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Abstract: We explored the (3+1)-dimensional negative-order Korteweg-de Vries-alogero-
Bogoyavlenskii-Schiff (KdV-CBS) equation, which develops the classical Korteweg-de Vries (KdV)
equation and extends the contents of nonlinear partial differential equations. A traveling wave
transformation is employed to transform the partial differential equation into a system of ordinary
differential equations linked with a cubic polynomial. Utilizing the complete discriminant system
for polynomial method, the roots of the cubic polynomial were classified. Through this approach,
a series of exact solutions for the KdV-CBS equation were derived, encompassing rational function
solutions, Jacobi elliptic function solutions, hyperbolic function solutions, and trigonometric function
solutions. These solutions not only simplified and expedited the process of solving the equation but
also provide concrete and insightful expressions for phenomena such as optical solitons. Presenting
these obtained solutions through 3D, 2D, and contour plots offers researchers a deeper understanding
of the properties of the model and allows them to better grasp the physical characteristics associated
with the studied model. This research not only provides a new perspective for the in-depth exploration
of theoretical aspects but also offers valuable guidance for the practical application and advancement
of related technologies.
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1. Introduction

Partial differential equations refer to equations that involve certain partial derivatives of an unknown
function. The highest order of the partial derivatives of the unknown function appearing in the equation
is referred to as the order of the equation. Second-order linear and nonlinear partial differential
equations are consistently important subjects of study [1, 2]. These equations usually include elliptic,
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hyperbolic and parabolic, types. The calculation method for these equations is the main research
problem. The developments of modern physics, mechanics, and engineering have given rise to many
new nonlinear problems [3, 4], which lead to issues beyond the aforementioned equations, such as
mixed-type equations, degenerate equations, and high-order partial differential equations. To date,
these problems remain important research topics owing to their typically complex and challenging
nature [5–8]. The discussion and resolution of partial differential equation problems often require the
application of theories and methods from other branches of mathematics, such as functional analysis,
algebra, topology, and differential geometry. On the other hand, the rapid development of electronic
computers enables one to solve various equations numerically, which has revealed many important
facts. Therefore, the research on numerical methods [9], building on the achievements already made,
is expected to develop faster.

The study of solutions to the (3+1)-dimensional negative-order KdV-CBS equation offers several
advantages [10, 11]. First, obtaining the exact solutions of the equation provides an in-depth
understanding of its behavior and properties in terms of wave evolution, interaction, and stability.
This, in turn, reveals the formation and evolution mechanisms of multi-dimensional nonlinear soliton
waves [12–15]. Second, studying the solutions of the equation contributes to a deeper understanding
of critical phenomena in the physical systems described by the equation, offering profound insights
and guidance for practical issues and technological advancements. The use of complete discriminant
system for polynomial method [16] is a robust mathematical tool capable of handling more complex
equations and providing information on the existence and uniqueness of solutions. Furthermore, by
comparing the obtained exact solutions with previous numerical simulation results, the accuracy of the
numerical simulation can be validated, confirming the effectiveness of the numerical methods and the
reliability of the equation model. Overall, this study provides a framework for exploring mathematical
properties and their physical significance, offering valuable guidance for theoretical research and
practical applications.

Previous research on the KdV equation and its generalized models have achieved significant
results [17–23]. Researchers have explored the properties and behaviors of solutions to the
KdV equation using various mathematical methods such as symmetry analysis [24–26], Bäcklund
transformations [27, 28], and obtained variant solutions include singular solutions [29], interaction
solutions [30], soliton solutions [31], and exact traveling wave solutions [32–36]. Additionally, some
researchers have utilized methods like the singular manifold approach [37] and unified method to
study the KdV equation, obtaining important numerical solutions and understanding the evolution of
solutions. However, previous works on the (3+1)-dimensional negative-order KdV-CBS equation are
relatively limited. Previous studies have focused on the numerical simulation and numerical solutions
of the equation, lacking in-depth exploration of exact solutions for this model. Therefore, we aim to
fill this research gap using the complete discriminant system for the polynomial method to obtain the
exact solutions of the equation. Additionally, by comparing our obtained exact solutions with previous
numerical simulation results, we aim to validate the accuracy of the solutions and investigate their
properties and behavior. This will provide valuable guidance for addressing practical problems.

Furthermore, the study of soliton wave solutions extends beyond theoretical realms to play a
crucial role in practical applications. In the field of optics, soliton wave solutions in optical fiber
communication are particularly noteworthy. Optical fiber communication often faces challenges such
as the dispersion and loss. Dispersion widens optical pulses, causing signal distortion, while the

AIMS Mathematics Volume 9, Issue 3, 6699–6708.



6701

nonlinear nature of optical fibers results in compression effects, narrowing the pulses [38]. Soliton
waves are precisely capable of balancing these challenges, maintaining the shape of optical pulses,
and exhibiting outstanding performance. Researchers have successfully applied various mathematical
methods, such as inverse scale transformation method and Darboux transformation method, to
study, analyze, and solve the nonlinear Schrödinger equation (NLSE). These methods, each with its
advantages and disadvantages, provide exact solutions for optical solitons in fiber communication.
This research not only promotes the development of theoretical physics but also plays a crucial role
in the advancement of optical communication technology. In conclusion, soliton wave solutions play
a crucial role not only in theoretical research but also in practical applications, achieving significant
results in addressing challenges in optical transmission.

The (3+1)-dimensional negative-order KdV-CBS equation is described as follows [39]

uxt + uxxxy + 4uxuxy + 2uxxuy + λuxx + µuxy + νuxz = 0, (1.1)

where u = u(t, x, y, z) is an unknown function, which stands for the water wave velocity on the surface
of shallow water waves. λ, µ, and ν represent unspecified coefficients.

The paper is arranged as follows. The first section introduces the relevant background of the
research topic. In Section 2, we conduct mathematical analysis and traveling wave transformations
on this equation to make it conform to the form requirements of the complete discriminant system for
the polynomial method. In Section 3, we classify all the solutions of the equation. In the following
part, we draw a graph of the obtained solution. Finally, we provide a brief summary in Section 5.

2. Mathematical analysis

In this section, we first make traveling wave transformation:

u(t, x, y, z) = Φ(ξ), ξ = ax + by + cz − kt, (2.1)

where a, b, c and k represent arbitrary constants.
Inserting (2.1) into (1.1), we can obtain the ordinary differential equation

a2bΦ(4) + 6abΦ
′

Φ
′′

+ (λa + µb + νc − k)Φ
′′

= 0. (2.2)

Integrating both sides of Eq (2.2) yields

a2bΦ
′′′

+ 3ab(Φ
′

)2 + (λa + µb + νc − k)Φ
′

= c1, (2.3)

where c1 is the integral constant.
Multiplying both sides of Eq (2.3) by Φ

′′

and integrating once yields

a2b(Φ
′′

)2 + 2ab(Φ
′

)3 + (λa + µb + νc − k)(Φ
′

)2 = 2c1Φ
′

+ c2, (2.4)

where c2 is the integral constant.
Let’s assume Φ

′

= φ. Then, Eq (2.4) can be simplified as

(φ
′

)2 = d3φ
3 + d2φ

2 + d1φ + d0, (2.5)

where d3 = −2
a , d2 =

k−λa−µb−νc
a2b , while d1 and d0 are arbitrary constants.
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For the convenience of calculation, we make the following assumptions

V = (d3)
1
3φ, ξ1 = (d3)

1
3 ξ, b2 = d2(d3)−

2
3 , b1 = d1(d3)−

1
3 , b0 = d0. (2.6)

Then, Eq (2.5) can be rewritten as

(V ′ξ1
)2 = V3 + b2V2 + b1V + b0, (2.7)

its integral expression can be recorded as

± (d3)
1
3 (ξ − ξ0) =

∫
dV√

V3 + b2V2 + b1V + b0

, (2.8)

where ξ0 is the integration constant.

3. Traveling wave solution of Eq (1.1)

In this section, we first assume that the triple-order polynomial is f (V) = V3 + b2V2 + b1V + b0.
Then its complete discrimination system is presented as

∆ = −27(
2b3

2

27
+ b0 −

b1b2

3
)2 − 4(b1 −

b2
2

3
)3, D1 = b1 −

b2
2

3
. (3.1)

Case 1. If ∆ = 0 and D1 < 0, we have f (V) = (V − σ1)2(V − σ2), where σ1 , σ2. When V > σ2,
Eq (2.8) can be rewritten as

± (ξ1 − ξ0) =

∫
dV

(V − σ1)
√

V − σ2
=


1

√
σ1−σ2

ln |
√

V−σ2−
√
σ1−σ2

√
V−σ2+

√
σ1+σ2

|, σ1 > σ2,

2
√
σ2−σ1

arctan
√

V−σ2
σ2−σ1

, σ1 < σ2.
(3.2)

Next, we calculate Eq (3.2). Then, the solution of Eq (1.1) is

φ1(t, x, y, z) = (−
2
a

)−
1
3 {(σ1 − σ2) tanh2[

√
σ1 − σ2

2
(−

2
a

)
1
3 (ax + by + cz − kt − ξ0)] + σ2}, σ1 > σ2,

φ2(t, x, y, z) = (−
2
a

)−
1
3 {(σ1 − σ2) coth2[

√
σ1 − σ2

2
(−

2
a

)
1
3 (ax + by + cz − kt − ξ0)] + σ2}, σ1 > σ2,

φ3(t, x, y, z) = (−
2
a

)−
1
3 {(−σ1 + σ2) tan2[

√
−σ1 + σ2

2
(−

2
a

)
1
3 (ax + by + cz − kt − ξ0)] + σ2}, σ1 < σ2.

(3.3)

Case 2. If ∆ = 0 and D1 = 0, we obtain f (V) = (V − σ)3.
By substituting f (V) = (V − σ)3 into Eq (2.8), the solutions of Eq (1.1) is obtained.

φ4(t, x, y, z) = (−
a
2

)[4(ax + by + cz − kt − ξ0)−2 −
k − λa − µb − νc

3a2b
]. (3.4)

Case 3. If ∆ > 0 and D1 < 0, then we have f (V) = (V − σ1)(V − σ2)(V − σ3). It is assumed that
σ1 < σ2 < σ3.
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If σ1 < V < σ3, we make the transformation V = σ1 + (σ2 − σ1) sin2 ϑ. Through Eq (2.8), we
can get

±(ξ1 − ξ0) =

∫
dV√
f (V)

=

∫
2(σ2 − σ1) sinϑ cosϑdϑ

√
σ3 − σ1(σ2 − σ1) sinϑ cosϑ

√
1 − χ2 sin2 ϑ

=
2

√
σ3 − σ1

∫
dϑ√

1 − χ2 sin2 ϑ

,

(3.5)

where χ2 = σ2−σ1
σ3−σ1

.
From Eq (2.5), the solution of Eq (2.1) is obtained as

V(ξ1) = σ1 + (σ2 − σ1)sn2(
√
σ3 − σ1

2
(ξ1 − ξ0), χ). (3.6)

The solutions of Eq (1.1) is obtained as

φ5(t, x, y, z) = (−
2
a

)−
1
3 [σ1 + (σ2 − σ1)sn2(

√
σ3 − σ1

2
(−

2
a

)
1
3 (ax + by + cz − kt − ξ0), χ)]. (3.7)

If V > σ3, consider the transformation V = −σ2 sin2 ϑ+σ3
cos2 ϑ

. The solutions of Eq (1.1) is

φ6(t, x, y, z) = (−
2
a

)−
1
3 [
σ3 − σ2sn2(

√
σ3−σ1

2 (−2
a )

1
3 (ax + by + cz − kt − ξ0), ρ)

cn2(
√
σ3−σ1

2 (−2
a )

1
3 (ax + by + cz − kt − ξ0), ρ)

], (3.8)

where ρ2 = σ2−σ1
σ3−σ1

.
Case 4. If ∆ < 0, we have f (V) = (V − σ)(V2 + pV + q), where p2 − 4q < 0, σ is the only real root of
f (V) = 0.
If V > σ, we consider the transformation V = σ+

√
σ2 + pσ + q tan2 ϑ

2 . From Eq (2.8), we can obtain

ξ1 − ξ0 =

∫
dV√

(V − ϑ)(V2 + pΦ + q)
=

∫ √
σ2 + pσ + q tan ϑ

2

cos2 ϑ
2
dϑ

(σ2 + pσ + q)
3
4

tan ϑ
2

cos2 ϑ
2

√
1 − %2 sin2 ϑ

=
1

(σ2 + pσ + q)
1
4

∫
dϑ√

1 − %2 sin2 ϑ

,

(3.9)

where %2 = 1
2 (1 − σ+

p
2√

σ2+pσ+q
).

Let cn((σ2 + pσ + q)
1
4 (ξ1 − ξ0), %) = cosϑ,

cosϑ =
2
√
σ2 + pσ + q

V − σ +
√
σ2 + pσ + q

− 1. (3.10)

The solutions of Eq (1.1) is obtained as

φ7(t, x, y, z) =
(
−

2
a

)− 1
3
[
σ+

2
√
σ2 + pσ + q

1 + cn
(
(σ2 + pσ + q)

1
4
(
− 2

a

) 1
3 (ax + by + cz − kt − ξ0), %

) − √
σ2 + pσ + q

]
.

(3.11)
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Remark 3.1. In this article, we have constructed the solution to Eq (2.5). Next, we can obtain all
solutions to Eq (1.1) using the following relationship. ui(t, x, y, z) = Φi(ξ) =

∫ ξ

c0
φi(ξ)dξ, for i =

1, . . . , 7.

4. Graphical illustrations

In this section, the hyperbolic function solution is shown in Figure 1 by setting these parameter
values. Moreover, the trigonometric function solution of Eq (1.1) is shown in Figure 2.

(a) 3D surface (b) 2D surface (c) Contour plot (d) Density plot

Figure 1. The graphics of φ1(t, x, y, z) at a = −2, b = 1, µ = 2, v = 1, c = 2, λ = 4, k = 8, ξ0 =

0, y = 1, z = 1, d1 = 0, d0 = 0.

(a) 3D surface (b) 2D surface (c) Contour plot (d) Density plot

Figure 2. The graphics of φ3(t, x, y, z) at a = −2, b = 1, µ = 2, v = 1, c = 2, λ = −4, k =

−4, ξ0 = 0, y = 1, z = 1, d1 = 0, d0 = 0.

5. Conclusions

In general, we successfully solve Eq (1.1) using the complete discriminant system for the
polynomial method. By classifying the roots of third-order polynomials, we can effectively classify the
traveling wave solutions of Eq (1.1). We provide a series of corresponding solution expressions. By
choosing the parameters properly, we clearly show the availability of these solutions. Compared with
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previous studies, our work is richer in (3+1)-dimensional traveling wave solutions, and also involves
spatiotemporal fractional derivatives in KdV-CBS equations. In the future, we plan to explore higher-
order and more complex fractional partial differential equations for wider application to a variety of
complex engineering and physics problems.
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