Research article

Traveling wave solution of (3+1)-dimensional negative-order KdV-Calogero-Bogoyavlenskii-Schiff equation

  • Received: 29 December 2023 Revised: 29 January 2024 Accepted: 04 February 2024 Published: 18 February 2024
  • MSC : 35C05, 35C07, 35R11

  • We explored the (3+1)-dimensional negative-order Korteweg-de Vries-alogero-Bogoyavlenskii-Schiff (KdV-CBS) equation, which develops the classical Korteweg-de Vries (KdV) equation and extends the contents of nonlinear partial differential equations. A traveling wave transformation is employed to transform the partial differential equation into a system of ordinary differential equations linked with a cubic polynomial. Utilizing the complete discriminant system for polynomial method, the roots of the cubic polynomial were classified. Through this approach, a series of exact solutions for the KdV-CBS equation were derived, encompassing rational function solutions, Jacobi elliptic function solutions, hyperbolic function solutions, and trigonometric function solutions. These solutions not only simplified and expedited the process of solving the equation but also provide concrete and insightful expressions for phenomena such as optical solitons. Presenting these obtained solutions through 3D, 2D, and contour plots offers researchers a deeper understanding of the properties of the model and allows them to better grasp the physical characteristics associated with the studied model. This research not only provides a new perspective for the in-depth exploration of theoretical aspects but also offers valuable guidance for the practical application and advancement of related technologies.

    Citation: Musong Gu, Chen Peng, Zhao Li. Traveling wave solution of (3+1)-dimensional negative-order KdV-Calogero-Bogoyavlenskii-Schiff equation[J]. AIMS Mathematics, 2024, 9(3): 6699-6708. doi: 10.3934/math.2024326

    Related Papers:

  • We explored the (3+1)-dimensional negative-order Korteweg-de Vries-alogero-Bogoyavlenskii-Schiff (KdV-CBS) equation, which develops the classical Korteweg-de Vries (KdV) equation and extends the contents of nonlinear partial differential equations. A traveling wave transformation is employed to transform the partial differential equation into a system of ordinary differential equations linked with a cubic polynomial. Utilizing the complete discriminant system for polynomial method, the roots of the cubic polynomial were classified. Through this approach, a series of exact solutions for the KdV-CBS equation were derived, encompassing rational function solutions, Jacobi elliptic function solutions, hyperbolic function solutions, and trigonometric function solutions. These solutions not only simplified and expedited the process of solving the equation but also provide concrete and insightful expressions for phenomena such as optical solitons. Presenting these obtained solutions through 3D, 2D, and contour plots offers researchers a deeper understanding of the properties of the model and allows them to better grasp the physical characteristics associated with the studied model. This research not only provides a new perspective for the in-depth exploration of theoretical aspects but also offers valuable guidance for the practical application and advancement of related technologies.



    加载中


    [1] Y. C. Mathpati, T. Tripura, R. Nayek, S. Chakraborty, Discovering stochastic partial differential equations from limited data using variational Bayes inference, Commun. Nonlinear Sci., 418 (2024), 116512. https://doi.org/10.1016/j.cma.2023.116512 doi: 10.1016/j.cma.2023.116512
    [2] Y. Liu, G. G. Chen, S. Y. Li, Stability of traveling waves for deterministic and stochastic delayed reaction-diffusion equation based on phase shift, Commun. Nonlinear Sci., 127 (2023), 107561. https://doi.org/10.1016/j.cnsns.2023.107561 doi: 10.1016/j.cnsns.2023.107561
    [3] J. Wu, Z. Yang, Global existence and boundedness of chemotaxis-fluid equations to the coupled Solow-Swan model, AIMS Math., 8 (2023), 17914–17942. https://doi.org/10.3934/math.2023912 doi: 10.3934/math.2023912
    [4] H. Ahmad, A. Akgül, T. A. Khan, P. S. Stanimirović, Y. M. Chu, New perspective on the conventional solutions of the nonlinear time-fractional partial differential equations, Complexity, 2020 (2020), 1–10. https://doi.org/10.1155/2020/8829017 doi: 10.1155/2020/8829017
    [5] Z. Q. Li, S. F. Tian, J. J. Yang, On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa equation with finite density initial data in space-time solitonic regions, Adv. Math., 409 (2022), 108639. https://doi.org/10.1016/j.aim.2022.108639 doi: 10.1016/j.aim.2022.108639
    [6] Z. Q. Li, S. F. Tian, J. J. Yang, Soliton Resolution for the Wadati-Konno-Ichikawa equation with weighted Sobolev initial data, Ann. Henri Poincaré, 23 (2022), 2611–2655. https://doi.org/10.1007/s00023-021-01143-z doi: 10.1007/s00023-021-01143-z
    [7] Z. Q. Li, S. F. Tian, J. J. Yang, E. G. Fan, Soliton resolution for the complex short pulse equation with weighted Sobolev initial data in space-time solitonic regions, J. Differ. Equations, 329 (2022), 31–88. https://doi.org/10.1016/j.jde.2022.05.003 doi: 10.1016/j.jde.2022.05.003
    [8] Z. Q. Li, S. F. Tian, J. J. Yang, On the asymptotic stability of N-soliton solution for the short pulse equation with weighted Sobolev initial data, J. Differ. Equations, 377 (2023), 121–187. https://doi.org/10.1016/j.jde.2023.08.028 doi: 10.1016/j.jde.2023.08.028
    [9] D. N. Yang, X. J. Jiang, Line-soliton, lump and interaction solutions to the (2+1)-dimensional Hirota-Satsuma-Ito equation with time-dependent via Hirota bilinear forms, Results Phys., 53 (2023), 106904. https://doi.org/10.1016/j.rinp.2023.106904 doi: 10.1016/j.rinp.2023.106904
    [10] A. M. Wazwaz, Two new Painlevé integrable KdV-Calogero-Bogoyavlenskii-Schiff (KdV-CBS) equation and new negative-order KdV-CBS equation, Nonlinear Dynam., 104 (2021), 4311–4315. https://doi.org/10.1007/s11071-021-06537-6 doi: 10.1007/s11071-021-06537-6
    [11] N. Raza, S. Arshed, A. M. Wazwaz, Structures of interaction between lump, breather, rogue and periodic wave solutions for new (3+1)-dimensional negative order KdV-CBS model, Phys. Lett. A., 458 (2023), 128589. https://doi.org/10.1016/j.physleta.2022.128589 doi: 10.1016/j.physleta.2022.128589
    [12] Z. Li, E. Hussai, Qualitative analysis and optical solitons for the (1+1)-dimensional Biswas-Milovic equation with parabolic law and nonlocal nonlinearity, Results Phys., 56 (2024), 107304. https://doi.org/10.1016/j.rinp.2023.107304 doi: 10.1016/j.rinp.2023.107304
    [13] Z. Li, C. Y. Liu, Chaotic pattern and traveling wave solution of the perturbed stochastic nonlinear Schrödinger equation with generalized anti-cubic law nonlinearity and spatio-temporal dispersion, Results Phys., 56 (2024), 107305. https://doi.org/10.1016/j.rinp.2023.107305 doi: 10.1016/j.rinp.2023.107305
    [14] Y. H. Wang, H. Wang, H. S. Zhang, T. Chaolu, Exact interaction solutions of an extended (2+1)-dimensional shallow water wave equation, Commun. Theor. Phys., 68 (2017), 165–169. https://dx.doi.org/10.1088/0253-6102/68/2/165 doi: 10.1088/0253-6102/68/2/165
    [15] Y. Liu, D. S. Wang, Exotic wave patterns in Riemann problem of the high-order Jaulent-Miodek equation: Whitham modulation theory, Stud. Appl. Math., 149 (2022), 588–630. https://doi.org/10.1111/sapm.12513 doi: 10.1111/sapm.12513
    [16] C. S. Liu, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Commun. Theor. Phys., 181 (2010), 317–324. https://doi.org/10.1016/j.cpc.2009.10.006 doi: 10.1016/j.cpc.2009.10.006
    [17] A. Başhan, N. M. Yaǧmurlu, Y. Ucar, A. Esen, A new perspective for the numerical solutions of the cmKdV equation via modified cubic B-spline differential quadrature method, Int. J. Mod. Phys. C, 29 (2018), 1850043. https://doi.org/10.1142/S0129183118500432 doi: 10.1142/S0129183118500432
    [18] A. Başhan, A mixed algorithm for numerical computation of soliton solutions of the coupled KdV equation: Finite difference method and differential quadrature method, Appl. Math. Comput., 360 (2019), 42–57. https://doi.org/10.1016/j.amc.2019.04.073 doi: 10.1016/j.amc.2019.04.073
    [19] A. Başhan, A novel approach via mixed Crank-Nicolson scheme and differential quadrature method for numerical solutions of solitons of mKdV equation, Pramana-J. Phys., 92 (2019), 84. https://doi.org/10.1007/s12043-019-1751-1 doi: 10.1007/s12043-019-1751-1
    [20] A. Başhan, A novel outlook to the mKdV equation using the advantages of a mixed method, Appl. Anal., 102 (2023), 65–87. https://doi.org/10.1080/00036811.2021.1947493 doi: 10.1080/00036811.2021.1947493
    [21] A. Başhan, An effective application of differential quadrature method based on modified cubic B-splines to numerical solutions of the KdV equation, Turk. J. Math., 42 (2018), 373–394. https://doi.org/10.3906/mat-1609-69 doi: 10.3906/mat-1609-69
    [22] A. Başhan, An effective approximation to the dispersive soliton solutions of the coupled KdV equation via combination of two efficient methods, Comput. Appl. Math., 39 (2020), 80. https://doi.org/10.1007/s40314-020-1109-9 doi: 10.1007/s40314-020-1109-9
    [23] A. Başhan, Modification of quintic B-spline differential quadrature method to nonlinear Korteweg-de Vries equation and numerical experiments, Appl. Numer. Math., 167 (2021), 356–374. https://doi.org/10.1016/j.apnum.2021.05.015 doi: 10.1016/j.apnum.2021.05.015
    [24] A. M. Wazwaz, Abundant solutions of various physical features for the (2+1)-dimensional modified KdV-Calogero-Bogoyavlenskii-Schiff equation, Nonlinear Dynam., 89 (2017), 1727–1732. https://doi.org/10.1007/s11071-017-3547-5 doi: 10.1007/s11071-017-3547-5
    [25] S. M. Islam, A. Akbulut, S. M. Y. Arafat, Exact solutions of the different dimensional CBS equations in mathematical physics, Partial Differ. Eq. Appl. Math., 5 (2022), 100320. https://doi.org/10.1016/j.padiff.2022.100320 doi: 10.1016/j.padiff.2022.100320
    [26] A. G. Johnpillai, M. Khalique, A. Biswas, Exact solutions of the mKdV equation with time-dependent coefficients, Math. Commun., 16 (2011), 509–518. https://doi.org/10.1016/j.cnsns.2010.06.025 doi: 10.1016/j.cnsns.2010.06.025
    [27] L. Cheng, W. X. Ma, Y. Zhang, J. Y. Ge, Integrability and lump solutions to an extended (2+1)-dimensional KdV equation, Eur. Phys. J. Plus, 137 (2022), 902. https://doi.org/10.1140/epjp/s13360-022-03076-w doi: 10.1140/epjp/s13360-022-03076-w
    [28] Y. H. Wang, H. Wang, Nonlocal symmetry, CRE solvability and soliton-cnoidal solutions of the (2+1)-dimensional modified KdV-Calogero-Bogoyavlenkskii-Schiff equation, Nonlinear Dynam., 89 (2017), 235–241. https://doi.org/10.1007/s11071-017-3449-6 doi: 10.1007/s11071-017-3449-6
    [29] K. K. Ali, R. Yilmazer, M. S. Osman, Dynamic behavior of the (3+1)-dimensional KdV-Calogero-Bogoyavlenskii-Schiff equation, Opt. Quant. Electron., 54 (2022), 160. https://doi.org/10.1007/s11082-022-03528-8 doi: 10.1007/s11082-022-03528-8
    [30] S. R. Santanu, Dispersive optical solitons of time-fractional Schrödinger-Hirota equation in nonlinear optical fibers, Phys. A, 537 (2020), 122619. https://doi.org/10.1016/j.physa.2019.122619 doi: 10.1016/j.physa.2019.122619
    [31] J. M. Wang, X. Yang, Quasi-periodic wave solutions for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff (CBS) equation, Nonlinear Anal.-Theor., 75 (2012), 2256–2261. https://doi.org/10.1016/j.na.2011.10.024 doi: 10.1016/j.na.2011.10.024
    [32] L. M. B. Alam, X. F. Jiang, A. A. Mamun, Exact and explicit traveling wave solution to the time-fractional phi-four and (2+1) dimensional CBS equations using the modified extended tanh-function method in mathematical physics, Partial Differ. Eq. Appl. Math., 4 (2021), 100039. https://doi.org/10.1016/j.padiff.2021.100039 doi: 10.1016/j.padiff.2021.100039
    [33] Y. Li, T. Chaolu, Exact solutions for (2+1)-dimensional KdV-Calogero-Bogoyavlenkskii-Schiff equation via symbolic computation, J. Appl. Math. Phys., 8 (2020), 197–209. https://doi.org/10.4236/jamp.2020.82015 doi: 10.4236/jamp.2020.82015
    [34] S. Roy, S. Raut, R. R. Kairi, Nonlinear analysis of the ion-acoustic solitary and shock wave solutions for non-extensive dusty plasma in the framework of modified Korteweg-de Vries-Burgers equation, Pramana-J. Phys., 96 (2022), 67. https://doi.org/10.1007/s12043-022-02302-5 doi: 10.1007/s12043-022-02302-5
    [35] L. Cheng, Y. Zhang, Y. W. Hu, Linear superposition and interaction of Wronskian solutions to an extended (2+1)-dimensional KdV equation, AIMS Math., 8 (2023), 16906–16925. https://doi.org/10.3934/math.2023864 doi: 10.3934/math.2023864
    [36] L. Cheng, Y. Zhang, W. X. Ma, Wronskian $\pmb{N}$-soliton solutions to a generalized KdV equation in ($2+1$)-dimensions, Nonlinear Dynam., 111 (2023), 1701–1714. https://doi.org/10.1007/s11071-022-07920-7 doi: 10.1007/s11071-022-07920-7
    [37] M. L. Gandarias, N. Raza, Conservation laws and travelling wave solutions for a negative-order KdV-CBS equation in 3+1 dimensions, Symmetry, 14 (2022), 1861. https://doi.org/10.3390/sym14091861 doi: 10.3390/sym14091861
    [38] L. Tang, Dynamical behavior and multiple optical solitons for the fractional Ginzburg-Landau equation with $\beta$-derivative in optical fibers, Opt. Quant. Electron., 56 (2024), 175. https://doi.org/10.1007/s11082-023-05761-1 doi: 10.1007/s11082-023-05761-1
    [39] N. Raza, S. Arshed, A. M. Wazwaz, Structures of interaction between lump, breather, rogue and periodic wave solutions for new (3+1)-dimensional negative order KdV-CBS model, Phys. Lett. A, 458 (2023), 128589. https://doi.org/10.1016/j.physleta.2022.128589 doi: 10.1016/j.physleta.2022.128589
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(258) PDF downloads(29) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog