 Cell Tumor cell carrying capacity
    p1 8.7×104 L2 Cell2 Day1 NK induced tumor death
    α2 7×106 Cell1 Half saturation constant
    β2 5.4×105 L2 Cell2 Half saturation constant
    β 6.3×103 Day1 WBC death rate
    α 5×107 Cell L1 Day1 WBC production rate
    e 0.00486 Day1 Fraction of WBCs becoming NK cells
    f 0.0693 Day1 NK cell death rate
    p2 3.42×106 Cell Day1 NK cell inactivation by tumor cells
    p3 1.87×108 Cell 1 Day1 NK cell recruitment rate
    α3 1.6×105 Cell1 Half saturation constant
    β3 3.27 L Cell1 Half saturation constant
    p6 2.04×103 L Cell2 Day1 CTL induced tumor death
    α6 0.268 Cell2 Half saturation constant
    β6 4343 L Cell1 Half saturation constant
    LN 2.3×108 Cell L1 Naive CTL population
    KL 8×108 Cell L1 CTL carrying capacity
    p4 9×105 Day1 Fraction of naive CTL activated
    I 2.3×1011 g L1 IL-2 concentration
    α4 2.3×1011 g L1 Half saturation constant
    p5 4.14 L Cell2 Day1 CTL growth rate induced by IL-2
    d 0.41 Day1 CTL death rate
    α5 1000 Cell Half saturation constant
    α7 24.3659 Day1 Absorption rate of AZD9496
    β7 4.7541 Day1 Elimination rate of AZD9496
    α8 14.1512 Day1 Absorption rate of palbociclib
    β8 0.64 Day1 Elimination rate of palbociclib
    α9 0.01 mg1 Tumor growth inhibition by palbociclib
    α10 0.2263 mg1 Tumor growth inhibition by AZD9496
    si Varies mg AZD9496 treatment dosage at t1i
    vi Varies mg Palbociclib treatment dosage at t2i

     | Show Table
    DownLoad: CSV

    A study conducted by Weir et al. [5] used an MCF-7 xenograft model to study in vivo efficacy of AZD9496 which was administered orally once daily (QD) at several selected dosages. In this fitting process, the experimental data are the tumor volumes on day 21 after treatment. Since the mathematical model has been developed for human patients, the dosages in mg/kg are converted into those for a patient of 60 kg throughout the paper. Let xi, i=1,2,,6 be the dosages of ADZ9496 in Figure 1 and yi=T(21) is the solution to Eqs. (2.5)-(2.13) with the initial condition (T(0),N(0),C(0),L(0),U(0),Z(0),P(0),Q(0))=(8.72×107,2.5×108,4.3×109,6.6×108,0,0,0,0) corresponding to the dosage xi. Experimental data have shown WBC counts of (4.3±0.8)×103 cells/μL and lymphocyte counts of (3.5±0.6)×103 cells/μL of in mice [16]. Berrington et al. [17] have reported that 7% (2-13%) and 19% (13-32%) of lymphocytes are NK cells and CTLs, repectively. Therefore, C(0)=4.3×109, N(0)=3.5×109×0.07=2.5×108 and L(0)=3.5×109×0.19=6.6×108 are used in this fitting process. The parameter value for α10 is to be determined. It has been found in this work that Eqs. (2.5)-(2.13) with parameter values given in [14] poorly fit the data set. Therefore, parameters a, c, and α10 are used as fitting parameters. The result of the fitting process gives a=0.066, c=0.00147, and α10=0.2263. Figure 1 shows the experimental data and the fitting curve.

    Figure 1.  Curve fitting for the parameter values a, c, and α10.

    Weir et al. [5] also conducted an experiment to study the efficacy of combination therapy using AZD9496 and palbociclib. The result has shown that a tumor with an initial volume of 0.42 cm3 (about 108 cells) reduced to that with 0.25 cm3 (about 6×107 cells) after 18 days when treated with AZD9496 at 5 mg/kg QD and palbociclib at 50 mg/kg QD. Consider that the maximum tolerated dose (MTD) of palbociclib is 125 mg. The combination doses at 300 mg QD for AZD9496 and 125 mg QD for palbociclib are selected. The parameter value α9 is determined to satisfy T(18)=6×107 by solving Eqs. (2.5)-(2.13) with T(0)=108. This results in α9=0.01003.

    The system under study has a smaller intrinsic tumor growth rate, a, and a larger factor, c, of tumor growth induced by E2 than those in [14]. Recall that the system using parameter values in [14] exhibits three stable equilibria, and the immune system is able to eliminate or control a tumor smaller than 2 mm in diameter. The system under study exhibits two stable equilibria without treatment (Figure 2). They are tumor free equilibrium and large tumor equilibrium. Figures 2(a) and (b) show that the immune system is able to eliminate a tumor of 103 cells ( 0.2 mm in diameter) while a tumor of 104 cells ( 0.43 mm in diameter) grows large with time. Tumor population dynamics depend strongly on tumor cell properties and individual variations.

    Figure 2.  Tumor dynamics with initial conditions (a) (103,4×108,8×109,8×108,0,0,0,0) and (b) (104,4×108,8×109,8×108,0,0,0,0). Parameter values are shown in Table 1.

    Based on an MCF-7 xenograft model in mice treated with AZD9496, it was reported that a dose of 5 mg/kg is the minimum dose required for significant tumor inhibition [9]. A dose si=300 QD is selected in the simulation and the results are shown in Figures 3(a)-(c). Figures 3(a)-(c) show that the treatment with AZD9496 at a dose of 300 mg QD is able to eliminate a tumor of 106 cells ( 2 mm in diameter) and control a tumor of 107 cells ( 4 mm in diameter) but the treatment fails to control a tumor of 108 cells ( 9 mm in diameter). Increasing the dose si to 3000 mg QD still fails to control a tumor of 108 cells (Figure 3(d)). Experimental data [5] have shown little difference in inhibition of tumor growth between AZD9496 doses of 5 mg/kg (si=300) and 50 mg/kg (si=3000). Similar results have also been observed by [4].

    Figure 3.  Tumor dynamics of monotherapy using AZD9496 with selected initial tumor cell population levels and dosages. (a) T(0)=106 and si=300, (b) T(0)=107 and si=300QD, (c) T(0)=108 and si=300 QD, and (d) T(0)=108 and si=3000 QD. Parameter values are shown in Table 1.

    The maximum dose of palbociclib used in an experimental study by Weir et al. [5] is 50 mg/kg (vi=3000) QD, which is a high dose. Figure 4 shows that monotherapy using palbociclib is ineffective. This agrees with the results in the experimental study by Weir et al. [5].

    Figure 4.  Tumor dynamics of monotherapy using palbociclib with T(0)=104 and vi=3000 QD. Parameter values are shown in Table 1.

    Combination therapy allows the use of lower dosages of each therapy drug to reduce toxicity and overcome resistance. It can also produce synergistic effect and enhance response. In this simulation, doses si=300 (AZD9496) QD and vi=125 (palbociclib) QD are selected. Figure 5 shows that the combination therapy can produce synergistic effect and control a tumor of 108 cells which would otherwise grow large when treated with monotherapy using AZD9496 or palbociblib alone.

    Figure 5.  Tumor dynamics of combination therapy using AZD9496 and palbociclib with T(0)=108, si=300 QD, and vi=125 QD. Parameter values are shown in Table 1.

    First-in-human studies have been conducted to determine safety and tolerability for AZD9496 [9, 10]. Patients received AZD9496 in a dose escalation design with 20 mg QD to 600 mg twice daily (BID). Although the maximum tolerated dose was not reached, Hamilton et al. [9] has recommended the 250 mg BID dose for subsequent AZD9496 study. Figure 6(a) shows that monotherapy using AZD9496 alone at 250 mg BID is able to eliminate a tumor of 107 cells. This treatment has a better outcome than that of the treatment at 500 mg QD (Figure 6(b)). Dividing a single daily dose into two smaller doses and administered twice daily can be more effective. Furthermore, Figure 6(c) shows that AZD9496 250 mg BID combined with palbociclib 125 mg QD is able to eliminated a tumor of 108 cells.

    Figure 6.  Tumor dynamics of combination therapy using AZD9496 twice daily and palbociclib once daily with (a) T(0)=107 and si=250 BID, (b) T(0)=107 and si=500 QD, and (c) T(0)=108 and si=250 BID, and vi=125 QD. Parameter values are shown in Table 1.

    The doubling time of MCF-7 breast cancer cells ranges between 30 hours and several days [18,19]. A doubling time of 30 hours is corresponding to a=ln2/(30/24)=0.55 while that of 10 days is corresponding to a=ln2/10=0.069. There is a large variation in the intrinsic tumor growth rate a. Assume a breast cancer with a=0.2, where the doubling time is about 3.5 days. Figure 7(a) shows that combination therapy with doses si=300 (AZD9496) QD and vi=125 (palbociclib) QD is not able to control a tumor of 108 cells. Increasing the dose of AZD9496 is not effective (figure not shown). Figure 7(b) shows that increasing the dose of palbociclib to 250 mg QD is able to control a tumor of 108 cells. However, this dose is beyond the MTD of palbociclib.

    Figure 7.  Tumor dynamics of combination therapy using AZD9496 and palbociclib with (a) T(0)=108, si=300 QD, and vi=125 QD, and (b) T(0)=108, si=300 QD, and vi=250 QD. Parameter values are shown in Table 1 except for a=0.2.

    This paper, which is based on a previously developed mathematical model [14], studies a combination therapy using AZD9496 as a degrader of ERs and palbociclib as a CDK4/6 inhibitor. Treatment terms are modeled based on clinical and experimental data and information of pharmacokinetic parameters of the above drugs [5,9,10,15].

    Numerical simulation shows that monotherapy using AZD9496 alone can help control a tumor with a restricted size while using palbociclib alone is ineffective. This has also been observed in the experimental study conducted by Weir [5] using an MCF-7 xenograft model in mice. A clinical trial has reported that some patients receiving AZD9496 had stable cancer [9]. Combination therapy using AZD9496 and palbociclib can generate synergistic effect and induce tumor regression for a larger tumor, which would otherwise grow large when monotherapy with either AZD9496 or palbociclib is used. This also agrees with the experimental results in [5].

    A change in dosing schedule may affect the outcome of a treatment. Dividing a large single dose into two smaller doses may be more effective. Finally, an example with a larger tumor cell proliferation rate is studied. Numerical simulation shows that combination therapy can inhibit tumor growth if a lager dose, which is beyond MTD, of palbociclib is used. It is suggested that triple therapy using immunotherapy and the above two drugs may be able to treat the tumor with safety and efficacy.

    This research work was supported by the Ministry of Science and Technology of Taiwan under the grant MOST107-2115-M-035-006.

    The author declares no conflicts of interest in this paper.



    [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] V. Torra, Hesitant fuzzy sets, Int. J. Intell. Syst, 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418
    [3] Q. Pang, H. Wang, Z. S. Xu, Probabilistic linguistic term sets in multi-attribute group decision making, Inform. Sci., 369 (2016), 128–143. https://doi.org/10.1016/j.ins.2016.06.021 doi: 10.1016/j.ins.2016.06.021
    [4] Z. S. Xu, Uncertain linguistic aggregation operators based approach to multiple attribute group decision making under uncertain linguistic environment, Inform. Sci., 168 (2004), 171–184. https://doi.org/10.1016/j.ins.2004.02.003 doi: 10.1016/j.ins.2004.02.003
    [5] R. M. Rodriguez, L. Martinez, F. Herrera. Hesitant fuzzy linguistic term sets for decision making, IEEE T. Fuzzy Syst., 20 (2012), 109–119. https://doi.org/10.1109/tfuzz.2011.2170076 doi: 10.1109/tfuzz.2011.2170076
    [6] L. A. Zadeh, A fuzzy-set-theoretic interpretation of linguistic hedges, J. Cybernet., 2 (1972), 4–34. https://doi.org/10.1080/01969727208542910 doi: 10.1080/01969727208542910
    [7] Y. Y. Lian, Y. B. Jua, J. D. Qin, W. Pedryczc, Multi-granular linguistic distribution evidential reasoning method for renewable energy project risk assessment, Inform. Fusion, 65 (2021), 147–164. https://doi.org/10.1016/j.inffus.2020.08.010 doi: 10.1016/j.inffus.2020.08.010
    [8] Z. S. Chen, Y. Yang, X. J. Wang, K. S. Chin, K. L. Sui, Fostering linguistic decision-making under uncertainty: aportional interval type-2 hesitant fuzzy TOPSIS approach based on Hamacher aggregation operators and optimization models, Inform. Sci., 500 (2019), 229–258. https://doi.org/10.1016/j.ins.2019.05.074 doi: 10.1016/j.ins.2019.05.074
    [9] S. Zhang, J. Zhu, X. Liu, Y. Chen, Z. Ma, Adaptive consensus model with multiplicative linguistic preferences based on fuzzy information granulation, Appl. Soft. Comput., 60 (2017), 30–47. https://doi.org/10.1016/j.asoc.2017.06.028 doi: 10.1016/j.asoc.2017.06.028
    [10] Y. C. Dong, Y. Z. Wu, H. J. Zhang, G. Q. Zhang, Multi-granular unbalanced linguistic distribution assessments with interval symbolic proportions, Knowl. Based Sys., 82 (2015), 139–151. https://doi.org/10.1016/j.knosys.2015.03.003 doi: 10.1016/j.knosys.2015.03.003
    [11] Y. Lin, Y. M. Wang, Prioritization of hesitant multiplicative preference relations based on data envelopment analysis for group decision making, Neural. Comput. Appl., 31 (2019), 437–447. https://doi.org/10.1007/s00521-017-3075 doi: 10.1007/s00521-017-3075
    [12] F. F. Jin, M. Cao, J. P. Liu, L. Martinez, H. Y. Chen, Consistency and trust relationship-driven social network group decision-making method with probabilistic linguistic information, Appl. Soft. Comput., 103 (2021), 107170. https://doi.org/10.1016/j.asoc.2021.107170 doi: 10.1016/j.asoc.2021.107170
    [13] Z. L. Wang, Y. M. Wang, Prospect theory-based group decision-making with stochastic uncertainty and 2-tuple aspirations under linguistic assessments, Inform. Fusion, 56 (2020), 81–92. https://doi.org/10.1016/j.inffus.2019.10.001 doi: 10.1016/j.inffus.2019.10.001
    [14] X. J. Gou, Z. S. Xu, H. C. Liao, Group decision making with compatibility measures of hesitant fuzzy linguistic preference relations, Soft Comput., 23 (2019), 1511–1527. https://doi.org/10.1007/s00500-017-2871-5 doi: 10.1007/s00500-017-2871-5
    [15] P. Grogelj, L. Z. Stirn, Acceptable consistency of aggregated comparison matrices in analytic hierarchy process, Eur. J. Oper. Res., 223 (2012), 417–420. https://doi.org/10.1016/j.ejor.2012.06.016 doi: 10.1016/j.ejor.2012.06.016
    [16] J. Hu, L. Pan, Y. Yang, H. Chen, A group medical diagnosis model based on intuitionistic fuzzy soft sets, Appl. Soft Comput., 77 (2019), 453–466. https://doi.org/10.1016/j.asoc.2019.01.041 doi: 10.1016/j.asoc.2019.01.041
    [17] S. H. Wu, X. D. Liu, Z. X. Li, Y. Zhou, A consistency improving method in the analytic hierarchy process based on directed circuit analysis, J. Syst. Eng. Elect., 30 (2019), 1160–1181. https://doi.org/10.21629/jsee.2019.06.11 doi: 10.21629/jsee.2019.06.11
    [18] J. A. Morente-Molinera, X. Wu, A. Morfeq, R. Al-Hmouz, E. Herrera-Viedma, A novel multi-criteria group decision-making method for heterogeneous and dynamic contexts using multi-granular fuzzy linguistic modelling and consensus measures, Inform. Fusion, 53 (2020), 240–250. https://doi.org/10.1016/j.inffus.2019.06.028 doi: 10.1016/j.inffus.2019.06.028
    [19] Y. Zhang, H. X. Ma, B. H. Liu, Group decision making with 2-tuple intuitionistic fuzzy linguistic preference relations. Soft. Comput, 16 (2012), 1439–1446. https://doi.org/10.1007/s00500-012-0847-z doi: 10.1007/s00500-012-0847-z
    [20] C. Li, Y. Gao, Y. Dong, Managing ignorance elements and personalized individual semantics under incomplete linguistic distribution context in group decision making, Group. Decis. Negot., 30 (2021), 97–118. https://doi.org/10.1007/s10726-020-09708-9 doi: 10.1007/s10726-020-09708-9
    [21] A. R. Mishra, P. Rani, Interval-valued intuitionistic fuzzy WASPAS method: application in reservoir flood control management policy, Group. Decis. Negot., 30 (2018), 1047–1078. https://doi.org/10.1007/s10726-018-9593-7 doi: 10.1007/s10726-018-9593-7
    [22] S. C. Su, T. C. Wang, Solving muti-criteria decision making with incomplete linguistic preference relations, Expert. Syst. Appl., 38 (2011), 10882–10888. https://doi.org/10.1016/j.eswa.2011.02.123 doi: 10.1016/j.eswa.2011.02.123
    [23] P. Rani, COPRAS method based on interval-valued hesitant Fermatean fuzzy sets and its application in selecting desalination technology, Appl. Soft Comput., 119 (2022), 108570. https://doi.org/10.1016/j.asoc.2022.108570 doi: 10.1016/j.asoc.2022.108570
    [24] M. Deveci, S. C. Öner, Muharrem, E. Ciftci, E. Özcan, D. Pamucar, Interval type-2 hesitant fuzzy Entropy-based WASPAS approach for aircraft type selection, Appl. Soft Comput., 114 (2022), 108076. https://doi.org/10.1016/j.asoc.2021.108076 doi: 10.1016/j.asoc.2021.108076
    [25] M. Deveci, V. Simic, S. Karagoz, J. Antucheviciene, An interval type-2 fuzzy sets based Delphi approach to evaluate site selection indicators of sustainable vehicle shredding facilities, Appl. Soft Comput., 118 (2022), 108465. https://doi.org/10.1016/j.asoc.2022.108465 doi: 10.1016/j.asoc.2022.108465
    [26] L. Wang, H. Wang, An integrated qualitative group decision-making method for assessing health-care waste treatment technologies based on linguistic terms with weakened hedges, Appl. Soft Comput., 117 (2022), 108435. https://doi.org/10.1016/j.asoc.2022.108435 doi: 10.1016/j.asoc.2022.108435
    [27] X. L. Wu, H. C. Liao, Geometric linguistic scale and its application in multi-attribute decision-making for green agricultural product supplier selection, Fuzzy. Set. Syst., 458 (2023), 182–200. https://doi.org/10.1016/j.fss.2022.08.026 doi: 10.1016/j.fss.2022.08.026
    [28] Q. Yang, Z. S. Chen, Catherine, Y. P. Chan, W. Pedrycz, L. Martínez, et al., Large-scale group decision-making for prioritizing engineering characteristics in quality function deployment under comparative linguistic environment, Appl. Soft Comput., 127 (2022), 109359. https://doi.org/10.1016/j.asoc.2022.109359 doi: 10.1016/j.asoc.2022.109359
    [29] G. Strauch, W. Finger, F. Rodrigues, L. Junior, A hesitant fuzzy linguistic QFD approach for formulating sustainable supplier development programs, Int. J. Prod. Econ., 247 (2022), 108428. https://doi.org/10.1016/j.ijpe.2022.108428 doi: 10.1016/j.ijpe.2022.108428
    [30] X. Tan, J. J. Zhu, I. Palomares, X. Liu, On consensus reaching process based on social network analysis in uncertain linguistic group decision making: Exploring limited trust propagation and preference modification attitudes, Inform. Fusion, 78 (2022), 180–198. https://doi.org/10.1016/j.i-nffus.2021.09.006 doi: 10.1016/j.i-nffus.2021.09.006
    [31] S. Siraj, L. Mikhailov, J. Keane, A heuristic method to rectify intransitive judgments in pairwise comparison matrices, Eur. J. Oper. Res., 216 (2012), 420–428. https://doi.org/10.1016/j.ejor.2011.07.034 doi: 10.1016/j.ejor.2011.07.034
    [32] Z. S. Xu, Incomplete complementary judgment matrix, in Chinese, Syst. Eng.Theory Pract., 24 (2004), 91–97.
    [33] Z. P. Fan, S. H Xiao, The consistency and ranking method for comparison matrix with linguistic assessment, in Chinese, Syst. Eng.Theory Pract., 22 (2002), 87–91.
    [34] Z. S. Xu, C. P. Wei. A consistency improving method in the analytic hierarchy process. Eur. J. Oper. Res, 116 (1999), 443–449. https://doi.org/10.1016/S0377-2217(98)00109-X doi: 10.1016/S0377-2217(98)00109-X
    [35] D. Cao, L.C. Leueg, J. S. Law, Modifying inconsistent comparison matrix in analytic hierarchy process: a heuristic approach, Decis. Support. Syst., 44 (2008), 944–953. https://doi.org/10.1016/j.dss.2007.11.002 doi: 10.1016/j.dss.2007.11.002
    [36] Q. Zhang, T. Huang, X. Tang, K. Xu, Witold Pedrycz e A linguistic information granulation model and its penalty function-based co-evolutionary PSO solution approach for supporting GDM with distributed linguistic preference relations, Inform. Fusion, 77 (2021), 118–132. https://doi.org/10.1016/j.inffus.2021.07.017 doi: 10.1016/j.inffus.2021.07.017
    [37] M. Delgado, F. Herrera, E. Herrera-Viedma, L. Martínez, Combining numerical and linguistic information in group decision making, Inform. Sci., 107 (1998), 177–194. https://doi.org/10.1016/S0020-0255(97)10044-5 doi: 10.1016/S0020-0255(97)10044-5
    [38] G. Bordogna, M. Fedrizzi, G. Pasi, A linguistic modeling of consensus in group decision making based on OWA operators, IEEE. T. Syst. Man. Cy. A, 27 (1997), 126–132. https://doi.org/10.1109/3468.553232 doi: 10.1109/3468.553232
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1079) PDF downloads(40) Cited by(2)

Figures and Tables

Figures(6)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog