Processing math: 100%
Review Special Issues

Another special role of L-spaces-evolution equations and Lotz' theorem

  • Received: 15 August 2024 Revised: 16 December 2024 Accepted: 19 December 2024 Published: 27 December 2024
  • MSC : 47D03, 47D06

  • In this paper, we review the underappreciated theorem by Lotz that tells us that every strongly continuous operator semigroup on a Grothendieck space with the Dunford-Pettis property is automatically uniformly continuous. A large class of spaces that carry these geometric properties are L(Ω,Σ,μ) for non-negative measure spaces. This shows once again that L-spaces have to be treated differently.

    Citation: Christian Budde. Another special role of L-spaces-evolution equations and Lotz' theorem[J]. AIMS Mathematics, 2024, 9(12): 36158-36166. doi: 10.3934/math.20241716

    Related Papers:

    [1] Tahair Rasham, Muhammad Nazam, Hassen Aydi, Abdullah Shoaib, Choonkil Park, Jung Rye Lee . Hybrid pair of multivalued mappings in modular-like metric spaces and applications. AIMS Mathematics, 2022, 7(6): 10582-10595. doi: 10.3934/math.2022590
    [2] Ahlam Almulhim . Signed double Italian domination. AIMS Mathematics, 2023, 8(12): 30895-30909. doi: 10.3934/math.20231580
    [3] Abel Cabrera Martínez, Iztok Peterin, Ismael G. Yero . Roman domination in direct product graphs and rooted product graphs. AIMS Mathematics, 2021, 6(10): 11084-11096. doi: 10.3934/math.2021643
    [4] Ana Klobučar Barišić, Antoaneta Klobučar . Double total domination number in certain chemical graphs. AIMS Mathematics, 2022, 7(11): 19629-19640. doi: 10.3934/math.20221076
    [5] Linyu Li, Jun Yue, Xia Zhang . Double total domination number of Cartesian product of paths. AIMS Mathematics, 2023, 8(4): 9506-9519. doi: 10.3934/math.2023479
    [6] Bana Al Subaiei, Ahlam AlMulhim, Abolape Deborah Akwu . Vertex-edge perfect Roman domination number. AIMS Mathematics, 2023, 8(9): 21472-21483. doi: 10.3934/math.20231094
    [7] S. Gajavalli, A. Berin Greeni . On strong geodeticity in the lexicographic product of graphs. AIMS Mathematics, 2024, 9(8): 20367-20389. doi: 10.3934/math.2024991
    [8] Mingyu Zhang, Junxia Zhang . On Roman balanced domination of graphs. AIMS Mathematics, 2024, 9(12): 36001-36011. doi: 10.3934/math.20241707
    [9] Chang Liu, Jianping Li . Sharp bounds on the zeroth-order general Randić index of trees in terms of domination number. AIMS Mathematics, 2022, 7(2): 2529-2542. doi: 10.3934/math.2022142
    [10] Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335
  • In this paper, we review the underappreciated theorem by Lotz that tells us that every strongly continuous operator semigroup on a Grothendieck space with the Dunford-Pettis property is automatically uniformly continuous. A large class of spaces that carry these geometric properties are L(Ω,Σ,μ) for non-negative measure spaces. This shows once again that L-spaces have to be treated differently.



    Throughout this paper, all graphs considered are finite, undirected, loopless and without multiple edges. We refer the reader to [3,18] for terminology and notation in graph theory.

    Let G=(V,E) be a graph of order n with vertex set V(G) and edge set E(G). The open neighborhood of a vertex v in G is NG(v)=N(v)={uV(G)|uvE(G)}, and the closed neighborhood of v is NG[v]=N[v]=N(v){v}. The degree of a vertex v in the graph G is dG(v)=d(v)=|N(v)|. Let δ(G)=δ and Δ(G)=Δ denote the minimum and maximum degree of a graph G, respectively. Denote by G[H] the induced subgraph of G induced by H with HV(G). A vertex v in G is a leaf if d(v)=1. A vertex u is a support vertex if u has a leaf neighbor. Denote L(u)={v|uvE(G),d(v)=1}.

    A subset ME(G) is called a matching in G if no two elements are adjacent in G. A vertex v is said to be M-saturated if some edges of M are incident with v, otherwise, v is M-unsaturated. If every vertex of G is M-saturated, the matching M is perfect. M is a maximum matching if G has no matching M with |M|>|M|. Let R be a subgraph of G, M be a matching of G, vV(R), uvM. We say the vertex v is RI (resp. RO) if uV(R) (resp. uV(R)).

    A set VC of vertices in a graph G is a vertex cover of G if all the edges are touched by the vertices in VC. A vertex cover VC of G is minimal if no proper subset of it is a vertex cover of G. A minimal vertex cover of maximum cardinality is called a VC-set. In 2001, Mishra et al. [13] denote by MAX-MIN-VC the problem of finding a VC-set of G. Bazgan et al. [2] showed that MAX-MIN-VC is APX-complete for cubic graphs.

    A set PDV(G) in a graph G is a paired dominating set if every vertex vPD is adjacent to a vertex in PD and the subgraph induced by PD contains a perfect matching. Paired domination was proposed in 1996 [9] and was studied for example in [4,5,6,12,16,17]. A paired dominating set PD of G is minimal if there is no proper subset PDPD which is a paired dominating set of G. A minimal paired dominating set with maximum cardinality is called a Γpr(G)-set. The upper paired domination number of G is the cardinality of a Γpr(G)-set of G. Denote by Upper-PDS the problem of finding a Γpr(G)-set of G. Upper paired domination was introduced by Dorbec et al. in [7]. They investigated the relationship between the upper total domination and upper paired domination numbers of a graph. Later, they established bounds on upper paired domination number for connected claw-free graphs[10]. Denote Pr(v)={u|uPD,N(u)PD={v},uvE(G)}, where PD is a minimal paired dominating set of G.

    Recently, Michael et al. showed that Upper-PDS is NP-hard for split graphs and bipartite graphs, and APX-completeness of Upper-PDS for bipartite graphs with Δ=4 in [11]. In order to improve the results in [11], we show that Upper-PDS is APX-complete for bipartite graphs with Δ=3.

    The class APX is the set of NP-optimization problems that allow polynomial-time approximation algorithms with approximation ratio bounded by a constant.

    First, we recall the notation of L-reduction [1,15]. Given two NP-optimization problems H and G and polynomial time transformation f from instances of H to instances of G, we say that f is an L-reduction if there are positive constants α and β such that for every instance x of H:

    (i) optG(f(x))αoptH(x);

    (ii) for every feasible solution y of f(x) with objective value mG(f(x),y)=a, we can find a solution y of x with mH(x,y)=b in polynomial time such that |optH(x)b|β|optG(f(x))a|.

    To show that a problem PAPX is APX-complete, it's enough to show that there is an L-reduction from some APX-complete problems to P.

    Denote by MAX-MIN-VC the problem of finding a maximum minimal vertex cover of G. Note that, Minimum Domination problem is APX-complete even for bipartite graphs with maximum degree 3 [14], and Minimum Independent Domination problem [8] is the complement problem of MAX-MIN-VC in a graph G. We can obtain an L-reduction from Minimum Domination problem to Minimum Independent Domination problem by replacing every edge uv with a path Puv=uabcv with α=7, β=1. It's clear that Minimum Independent Domination problem and MAX-MIN-VC are in APX. Thus, Minimum Independent Domination problem is APX-complete even for bipartite graphs with maximum degree 3, so is MAX-MIN-VC (by Theorem 7 in [2]).

    In this section, we show Upper-PDS for bipartite graphs with maximum degree 3 is APX-complete by providing an L-reduction f from MAX-MIN-VC for bipartite graphs with maximum degree 3.

    We formalize the optimization problems as follows.

    Figure 5.   .

    Lemma 1. [11] Upper-PDS can be approximated with a factor of 2Δ for graphs without isolated vertices and with maximum degree Δ.

    Therefore, Upper-PDS is in APX.

    Let G=(V,E) be a bipartite graph with |E|=m, Δ(G)=3.

    For each edge xyE(G), let Hxy be the graph which is shown in Figure 1. Let T1={ a,...,a5, b,...,b5, r,...,r6, s,...,s6, c,..,c3, u,u1,v,v1}, T2={p,...,p6, q,...,q6, d,...,d3,w,z}, T3={h,..,h5}, T4={t,...,t5}, V(Hxy)=V(T1)V(T2)V(T3)V(T4){w1,z1,x,y}, |V(Hxy)|=70.

    Figure 1.  The graph Hxy.

    Construct G by replacing each edge xyE(G) with the graph Hxy.

    It's clear, Δ(G)=3 and G is a bipartite graph.

    Let Sp={p,p1,...,p6}, Sq={q,q1,...,q6}, Sa={a,a1,...,a5}, Sb={b,b1,...,b5}, Sr={r,r1,...,r6}, Ss={s,s1,...,s6}, Sc={c,c1,c2,c3}, Sd={d,d1,d2,d3}.

    Let xy=eE(G), He=Hxy=Hxy{x,y}, |V(Hxy)|=68.

    Let PD be a paired dominating set of G, uvE(G). We say Huv is [I,O] if u is HIuv and v is HOuv, or if v is HIuv and u is HOuv. We say Huv is [I,0] if u is HIuv and vPD, or if uPD and v is HIuv. Analogously, Huv could be [0,0] ([I,I] or [O,O] or [O,0]).

    Note that

    |T1PD|=|SaPD|+|SbPD|+|ScPD|+|SrPD|+|SsPD|+|{u,u1,v,v1}PD|, (2.1)
    |T2PD|=|SpPD|+|SqPD|+|SdPD|+|{w,z}PD|, (2.2)
    |V(Hxy)PD|=|T1PD|+|T2PD|+|T3PD|+|T4PD|+|{w1,z1}PD|. (2.3)

    The following lemma is immediate.

    Lemma 2. Let PD be a minimal paired dominating set of G, M be a perfect matching of G[PD]. If v,u are support vertices, uvE(G), xL(v), yL(u), then |{x,y}PD|1.

    Lemma 3. Let PD be a minimal paired dominating set of G, M be a perfect matching of G[PD]. For each Hxy, we have

    (a) |ScPD|=4 if and only if r,sPD, Pr(c3) or Pr(c).

    (b) |SdPD|=4 if and only if p,qPD, Pr(d3) or Pr(d).

    (c) |T3PD|4 with equality if and only if (i) or (ii) holds,

    (i) Pr(h1) if hPD,

    (ii) N(h)PD={h1} or Pr(h) if hPD.

    And if h is G[T3]O, |T3PD|=3.

    (d) |T4PD|4 with equality if and only if (i) or (ii) holds,

    (i) Pr(t1) if tPD,

    (ii) N(t)PD={t1} or Pr(t) if tPD.

    And if t is G[T4]O, |T4PD|=3.

    (e) |SaPD|4 with equality if and only if (i) or (ii) holds,

    (i) Pr(a1) if aPD,

    (ii) N(a)PD={a1} or Pr(a) if aPD.

    And if a is G[Sa]O, |SaPD|=3.

    (f) |SbPD|4 with equality if and only if (i) or (ii) holds,

    (i) Pr(b1) if bPD,

    (ii) N(b)PD={b1} or Pr(b) if bPD.

    And if b is G[Sb]O, |SbPD|=3.

    (g) 3|SrPD|4. And if rPD and r is G[Sr]O, |SrPD|=3.

    (h) 3|SsPD|4. And if sPD and s is G[Sr]O, |SsPD|=3.

    (i) 3|SpPD|4. And if pPD and p is G[Sp]O, |SpPD|=3.

    (j) 3|SqPD|4. And if qPD and q is G[Sq]O, |SqPD|=3.

    (k) |T2PD|13 with equality if and only if |{w,z}PD|=1.

    (l) |T1PD|22 with equality if and only if {u,v}PD.

    (m) If {u,v}PD=, |T1PD|18.

    Proof. (a) W.l.o.g. we consider rPD. If rcM, |ScPD|4. Otherwise, c1c2,c3sM and let PD=PD{c1,c2}, M=M{c1c2}. Then, PD is a paired dominating set and PD is not a minimal paired dominating set, a contradiction. If rcM, |ScPD|4. Otherwise, cc1,c2c3M and let PD=PD{c,c1}, M=M{cc1}. Then, PD is a paired dominating set and PD is not a minimal paired dominating set, a contradiction.

    If Pr(c3)= and Pr(c)=, let PD=PD{c,c3} and M=M{cc1,c2c3}{c1c2}. Then, PD is a paired dominating set and PD is not a minimal paired dominating set, a contradiction.

    (b) The proof is analogous to that of (a), and the proof is omitted.

    (c) Clearly, |T3PD|4. If |T3PD|=4, {h1,h2,h3,h4}PD or {h,h1,h2,h3}PD. If {h1,h2,h3,h4}PD, Pr(h1). Otherwise, let PD=PD{h4,h1}, M=M{h3h4,h1h2}{h2h3}. Then, PD is a paired dominating set and PD is not a minimal paired dominating set, a contradiction. If {h,h1,h2,h3}PD, N(h)PD={h1} or Pr(h). Otherwise, let PD=PD{h,h1}, M=M{hh1}. Then, PD is a paired dominating set and PD is not a minimal paired dominating set, a contradiction.

    If h is G[T3]O, and since |T3{h}PD| is even, we have |T3PD|=3.

    (d)–(f) We obtain the conclusions with a similar proof of (c).

    (g) Clearly, 3|SrPD|6. If |SrPD|=5, we obtain SrPD={r,r1,r2,r3,r4} or SrPD={r,r2,r3,r4,r5} by Lemma 2. Therefore, PD is not a minimal paired dominating set, a contradiction. Thus, 3|SrPD|4.

    If r is G[Sr]O, and since |Sr{r}PD| is even, we have |SrPD|=3.

    (k) Since |SdPD|4, |T2PD|14 by (i)–(j) and Eq (2.1).

    If |{w,z}PD|=0, |T2PD|12.

    If |{w,z}PD|=1, |T2PD|13.

    Then we consider |{w,z}PD|=2. If w is G[T2]I or z is G[T2]I, we may assume w is G[T2]I. We obtain wpM, |SpPD|=3 by (i), |SdPD|3 by (b). Therefore, |T2PD|12 by Eq (2.1). If w,z are G[T2]O, |SdPD|3 by (b). Since |T2PD| is even, |T2PD|12 by Eq (2.1).

    Thus, |T2PD|13 with equality if and only if |{w,z}PD|=1, see Figure 2 (a).

    Figure 2.  (a) |T2PD|=13, (b) |T1PD|=22, (c) |T1PD|=18.

    (h)–(j) Using similar arguments of (g), the conclusions follow.

    (l)–(m) We discuss the following cases.

    Case 1. |{u,v}PD|=2.

    In this case, we have |{u1,v1}PD|1, |SaPD|3 and |ScPD|3, otherwise, |T1PD|22 by (e)–(h) and Eq (2.2).

    W.l.o.g. we assume u1PD.

    First, we assume that |SaPD|=4. We obtain aa1,uu1M, {r,c,r1}PD= by (e). Thus, |ScPD|3. Then, we consider |ScPD|=3, that is, c3sM. By (h), we have |SsPD|=3. Therefore, |T1PD|22 by Eq (2.2).

    Then, we consider |SaPD|=3. Therefore, v1PD, otherwise, |T1PD|22 by Eq (2.2).

    We have |SbPD|=4, otherwise, |T1PD|22 by Eq (2.2). By (f), {s,s1,c3}PD=. Thus, |ScPD|3. Therefore, |T1PD|22 by Eq (2.2), see Figure 2 (b).

    Case 2. |{u,v}PD|=1.

    W.l.o.g. we assume uPD.

    We have |{u1,v1}PD|1 and |SaPD|3, otherwise, |T1PD|21 by Eq (2.2).

    Case 2.1 u1PD.

    If |SaPD|=4, {r,r1,c}PD= by (e). Then |ScPD|3. If |ScPD|=3, we have c3sM, |SsPD|3 by (h). Therefore, |T1PD|21 by Eq (2.2). If |ScPD|=2, |T1PD|21 by Eq (2.2).

    Now we consider |SaPD|=3. If v1PD, |T1PD|21 by Eq (2.2). Thus, v1PD, that is, v1bM. Therefore, |SbPD|=3 by (f), |T1PD|21 by Eq (2.2).

    Case 2.2 u1PD.

    If v1PD, v1bM. Therefore, |SbPD|=3 by (f), |T1PD|21 by Eq (2.2). Thus, v1PD, and |T1PD|21 by Eq (2.2).

    Case 3. |{u,v}PD|=0.

    In this case, |T1PD| is even.

    Case 3.1 |{u1,v1}PD|1.

    W.l.o.g. we assume u1PD. Then u1aM, |SaPD|=3 by (e). If v1PD, bPD. By (a), |ScPD|3. Therefore, |T1PD|19 by Eq (2.2). If v1PD, we obtain v1bM, |SbPD|=3 by (f). |ScPD|3 by (a). Therefore, |T1PD|19 by Eq (2.2).

    Case 3.2 |{u1,v1}PD|=0.

    In this case, a,bPD. By (a), |ScPD|3. Therefore, |T1PD|19 by Eq (2.2).

    Note that |T1PD| is even, so |T1PD|18, see Figure 2 (c).

    Thus, (l) and (m) hold.

    Lemma 4. Let PD be a minimal paired dominating set of G.

    (a) |V(Hxy)PD|43.

    (b) If {xw1,yz1}M, |V(Hxy)PD|42.

    (c) If {xw1,yz1}M= and {w1,z1}PD, |V(Hxy)PD|42.

    (d) If xw1M(G), w1PD and yPD, then |V(Hxy)PD|42.

    Proof. (a) By Lemma 3 and Eq (2.3),

    |V(Hxy)PD|=|T1PD|+|T2PD|+|T3PD|+|T4PD|+|{w1,z1}PD|22+13+4+4+2=45.

    We consider that {w1,z1}PD, |T4PD|3 and |T3PD|3, otherwise, |V(Hxy)PD|43. Then, w.l.o.g. we assume that w1PD.

    If |T4PD|=4, {tt1,t2t3}M or {t1t2,t3t4}M.

    If {tt1,t2t3}M, Pr(t) or N(t)PD={t1}. If Pr(t), uPr(t). By Lemma 3 (m), |V(Hxy)PD|43. If N(t)PD={t1}, we have u,w1PD, |T1PD|21 by Lemma 3 (l). Then we obtain zPD, otherwise, |V(Hxy)PD|43 by Lemma 3 (k) and Eq (2.3). If |T3PD|=4, we have vPD, therefore, |V(Hxy)PD|43 by Eq (2.3). If |T3PD|=3, |V(Hxy)PD|43 by Eq (2.3).

    If {t1t2,t3t4}M, {w,u}PD=. By Lemma 3 (l), |T1PD|21, and vPD. If zPD, |V(Hxy)PD|43 by Lemma 3 (k) and Eq (2.3). If zPD, |T3PD|3 by Lemma 3 (c). Therefore, |V(Hxy)PD|43 by Eq (2.3).

    If |T4PD|=3, we consider |T1PD|=22, and {u,v,z1}PD. We have |T3PD|4 by Lemma 3 (c). Therefore, |V(Hxy)PD|43 by Eq (2.3).

    (b)–(d) Since |V(Hxy)PD|43, and, |V(Hxy)PD| is even in those cases, so |V(Hxy)PD|42.

    Lemma 5. Let PD be a minimal paired dominating set of G, M be a perfect matching of G[PD].

    (a) If {x,w1,y,z1}PD, xw1M(G) and yz1M, we have |V(Hxy)PD|41.

    (b) If {x,y}PD=, |V(Hxy)PD|40.

    Proof. (a) In this case, we have zPD and zz1M.

    Since |V(Hxy)PD| is odd, it's sufficient to show |V(Hxy)PD|42. We only consider {u,v}PD by Lemma 3 (m).

    Case 1. |T4PD|=4.

    In this case, we have {t1t2,t3t4}M or {tt1,t2t3}M. If {t1t2,t3t4}M (or {tt1,t2t3}M), we obtain u,wPD, vPD. Since z,vPD, |T3PD|3 by Lemma 3 (c). If |T3PD|=2, |V(Hxy)PD|42 by Eq (2.3). If |T3PD|=3, hvM. Thus, {q,q1,d3}PD=, otherwise, let PD=PD{z,z1}, M=M{zz1}. Then, PD is a paired dominating set and PD is not a minimal paired dominating set, a contradiction. Since zz1M, we obtain that |T2PD| is odd. So |T1PD|12. Therefore, |V(Hxy)PD|42 by Eq (2.3), see Figure 3 (a).

    Figure 3.  (a) |V(Hxy)PD|=41, (b) |V(Hxy)PD|=40.

    Case 2. |T4PD|=3.

    If twM, uPD or {p,p1,d}PD=. Otherwise, let PD=PD{t,w}, M=M{tw}. Then, PD is a paired dominating set and PD is not a minimal paired dominating set, a contradiction. If {p,p1,d}PD=, |SdPD|3. W have |SdPD|=3, d3qM, otherwise, |V(Hxy)PD|42 by Eq (2.3). Thus |SqPD|3 by Lemma 3 (j) and Eq (2.3), and |V(Hxy)PD|42. If uPD, vPD. Thus, |T3PD|3 by Lemma 3 (c) and Eq (2.3), and |V(Hxy)PD|42.

    If tuM, |T3PD|3 by Lemma 3 (c). We have |T3PD|=3, hvM, otherwise, |V(Hxy)PD|42 by Eq (2.3). Let PD=PD{t,h}, M=M{tu,hv}{uv}. Therefore, PD is a paired dominating set and PD is not a minimal paired dominating set, a contradiction.

    Case 3. |T4PD|=2.

    Now we only consider |T1PD|=22, and {u,v}PD. By Lemma 3 (c) and Eq (2.3), |V(Hxy)PD|42.

    (b) Since |V(Hxy)PD| is even, it's sufficient to show |V(Hxy)PD|41.

    Case 1. |{z1,w1}PD|=0.

    We obtain {z,w}PD, |T2PD|12 by Lemma 3 (k). If |T4PD|3, |V(Hxy)PD|41 by Eq (2.3), see Figure 3 (b). If |T4PD|=4, tPD and Pr(t) by Lemma 3(d). So, {u,v,u1}PD=. By Lemma 3 (m) and Eq (2.3), |V(Hxy)PD|40.

    Case 2. |{z1,w1}PD|=1.

    W.l.o.g. we assume w1PD. Thus, ww1M, zPD, |T2PD|12 by Lemma 3 (k). If |T4PD|=2, |V(Hxy)PD|41 by Eq (2.3). If |T4PD|=4, we obtain Pr(t)={u} for tPD, {u,u1,v}PD=. By Lemma 3 (m) and Eq (2.3), |V(Hxy)PD|40. If |T4PD|=3, tuM. And vPD, otherwise |T1PD|21 by Lemma 3 (l), |V(Hxy)PD|41 by Eq (2.3). Thus, |T4PD|4 by Lemma 3 (d). Afterwards, |V(Hxy)PD|41 by Eq (2.3).

    Case 3. |{z1,w1}PD|=2.

    Thus, ww1M, zz1M, |T2PD|12 by Lemma 3 (k).

    If |T4PD|=4, tPD and {u,u1,v}PD=. By Lemma 3 (m) and Eq (2.3), we have |V(Hxy)PD|40.

    If |T4PD|=3, we have tuM, and |T3PD|3 by Lemma 3 (c). If |T3PD|=2, |V(Hxy)PD|41 by Eq (2.3). If |T3PD|=3, hvM. Let PD=PD{t,h}, M=M{tu,hv}{uv}. Therefore, PD is a paired dominating set and PD is not a minimal paired dominating set, a contradiction.

    If |T4PD|=2, we only consider |T1PD|=22. Thus, u,vPD. By Lemma 3 (c), |T3PD|3. Therefore, |V(Hxy)PD|41 by Eq (2.3).

    Corollary 6. Let PD be a minimal paired dominating set of G. If |V(Huv)PD|=43 if and only if |{u,v}PD|=1, and, u or v is HIuv.

    Lemma 7. If VC1 is a minimal vertex cover of G, there exists a minimal paired dominating set PD1 of G with |PD1|=42m+2|VC|.

    Proof. A minimal paired dominating set PD1 can be constructed by the following manner:

    For each vertex xVC1, we have |N(x)VC1|<d(x)3. So there exists at least one edge xx1 with x1VC1 in G, and maybe exist edges xx2 or xx3.

    Therefore, for the edge xx1, put i into PD for i{x,w1, p2,p3,p4,p5, d,d1,d2,d3, q2,q3,q4,q5, z,z1, h,h2,h3, v, b1,b2,b3,b4, s2,s3,s4,s5, c,c1,c2,c3, r2,r3,r4,r5, a,a1,a2,a3, t1,t2,t3,t4}. Put j into M for j{xw1, p5p4,p3p2,dd1,d2d3, q2q3,q4q5, zz1, hv, h2h3, b1b2,b3b4, s2s3,s4s5, cc1,c2c3, r2r3,r4r5, aa1,a2a3, t1t2,t3t4}. See Figure 4 (a).

    Figure 4.  (a) |V(Hxy)PD|=43, (b) |V(Hxy)PD|=42.

    For edges xx2,xx3, put i into PD for i{x, p2,p3,p4,p5, d,d1,d2,d3, q2,q3,q4,q5, z,z1, u,v, h2,h3, b1,b2,b3,b4, s2,s3,s4,s5, c,c1,c2,c3, r2,r3,r4,r5, a1,a2,a3,a4, t1,t2,t3,t4}. Put j into M for j{ p5p4,p3p2,dd1,d2d3, q2q3,q4q5, zz1, h2h3, uv, b1b2,b3b4, s2s3,s4s5, cc1,c2c3, r2r3,r4r5, a1a2,a3a4, tt1,t2t3}. See Figure 4 (b).

    Let PD1=PDVC1. Since vertex x is M-saturated in PD1. Therefore, PD1 is a paired dominating set of G.

    Since N(w)PD1={w1}, then PD1{w1} is not a dominating set of G. So PD1 is a minimal paired dominating set of G. And |PD1|=|VC1|+|VC1|×43+(m|VC1|)×42. Therefore, |PD1|=2|VC1|+42m.

    Let PD be a minimal paired dominating set of G. Algorithm 1 is to obtain a minimal vertex cover VC of G, and it terminates in polynomial time.

    Algorithm 1 CONST-VC(G,PD)
    Input: A graph G with a minimal paired dominating set PD
    Output: A graph G with a minimal vertex cover VC
    1: VC=PD
    2: for every HxyG do
    3:  Delete vertices in Hxy
    4:  Add an edge between x and y {obtained the graph G}
    5: VC=VCV(Hxy)
    6: end for
    7: VC=VC
    8: De= {Mo is the set of vertex which is removed from VC.}
    9: In= {In is the set of vertex which is added into VC.}
    10: Mo= {De is the set of vertex which is added into VC at first, then removed from VC.}
    11: while |N[v]VC|=d(v)+1 do
    12:  VC=VC{v},Mo=Mo{v}
    13: end while
    14: while uvE(G) and u,vVC do
    15:  VC=VC{u},In=In{u}
    16:  for wN(u) do
    17:   if |N[w]VC|=d(w)+1 then
    18:    VC=VC{w},De=De{w}
    19:   end if
    20:  end for
    21: end while
    22: return VC

     | Show Table
    DownLoad: CSV

    Lemma 8. If PD is a minimal paired dominating set of G and VC is a minimal vertex cover of G obtained by Algorithm 1, |VC||PD|42m|VC|.

    Proof. Let M be the perfect matching of G[PD], me=V(Hxy)PD where e=xyE(G), Me=eE(G)me, Le=V(G)(MoInDe).

    In Algorithm 1, we have:

    Claim 9. (a) If v is put into Mo by the while loop (lines 11 to 13) or De (line 18), v will not be put into In later.

    (b) For every vertex vV(G), v will be put into Mo (or De or In) at most once.

    (c) MoDe=, MoIn=.

    (d) If vDe, there exists a vertex wN(v)In.

    (e) If vertex vDeIn, we have vVC, that is, v is put into In at first and then into De.

    (f) If u,vDeMo, N(v)N(u)MoDe=.

    (g) If vDeIn, there exists a vertex uN(v)(InDe), uVC. And |N(u)De|2. What's more, there exists a vertex wN(u)VC. If wInDe, |(N(u)N(w))(DeIn)|3.

    Proof. (a) After v is put into De (or Mo), every wN(v) has a neighbor v which does not belong to VC, so w will not be put into De. Therefore, v will not be put into In later.

    (b)–(d) By (a), it is immediate.

    (e) By (a) and (c), it is immediate.

    (f) Suppose v is put into DeMo. By (a), wN(v) will not be put into DeMo.

    (g) For vertex vDeIn, by (d) and (f), let uN(v)(InDe), and uVC, |N(u)De|2.

    Since uInDe, there exists a vertex wN(u)VC.

    Since 1|N(u)(DeIn)|2, |N(w)(DeIn)|2. If wInDe, we may assume u is put into In at first. Then N(u)(DeIn)|1, otherwise, w will not be put into In later. Therefore, |(N(u)N(w))(DeIn)|3.

    Thus,

    |VC|=|PD||Me||Mo||De|+|In|. (2.4)

    To show that |Me|+|Mo|+|De||In|42m+|VC|, we use the following strategy.

    Discharging procedure:

    In the graph G, we set the initial charge of every vertex v to be s(v)=1 for vMoMe(DeIn), s(v)=1 for vInDe, s(v)=0 otherwise, s(Huv)=xV(Huv)s(x), s(G)=vV(G)s(v).

    Obviously,

    vV(G)s(v)=|Me|+|Mo|+|De||In|. (2.5)

    We use the discharging procedure, leading to a final charge s, defined by applying the following rules:

    Rule 1: For the vertex vMo, v is M-saturated. Therefore, v is HIuv for u. If u is HIuv, s(v) transmits 1 charge to s(u). If u is HOuv, s(v) transmits 1 charge to s(Huv) which is [I,O].

    Rule 2: For each s(Huv)=43, by Corollary 6, s(Huv) transmits 1 charge to uVC.

    Rule 3: For the vertex vDeIn, by Claim 9 (g), there exists a vertex uN(v)(InDe), and a vertex wN(u)VC and |N(u)De|2. If |N(u)De|=2, s(v) transmits 1 charge to s(u) and transmits 1 charge to s(Huw) which is [0,0]. If |N(u)De|=1, s(v) transmits 2 charge to s(u).

    After discharging, we have:

    Claim 10. (a) s(v)0 for vMo(DeIn)(LeVC)(InDe).

    (b) For each Hxy, s(Hxy)42.

    (c) s(v)1 for v(InDe)(LeVC).

    Proof. (a) If vMo, by Claim 9 (f), v will not receive any charge by Rules 1 and 3. Since N[v]VC=N[v]. By Lemmas 4 and 5, v will not receive any charge by Rule 2. Therefore, s(v)=0.

    If vDeIn, vVC. By Claim 9 (f), N(v)Mo=. Thus, v will not receive any charge by Rules 1 and 3. Since v is HIuv for u. By Lemmas 4 and 5, if uVC, v will not receive any charge by Rule 2. If uVC, v will receive 1 charge at most by Rule 2. Afterwards, by Rule 3, v will transmit 2 charge to others, so s(v)0.

    If vLeVC, v will not receive any charge by Rules 1, 2 and 3.

    If vInDe, vVC by Claim 9 (e). Thus, v will not receive any charge by Rules 1 and 2. By Claim 9 (f), vDe, N(v)De=. Thus, v will not receive any charge by Rule 3.

    (b) If Huw is [I,I] or [O,O] or [I,0] or [O,0], s(Huw) will not receive any charge by Rules 1, 2 and 3. If Huw is [0,0], s(Huw) will not receive any charge by Rules 1 and 2.

    If Huw is [0,0], by Claim 9 (g), |(N(u)N(w))(DeIn)|3. Thus, s(Huw) will receive 2 charge at most from s(x) where xN(v){w} by Rule 3.

    And if s(Huw)=43, by Corollary 6, there exists a vertex uVC and u is HIuw. Therefore, s(Huw)=42 by Rule 2.

    Thus, by Lemmas 4 and 5, s(Huw)42.

    (c) If vInDe, vVC, v will receive any charge by Rules 1 and 2. And there exists a vertex wN(v) wVC and wDeIn. So v will receive 2 charge at most by Rule 3, s(v)1+2=1.

    If vLeVC, v will receive any charge by Rule 3. By Lemmas 4, 5 and Corollary 6, Huv is [I,0] if s(Huv)=43. Since v can be M-saturated once, v will receive 1 charge at most by Rules 1 and 2. Thus, s(v)0+1=1.

    By Claim 10,

    |Me|+|Mo|+|De||In|=uvE(G)s(Huv)+vMos(v)+vDeIns(v)vInDes(v)=uvE(G)s(Huv)+vMos(v)+vDeIns(v)+vInDes(v)+vInDes(v)+vLeVCs(v)vLeVCs(v)42m+|InDe|+|LeVC|42m+|VC|.

    Thus, by Eq (2.4),

    |VC|=|PD||Me||Mo||De|+|In||PD|42m|VC|.

    Let PD be a Γpr(G)-set of G, and be the Input of Algorithm 1. Then we obtain the Output VC by Algorithm 1.

    Since

    |VC|mΔ=m3.

    By Lemma 8,

    |VC||PD|42m|VC||PD|42×3|VC||VC||VC||PD|127|VC|

    Let VC be a VC-set of G. Since |VC||VC|,

    |PD|128|VC|128|VC| (2.6)

    By Lemma 7, |PD||PD1|=42m+2|VC|. By Lemma 8,

    |PD||VC||VC|+42m|VC|+42m|PD||VC|.

    Thus,

    |VC||VC||PD||PD| (2.7)

    Therefore, by Eq (2.6) and Eq (2.7), f is an L-reduction with α=128, β=1.

    Upper-PDS for bipartite graphs is proved to be APX-complete with maximum degree 4 and still open with maximum degree 3. In this paper, we show that Upper-PDS for bipartite graphs with maximum degree 3 is APX-complete by providing an L-reduction f from MAX-MIN-VC for bipartite graphs to it.

    This work was supported by the National Key R & D Program of China (No. 2018YFB1005100), the Guangzhou Academician and Expert Workstation (No. 20200115-9) and the Innovation Ability Training Program for Doctoral student of Guangzhou University (No. 2019GDJC-D01).

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.



    [1] Y. A. Abramovich, C. D. Aliprantis, An invitation to operator theory, American Mathematical Society, 50 (2002). https://doi.org/10.1090/gsm/050
    [2] A. A. Albanese, J. Bonet, W. J. Ricker, Grothendieck spaces with the Dunford-Pettis property, Positivity, 14 (2010), 145–164. https://doi.org/10.1007/s11117-009-0011-x doi: 10.1007/s11117-009-0011-x
    [3] N. Alon, K. Makarychev, Y. Makarychev, A. Naor, Quadratic forms on graphs, Invent. Math., 163 (2006), 499–522. https://doi.org/10.1007/s00222-005-0465-9
    [4] N. Alon, A. Naor, Approximating the cut-norm via Grothendieck's inequality, SIAM J. Comput., 35 (2006), 787–803. https://doi.org/10.1137/S0097539704441629 doi: 10.1137/S0097539704441629
    [5] W. Arendt, A. Grabosch, G. Greiner, U. Moustakas, R. Nagel, U. Schlotterbeck, et al., One-parameter semigroups of positive operators, Lecture Notes in Mathematics, 1184 (1986). https://doi.org/10.1007/BFb0074922
    [6] S. V. Astashkin, L. Maligranda, Lp+L and LpL are not isomorphic for all 1p<, p2. Proc. Amer. Math. Soc., 146 (2018), 2181–2194. https://doi.org/10.1090/proc/13928
    [7] M. J. Beltrán-Meneu, M. C. Gómez-Collado, E. Jordá, D. Jornet, Mean ergodic composition operators on Banach spaces of holomorphic functions, J. Funct. Anal., 270 (2016), 4369–4385. https://doi.org/10.1016/j.jfa.2016.03.003 doi: 10.1016/j.jfa.2016.03.003
    [8] T. F. Bewley, A very weak theorem on the existence of equilibria in atomless economies with infinitely many commodities, Equilibrium theory in infinite dimensional spaces, 1991,224–232. https://doi.org/10.1007/978-3-662-07071-0_9
    [9] C. Bombach, D. Gallaun, C. Seifert, M. Tautenhahn, Observability and null-controllability for parabolic equations in Lp-spaces, Math. Control Relat. F., 13 (2023), 1484–1499. https://doi.org/10.3934/mcrf.2022046 doi: 10.3934/mcrf.2022046
    [10] J. Bonet, E. Jordá, A. Rodríguez, Mean ergodic multiplication operators on weighted spaces of continuous functions, Mediterr. J. Math., 15 (2018), 108. https://doi.org/10.1007/s00009-018-1150-8 doi: 10.1007/s00009-018-1150-8
    [11] J. Bourgain, On the Dunford-Pettis property, Proc. Amer. Math. Soc., 81 (1981), 265–272. https://doi.org/10.2307/2044207 doi: 10.2307/2044207
    [12] J. Bourgain, H is a Grothendieck space, Stud. Math., 75 (1983), 193–216. https://doi.org/10.4064/sm-75-2-193-216 doi: 10.4064/sm-75-2-193-216
    [13] J. Bourgain, The Dunford-Pettis property for the ball-algebras, the polydisc-algebras and the Sobolev spaces, Stud. Math., 77 (1984), 245–253. https://doi.org/10.4064/sm-77-3-246-253 doi: 10.4064/sm-77-3-246-253
    [14] C. Budde, M. K. Fijavž, Bi-continuous semigroups for flows on infinite networks, 16 (2021), 553–567. https://doi.org/10.3934/nhm.2021017
    [15] J. Diestel, Grothendieck spaces and vector measures, Vector Operator Valued Meas. Appl., 1973, 97–108. https://doi.org/10.1016/B978-0-12-702450-9.50015-4
    [16] J. Diestel, A survey of results related to the Dunford-Pettis property, In: Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces, 2 (1980), 15–60. https://doi.org/10.1090/conm/002/621850
    [17] N. Dunford, B. J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc., 47 (1940), 323–392. https://doi.org/10.1090/S0002-9947-1940-0002020-4 doi: 10.1090/S0002-9947-1940-0002020-4
    [18] N. Dunford, J. T. Schwartz, Linear operators, I. General theory, New York and London: Interscience Publishers, 1988.
    [19] E. Emel'yanov, N. Erkursun, Lotz-Räbiger's nets of Markov operators in L1-spaces, J. Math. Anal. Appl., 371 (2010), 777–783. https://doi.org/10.1016/j.jmaa.2010.05.060 doi: 10.1016/j.jmaa.2010.05.060
    [20] K. J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194 (2000). https://doi.org/10.1007/b97696
    [21] B. Farkas, Perturbations of bi-continuous semigroups, Stud. Math., 161 (2004), 147–161. https://doi.org/10.4064/sm161-2-3 doi: 10.4064/sm161-2-3
    [22] D. H. Fremlin, Measure theory, Colchester: Torres Fremlin, 2003.
    [23] J. A. Goldstein, Semigroups of linear operators and applications, Oxford: Oxford University Press, 1987. https://doi.org/10.1137/1029026
    [24] M. González, T. Kania, Grothendieck spaces: The landscape and perspectives, Jpn. J. Math., 16 (2021), 247–313. https://doi.org/10.1007/s11537-021-2116-3 doi: 10.1007/s11537-021-2116-3
    [25] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Can. J. Math., 5 (1953), 129–173. https://doi.org/10.4153/CJM-1953-017-4 doi: 10.4153/CJM-1953-017-4
    [26] B. Jacob, F. L. Schwenninger, J. Wintermayr, A refinement of Baillon's theorem on maximal regularity, Stud. Math., 263 (2022), 141–158. https://doi.org/10.4064/sm200731-20-3 doi: 10.4064/sm200731-20-3
    [27] H. Keshavarzi, Mean ergodic composition operators on H(Bn), Positivity, 26 (2022), 30. https://doi.org/10.1007/s11117-022-00901-5 doi: 10.1007/s11117-022-00901-5
    [28] A. Kishimoto, D. W. Robinson, Subordinate semigroups and order properties, J. Aust. Math. Soc. Ser. A, 31 (1981), 59–76. https://doi.org/10.1017/S1446788700018486 doi: 10.1017/S1446788700018486
    [29] F. Kühnemund, A Hille-Yosida theorem for bi-continuous semigroups, Semigroup Forum, 67 (2003), 205–225. https://doi.org/10.1007/s00233-002-5000-3 doi: 10.1007/s00233-002-5000-3
    [30] H. P. Lotz, Tauberian theorems for operators on L and similar spaces, North-Holland Math. Stud., 90 (1984), 117–133. https://doi.org/10.1016/S0304-0208(08)71470-1
    [31] H. P. Lotz, Uniform convergence of operators on L and similar spaces, Math. Z., 190 (1985), 207–220. https://doi.org/10.1007/BF01160459 doi: 10.1007/BF01160459
    [32] G. Lumer, Evolution equations and their applications in physical and life sciences, Proceeding of the Bad Herrenalb (Karlsruhe) conference, New York, NY: Marcel Dekker, 2001. https://doi.org/10.1201/9780429187810
    [33] P. Meyer-Nieberg, Banach lattices, Berlin: Springer-Verlag, Universitext, 1991. https://doi.org/10.1007/978-3-642-76724-1
    [34] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44 (1983). https://doi.org/10.1007/978-1-4612-5561-1
    [35] G. Pisier, Grothendieck's theorem, past and present, Bull. Amer. Math. Soc., 49 (2012), 237–323. https://doi.org/10.1090/S0273-0979-2011-01348-9
    [36] F. Räbiger, Beiträge zur Strukturtheorie der Grothendieck-Räume, Heidelberger: Sitzungsber, 1985. https://doi.org/10.1007/978-3-642-45612-1
    [37] C. L. Rogers, Complete L-algebras and their homotopy theory, J. Pure Appl. Algebra, 227 (2023), 107403. https://doi.org/10.1016/j.jpaa.2023.107403 doi: 10.1016/j.jpaa.2023.107403
    [38] H. H. Schaefer, Banach lattices and positive operators, New York-Heidelberg: Springer-Verlag, 1974. https://doi.org/10.1007/978-3-642-65970-6
    [39] W. Seyoum, T. Mengestie, J. Bonet, Mean ergodic composition operators on generalized Fock spaces, RACSAM, 114 (2020), 6. https://doi.org/10.1007/s13398-019-00738-w doi: 10.1007/s13398-019-00738-w
    [40] S. Y. Shaw, Uniform convergence of ergodic limits and approximate solutions, Proc. Amer. Math. Soc., 114 (1992), 405–411. https://doi.org/10.2307/2159662 doi: 10.2307/2159662
    [41] J. M. A. M. van Neerven, A converse of Lotz's theorem on uniformly continuous semigroups, Proc. Amer. Math. Soc., 116 (1992), 525–527. https://doi.org/10.2307/2159762 doi: 10.2307/2159762
    [42] J. von Below, J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks, Results Math., 47 (2005), 199–225. https://doi.org/10.1007/BF03323026 doi: 10.1007/BF03323026
    [43] J. von Below, J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks under generalized node transition, Results Math., 54 (2009), 15–39. https://doi.org/10.1007/s00025-009-0376-y doi: 10.1007/s00025-009-0376-y
    [44] R. Wittmann, Schwach irreduzible Markoff-operatoren, Monatsh. Math., 105 (1988), 319–334. https://doi.org/10.1007/BF01318808 doi: 10.1007/BF01318808
    [45] A. J. Wrobel, A sufficient condition for a singular functional on L[0,1] to be represented on C[0,1] by a singular measure, Indagat. Math. New Ser., 29 (2018), 746–751. https://doi.org/10.1016/j.indag.2017.12.005 doi: 10.1016/j.indag.2017.12.005
    [46] K. Yosida, E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc., 72 (1952), 46–66. https://doi.org/10.2307/1990654
    [47] Y. Zhang, C. C. Chen, Stochastic asymptotical regularization for linear inverse problems, Inverse Probl., 39 (2022), 015007. https://doi.org/10.1088/1361-6420/aca70f doi: 10.1088/1361-6420/aca70f
    [48] Y. Zhang, B. Hofmann, On the second-order asymptotical regularization of linear ill-posed inverse problems, Appl. Anal., 99 (2020), 1000–1025. https://doi.org/10.1080/00036811.2018.1517412 doi: 10.1080/00036811.2018.1517412
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(674) PDF downloads(46) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog