
The Kuramoto-Sivashinsky (KS) equation being solved by the linear barycentric rational interpolation method (LBRIM) is presented. Three kinds of linearization schemes, direct linearization, partial linearization and Newton linearization, are presented to get the linear equation of the Kuramoto-Sivashinsky equation. Matrix equations of the discrete Kuramoto-Sivashinsky equation are also given. The convergence rate of LBRIM for solving the KS equation is also proved. At last, two examples are given to prove the theoretical analysis.
Citation: Jin Li. Linear barycentric rational interpolation method for solving Kuramoto-Sivashinsky equation[J]. AIMS Mathematics, 2023, 8(7): 16494-16510. doi: 10.3934/math.2023843
[1] | Zongcheng Li, Jin Li . Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations. AIMS Mathematics, 2023, 8(8): 18141-18162. doi: 10.3934/math.2023921 |
[2] | Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439 |
[3] | Jin Li . Barycentric rational collocation method for fractional reaction-diffusion equation. AIMS Mathematics, 2023, 8(4): 9009-9026. doi: 10.3934/math.2023451 |
[4] | Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng . A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017 |
[5] | Kareem T. Elgindy, Hareth M. Refat . A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps. AIMS Mathematics, 2023, 8(2): 3561-3605. doi: 10.3934/math.2023181 |
[6] | Qasem M. Tawhari . Mathematical analysis of time-fractional nonlinear Kuramoto-Sivashinsky equation. AIMS Mathematics, 2025, 10(4): 9237-9255. doi: 10.3934/math.2025424 |
[7] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[8] | Yangfang Deng, Zhifeng Weng . Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation. AIMS Mathematics, 2021, 6(4): 3857-3873. doi: 10.3934/math.2021229 |
[9] | M. Mossa Al-Sawalha, Safyan Mukhtar, Albandari W. Alrowaily, Saleh Alshammari, Sherif. M. E. Ismaeel, S. A. El-Tantawy . Analytical solutions to time-space fractional Kuramoto-Sivashinsky Model using the integrated Bäcklund transformation and Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(5): 12357-12374. doi: 10.3934/math.2024604 |
[10] | Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048 |
The Kuramoto-Sivashinsky (KS) equation being solved by the linear barycentric rational interpolation method (LBRIM) is presented. Three kinds of linearization schemes, direct linearization, partial linearization and Newton linearization, are presented to get the linear equation of the Kuramoto-Sivashinsky equation. Matrix equations of the discrete Kuramoto-Sivashinsky equation are also given. The convergence rate of LBRIM for solving the KS equation is also proved. At last, two examples are given to prove the theoretical analysis.
Lots of physical phenomena can be expressed by non-linear partial differential equations (PDE), including, inter alia, dissipative and dispersive PDE. In this paper, we consider the Kuramoto-Sivashinsky (KS) equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=φ(s,t)0≤s≤1,0≤t≤T,γ>0, | (1.1) |
ϕ(0,t)=0,ϕ(1,t)=0,ϕss(0,t)=0,ϕss(1,t)=0,0<t<T, | (1.2) |
ϕ(s,0)=φ(s),0≤s≤1, | (1.3) |
where γ∈R is the constant.
The KS equation plays an important role in physics such as in diffusion, convection and so on. Lots of attention has been paid by researchers in recent years. An H1-Galerkin mixed finite element method for the KS equation was proposed in [1], lattice Boltzmann models for the Kuramoto-Sivashinsky equation were studied in [2], Backward difference formulae (BDF) methods for the KS equation were investigate in [3]. Stability regions and results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations were given in [4,5], respectively. In [6], an improvised quintic B-spline extrapolated collocation technique was used to solve the KS equation, and the stability of the technique was analyzed using the von Neumann scheme, which was found to be unconditionally stable. In [7], a septic Hermite collocation method (SHCM) was proposed to simulate the KS equation, and the nonlinear terms of the KS equation were linearized using the quasi-linearization process. In [8], a semidiscrete approach was presented to solve the variable-order (VO) time fractional 2D KS equation, and the differentiation operational matrices and the collocation technique were used to get a linear system of algebraic equations. In [9] the discrete Legendre polynomials (LPs) and the collocation scheme for nonlinear space-time fractional KdV-Burgers-Kuramoto equation were presented.
In order to avoid the Runge's phenomenon, barycentric interpolation [10,11,12] was developed. In recent years, linear rational interpolation (LRI) was proposed by Floater [13,14,15], and error of linear rational interpolation was also proved. The barycentric interpolation collocation method (BICM) has been developed by Wang et al.[22,23,24,25], and the algorithm of BICM has been used for linear/non-linear problems [21]. Volterra integro-differential equation (VIDE)[16,20], heat equation (HE) [17], biharmonic equation (BE) [18], the Kolmogorov-Petrovskii-Piskunov (KPP) equation [19], fractional differential equations [20], fractional reaction-diffusion equation [28], semi-infinite domain problems [27] and biharmonic equation [26], plane elastic problems [29] have been studied by the linear barycentric interpolation collocation method (LBICM), and their convergence rates also have been proved.
In order to solve the KS equation efficiently, the LBRIM is presented. Because the nonlinear part of the KS equation cannot be solved directly, three kinds of linearization methods, including direct linearization, partial linearization and Newton linearization, are presented. Then, the nonlinear part of the KS equation is translated into the linear part, three kinds of iterative schemes are presented, and matrix equation of the linearization schemes are constructed. The convergence rate of the LBRCM for the KS equation is also given. At last, two numerical examples are presented to validate the theoretical analysis.
In the following, the KS equation is changed into the linear equation by the linearization scheme, including direct linearization, partial linearization and Newton linearization.
For the Kuramoto-Sivashinskyr equation with the initial value of nonlinear term ϕ∂ϕ∂s is changed to ϕ0∂ϕ0∂s,
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ0∂ϕ0∂s=φ(s,t), | (2.1) |
and then we get the linear scheme as
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2=−ϕn−1∂ϕn−1∂s+φ(s,t),a≤s≤b,0≤t≤T. | (2.2) |
By the partial linearization, nonlinear term ϕ∂ϕ∂s is changed to ϕ0∂ϕ∂s,
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ0∂ϕ∂s=φ(s,t), | (2.3) |
and then we have
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2+ϕn−1∂ϕn∂s=φ(s,t),a≤s≤b,0≤t≤T. | (2.4) |
For the initial value ϕ∂ϕ∂s=ϕ0∂ϕ0∂s+(∂ϕ0∂s+ϕ0∂ϕ0∂s)(ϕ−ϕ0), we have
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ0∂s+ϕ0∂ϕ0∂sϕ=φ(s,t)+ϕ0∂ϕ0∂sϕ0, | (2.5) |
and then we have
∂ϕn∂t+γ∂4ϕn∂s4+∂2ϕn∂s2+ϕn∂ϕn−1∂s+ϕn−1∂ϕn−1∂sϕn=φ(s,t)+ϕn−1∂ϕn−1∂sϕn−1, | (2.6) |
where n=1,2,⋯.
Interval [a,b] is divided into a=s0<s1<s2<⋯<sm−1<sm=b, for uniform partition with hs=b−am and nonuniform partition to be the second kind of Chebychev point. Time [0,T] is divided into 0=t0<t1<t2<⋯<tn−1<tn=T and ht=Tn for uniform partition. Then, we take ϕnm(s,t) to approximate ϕ(s,t) as
ϕnm(s,t)=m∑i=0n∑j=0ri(s)rj(t)ϕij | (3.1) |
where ϕij=ϕ(si,tj),
ri(s)=wis−sim∑j=0wjs−sj,rj(t)=wjt−tjn∑i=0wit−ti | (3.2) |
is the barycentric interpolation basis [26], and
wi=∑k∈Ji(−1)kk+ds∏j=k,j≠i1si−sj,wj=∑k∈Jj(−1)kk+dt∏i=k,k≠j1tj−ti | (3.3) |
where Ji={k∈I,i−ds≤k≤i},I={0,1,⋯,m−ds}. See [26]. We get the barycentric rational interpolation.
For the case
wi=1∏i≠k(si−sk),wj=1∏j≠k(tj−tk), | (3.4) |
we get the barycentric Lagrange interpolation.
So,
r′j(si)=wj/wisi−sj,j≠i,r′i(si)=−∑j≠ir′j(si), | (3.5) |
r(k)j(si)=k(r(k−1)i(si)r′i(sj)−r(k−1)i(sj)si−sj),j≠i, | (3.6) |
r(k)i(si)=−∑j≠ir(k)j(si). | (3.7) |
Then, we have
D(0,1)ij=r′i(tj), | (3.8) |
D(1,0)ij=r′i(sj), | (3.9) |
D(k,0)ij=r(k)i(sj),k=2,3,⋯. | (3.10) |
Combining (3.1) and (2.2), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In]ϕn=Ψ−diag(ϕn−1)D(1,0)⊗In⋅ϕn−1, | (3.11) |
and then we have
Lϕn=Ψn−1 | (3.12) |
where
L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In, |
Ψn−1=Ψ−diag(ϕn−1)D(1,0)⊗In⋅ϕn−1 |
and ⊗ is the Kronecher product [17].
Combining (3.1) and (2.4), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In]ϕn=Ψ, | (3.13) |
n=1,2,⋯, and then we have
Lϕ=Ψ | (3.14) |
where L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In.
Combining (3.1) and (2.6), we have
[Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In]ϕn=Ψ+[diag(ϕn)−diag(ϕn−1)]D(1,0)⊗In⋅ϕn−1, | (3.15) |
and then we get
Lϕ=Ψn−1 | (3.16) |
where
L=Im⊗D(0,1)+D(2,0)⊗In+γD(4,0)⊗In+diag(ϕn−1)D(1,0)⊗In, |
and
Ψn−1=Ψ+[diag(ϕn)−diag(ϕn−1)]D(1,0)⊗In⋅ϕn−1. |
In this part, an error estimate of the KS equation is given with rn(s)=n∑i=0ri(s)ϕi to replace ϕ(s), where ri(s) is defined as (3.2), and ϕi=ϕ(si). We also define
e(s):=ϕ(s)−rn(s)=(s−si)⋯(s−si+d)ϕ[si,si+1,…,si+d,s]. | (4.1) |
Then, we have the following.
Lemma 1. For e(s) defined by (4.1) and ϕ(s)∈Cd+2[a,b], there is
|e(k)(s)|≤Chd−k+1,k=0,1,⋯. | (4.2) |
For KS equation, rational interpolation function of ϕ(s,t) is defined as rmn(s,t)
rmn(s,t)=m+ds∑i=0n+dt∑j=0wi,j(s−si)(t−tj)ϕi,jm+ds∑i=0n+dt∑j=0wi,j(s−si)(t−tj) | (4.3) |
where
wi,j=(−1)i−ds+j−dt∑k1∈Jik1+ds∏h1=k1,h1≠j1|si−sh1|∑k2∈Jik2+dt∏h2=k2,h2≠j1|tj−th2|. | (4.4) |
We define e(s,t) to be the error of ϕ(s,t) as
e(s,t):=ϕ(s,t)−rmn(s,t)=(s−si)⋯(s−si+ds)ϕ[si,si+1,…,si+d1,s,t]+(t−tj)⋯(t−tj+dt)ϕ[s,tj,tj+1,…,tj+d2,t]. | (4.5) |
With similar analysis of Lemma 1, we have the following
Theorem 1. For e(s,t) defined as (4.5) and ϕ(s,t)∈Cds+2[a,b]×Cdt+2[0,T], we have
|e(k1,k2)(s,t)|≤C(hds−k1+1s+hdt−k2+1t),k1,k2=0,1,⋯. | (4.6) |
We take the direct linearization of the KS equation as an example prove the convergence rate. Let ϕ(sm,tn) be the approximate function of ϕ(s,t) and L be a bounded operator. There holds
Lϕ(sm,tn)=φ(sm,tn), | (4.7) |
and
limm,n→∞ϕ(sm,tn)=ϕ(s,t). | (4.8) |
Then, we get the following
Theorem 2. For ϕ(sm,tn):Lϕ(sm,tn)=φ(s,t) and L defined as (4.7), there
|ϕ(s,t)−ϕ(sm,tn)|≤C(hds−3+τdt). |
Proof. As
Lϕ(s,t)−Lϕ(sm,tn)=∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2−ϕ0∂ϕ0∂s−φ(s,t)−[∂ϕ(sm,tn)∂t+γ∂4ϕ(sm,tn)∂s4+∂2ϕ(sm,tn)∂s2+ϕ0(sm,tn)∂ϕ0(sm,tn)∂s−φ(s,t)]=∂ϕ∂t−∂ϕ∂t(sm,tn)+γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)]+∂2ϕ∂s2−∂2ϕ∂s2(sm,tn)+[ϕ0∂ϕ0∂s−ϕ0(sm,tn)∂ϕ0∂s(sm,tn)]:=E1(s,t)+E2(s,t)+E3(s,t)+E4(s,t). | (4.9) |
Here,
E1(s,t)=∂ϕ∂t−∂ϕ∂t(sm,tn), |
E2(s,t)=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)], |
E3(s,t)=∂2ϕ∂s2−∂2ϕ∂s2(sm,tn), |
E4(s,t)=ϕ0∂ϕ0∂s−ϕ0(sm,tn)∂ϕ0∂s(sm,tn). |
With E2(s,t), we have
E2(s,t)=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,tn)]=γ[∂4ϕ∂s4−∂4ϕ∂s4(sm,t)+∂4ϕ∂s4(sm,t)−∂4ϕ∂s4(sm,tn)]=m−ds∑i=0(−1)i∂4ϕ∂s4[si,si+1,…,si+d1,sm,t]m−ds∑i=0λi(s)+n−dt∑j=0(−1)j∂4ϕ∂s4[tj,tj+1,…,tj+d2,sm,tn]n−dt∑j=0λj(t)=∂4e∂s4(sm,t)+∂4e∂s4(sm,tn). |
For E2(s,t) we get
|E2(s,t)|≤|∂4e∂s4(sm,x)+∂4e∂s4(sm,tn)|≤C(hds−3+τdt+1). | (4.10) |
Then, we have
|E1(s,t)|≤|∂e∂t(sm,t)+∂e∂t(sm,tn)|≤C(hds+1+τdt). | (4.11) |
Similarly, for E3(s,t) we have
E3(s,t)=∂2ϕ∂s2(s,t)−∂2ϕ∂s2(sm,tn)=∂2e∂s2(s,tn)+∂2e∂s2(sm,tn), | (4.12) |
and
|E3(s,t)|≤|∂2e∂s2(s,tn)+∂2e∂s2(sm,tn)|≤C(hds−1+τdt+1). | (4.13) |
For E4(s,t) we get
|E4(s,t)|=|ϕ0∂ϕ∂s−ϕ0(sm,tn)∂ϕ∂s(sm,tn)|≤|∂e∂t(sm,t)+∂e∂t(sm,tn)|≤C(hds+1+τdt). | (4.14) |
Combining (4.9) and (4.11)–(4.14) together, the proof of Theorem 2 is completed.
All the examples are carried on a computer with Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz operating system, 16 G radon access running memory and a 512 G solid state disk memory. All simulation experiments were realized by the software Matlab (Version: R2016a). In this part, two examples are presented to test the theorem.
Example 1. Consider the KS equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=φ(s,t) |
with the condition is
ϕ(0,t)=0,ϕ(1,t)=0, |
and
ϕ(s,0)=sin(2πs). |
ϕss(0,t)=0,ϕss(1,t)=0, |
and
φ(s,t)=e−tsin(2πs)[2πe−tcos(2πs)−1+16π4−4π2]. |
The solution of the KS equation is
ϕ(s,t)=e−tsin(2πs). |
In Figures 1–3, errors of unform partition with direct linearization, partial linearization, Newton linearization for the KS equation are presented. In Figures 4–6, errors of non-uniform partition with direct linearization, partial linearization, Newton linearization for the KS equation are presented.
In Tables 1 and 2, errors of LBCM and LBRCM for the KS equation with boundary condition dealt with by the method of substitution and method of addition are given. From Table 1, we know that the accuracy of LBCM is higher than LBRCM, and from Table 2 the accuracy of the method of additional is higher than the method of substitution.
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
In Table 3, we choose the Newton linearization to solve the KS equation, and the error of LBRCM for uniform and nonuniform partitions are presented with t=0.3,0.9,2,4,8,16.
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
The errors of LBRCM of uniform and Chebyshev partitions are presented with (m,n,ds,dt)=(8,8,7,7),(16,16,15,15). From the table, comparing (m,n)=(8,8) with (m,n)=(16,16), the accuracy was higher when the number became bigger.
In the following table, we take Newton linearization to present numerical results. From Tables 4 and 5, with errors of Newton linearization for uniform partition dt=6;t=1 are given and convergence rate is O(hds). From Table 5, with space variable s,ds=6, and there is superconvergence rate O(hds−1) at t=1.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
For Tables 6 and 7, the errors of Chebyshev partition for Newton linearization with s and t are presented. For dt=6, the convergence rate is O(hds) in Table 6, while in Table 7, there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
Example 2. Consider the KS equation
∂ϕ∂t+γ∂4ϕ∂s4+∂2ϕ∂s2+ϕ∂ϕ∂s=0, |
with the analytic solution
ϕ(s,t)=c+15√1119√19[−3tanh√112√19(s−ct+s0)+tanh3√112√19(s−ct+s0)], |
and boundary condition
ϕ(−10,t)=c+15√1119√19[−3tanh√112√19(−10−ct+s0)+tanh3√112√19(−10−ct+s0)], |
ϕ(10,t)=c+15√1119√19[−3tanh√112√19(10−ct+s0)+tanh3√112√19(10−ct+s0)], |
and initial condition
ϕ(s,0)=c+15√1119√19[−3tanh√112√19(s+s0)+tanh3√112√19(s+s0)], |
with c=2,x0=10.
In Figures 7–9, errors of direct linearization, partial linearization, Newton linearization with m=n=19 KS equation are presented, respectively.
In the following table, direct linearization is chosen to present numerical results. From Tables 8 and 9, errors of direct linearization for uniform partition dt=7 with different ds are given and the convergence rate is O(hds−1). From Table 9, with space variable s,ds=7, and there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
For Tables 10 and 11, the errors of Chebyshev partition for direct linearization with s and t are presented. For dt=7, the convergence rate is O(hds) in Table 10, while in Table 11, there are also superconvergence phenomena.
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |
In this paper, LBRCM is used to solve the (1+1) dimensional SK equation. Three kinds of linearization methods are taken to translate the nonlinear part into a linear part. Matrix equations of the discrete SK equation are obtained from corresponding linearization schemes. The convergence rate of LBRCM is also presented. In the future work, LBRCM can be developed for the (2+1) dimensional SK equation and other partial differential equations classes, including Kolmogorov-Petrovskii-Piskunov (KPP) equation and, fractional reaction-diffusion equation and so on.
The work of Jin Li was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003).
The authors also gratefully acknowledges the helpful comments and suggestions of the reviewers, which have improved the presentation.
The author declares no conflict of interest.
[1] |
L. Jones Tarcius Doss, A. P. Nandini, A fourth-order H1-Galerkin mixed finite element method for Kuramoto-Sivashinsky equation, Numer. Methods Partial Differ. Equ., 35 (2019), 445–477. https://doi.org/10.1002/num.22306 doi: 10.1002/num.22306
![]() |
[2] |
H. Otomo, B. M. Boghosian, F. Dubois, Efficient lattice Boltzmann models for the Kuramoto-Sivashinsky equation, Comput. Fluids, 172 (2018), 683–688. https://doi.org/10.1016/j.compfluid.2018.01.036 doi: 10.1016/j.compfluid.2018.01.036
![]() |
[3] |
G. Akrivis, Y. S. Smyrlis, Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation, Appl. Numer. Math., 51 (2004), 151–169. https://doi.org/10.1016/j.apnum.2004.03.002 doi: 10.1016/j.apnum.2004.03.002
![]() |
[4] |
A. Mouloud, H. Felloua, B. A. Wade, M. Kessal, Time discretization and stability regions for dissipative-dispersive Kuramoto-Sivashinsky equation arising in turbulent gas flow over laminar liquid, J. Comput. Appl. Math., 330 (2018), 605–617. http://dx.doi.org/10.1016/j.cam.2017.09.014 doi: 10.1016/j.cam.2017.09.014
![]() |
[5] |
B. Chentouf, A. Guesmia, Well-posedness and stability results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations with infinite memory: a history approach, Nonlinear Anal., 65 (2022), 103508. https://doi.org/10.1016/j.nonrwa.2022.103508 doi: 10.1016/j.nonrwa.2022.103508
![]() |
[6] |
Shallu, V. K. Kukreja, An improvised extrapolated collocation algorithm for solving Kuramoto-Sivashinsky equation, Math. Methods Appl. Sci., 45 (2021), 1451–1467. https://doi.org/10.1002/mma.7865 doi: 10.1002/mma.7865
![]() |
[7] |
A. Kumari, V. K. Kukreja, Study of 4th order Kuramoto-Sivashinsky equation by septic Hermite collocation method, Appl. Numer. Math., 188 (2023), 88–105. https://doi.org/10.1016/j.apnum.2023.03.001 doi: 10.1016/j.apnum.2023.03.001
![]() |
[8] |
M. Hosseininia, M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini, Z. Avazzadeh, Numerical method based on the Chebyshev cardinal functions for the variable-order fractional version of the fourth-order 2D Kuramoto-Sivashinsky equation, Math. Methods Appl. Sci., 44 (2021), 1831–1842. https://doi.org/10.1002/mma.6881 doi: 10.1002/mma.6881
![]() |
[9] |
M. H. Heydari, Z. Avazzadeh, C. Cattani, Numerical solution of variable-order space-time fractional KdV-Burgers-Kuramoto equation by using discrete Legendre polynomials, Eng. Comput., 38 (2022), 859–869. https://doi.org/10.1007/s00366-020-01181-x doi: 10.1007/s00366-020-01181-x
![]() |
[10] |
J. P. Berrut, S. A. Hosseini, G. Klein, The linear barycentric rational quadrature method for Volterra integral equations, SIAM J. Sci. Comput., 36 (2014), 105–123. https://doi.org/10.1137/120904020 doi: 10.1137/120904020
![]() |
[11] |
J. P. Berrut, G. Klein, Recent advances in linear barycentric rational interpolation, J. Comput. Appl. Math., 259 (2014), 95–107. https://doi.org/10.1016/j.cam.2013.03.044 doi: 10.1016/j.cam.2013.03.044
![]() |
[12] |
E. Cirillo, H. Kai, On the Lebesgue constant of barycentric rational Hermite interpolants at uniform partition, J. Comput. Appl. Math., 349 (2019), 292–301. https://doi.org/10.1016/j.cam.2018.06.011 doi: 10.1016/j.cam.2018.06.011
![]() |
[13] |
M. S. Floater, K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math., 107 (2007), 315–331. https://doi.org/10.1007/s00211-007-0093-y doi: 10.1007/s00211-007-0093-y
![]() |
[14] |
G. Klein, J. P. Berrut, Linear rational finite differences from derivatives of barycentric rational interpolants, SIAM J. Numer. Anal., 50 (2012), 643–656. https://doi.org/10.1137/110827156 doi: 10.1137/110827156
![]() |
[15] |
G. Klein, J. P. Berrut, Linear barycentric rational quadrature, BIT Numer. Math., 52 (2012), 407–424. https://doi.org/10.1007/s10543-011-0357-x doi: 10.1007/s10543-011-0357-x
![]() |
[16] |
J. Li, Y. Cheng, Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation, Comput. Appl. Math., 39 (2020), 92. https://doi.org/10.1007/s40314-020-1114-z doi: 10.1007/s40314-020-1114-z
![]() |
[17] |
J. Li, Y. Cheng, Linear barycentric rational collocation method for solving heat conduction equation, Numer. Methods Partial Differ. Equ., 37 (2021), 533–545. https://doi.org/10.1002/num.22539 doi: 10.1002/num.22539
![]() |
[18] |
J. Li, Y. Cheng, Barycentric rational method for solving biharmonic equation by depression of order, Numer. Methods Partial Differ. Equ., 37 (2021), 1993–2007. https://doi.org/10.1002/num.22638 doi: 10.1002/num.22638
![]() |
[19] |
J. Li, Y. Cheng, Barycentric rational interpolation method for solving KPP equation, Electron. Res. Arch., 31 (2023), 3014–3029. https://doi.org/10.3934/era.2023152 doi: 10.3934/era.2023152
![]() |
[20] |
J. Li, X. Su, K. Zhao, Barycentric interpolation collocation algorithm to solve fractional differential equations, Math. Comput. Simul., 205 (2023), 340–367. https://doi.org/10.1016/j.matcom.2022.10.005 doi: 10.1016/j.matcom.2022.10.005
![]() |
[21] |
J. Li, Y. Cheng, Z. Li, Z. Tian, Linear barycentric rational collocation method for solving generalized Poisson equations, Math. Biosci. Eng., 20 (2023), 4782–4797. https://doi.org/10.3934/mbe.2023221 doi: 10.3934/mbe.2023221
![]() |
[22] | S. Li, Z. Wang, Meshless barycentric interpolation collocation method–algorithmics, programs & applications in engineering, Beijing: Science Publishing, 2012. |
[23] | Z. Wang, S. Li, Barycentric interpolation collocation method for nonlinear problems, Beijing: National Defense Industry Press, 2015. |
[24] | Z. Wang, Z. Xu, J. Li, Mixed barycentric interpolation collocation method of displacement-pressure for incompressible plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 195–201. |
[25] | Z. Wang, L. Zhang, Z. Xu, J. Li, Barycentric interpolation collocation method based on mixed displacement-stress formulation for solving plane elastic problems, Chin. J. Appl. Mech., 35 (2018), 304–309. |
[26] |
J. Li, Linear barycentric rational collocation method for solving biharmonic equation, Demonstr. Math., 55 (2022), 587–603. https://doi.org/10.1515/dema-2022-0151 doi: 10.1515/dema-2022-0151
![]() |
[27] |
J. Li, Barycentric rational collocation method for semi-infinite domain problems, AIMS Math., 8 (2023), 8756–8771. https://doi.org/10.3934/math.2023439 doi: 10.3934/math.2023439
![]() |
[28] |
J. Li, Barycentric rational collocation method for fractional reaction-diffusion equation, AIMS Math., 8 (2023), 9009–9026. https://doi.org/10.3934/math.2023451 doi: 10.3934/math.2023451
![]() |
[29] |
J. Li, Linear barycentric rational collocation method to solve plane elastic problems, Math. Biosci. Eng., 20 (2023), 8337–8357. https://doi.org/10.3934/mbe.2023365 doi: 10.3934/mbe.2023365
![]() |
1. | Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation, 2024, 304, 00219045, 106106, 10.1016/j.jat.2024.106106 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 1.3278e-07 | 5.6616e-10 | 1.7050e-08 | 4.6293e-10 |
partial | 5.5563e-07 | 2.6381e-09 | 1.1492e-07 | 5.0974e-10 |
Newton | 6.6705e-07 | 4.8875e-10 | 8.8609e-08 | 2.5867e-11 |
Method of substitution | Method of additional | |||
Linearization | Uniform partition | Nonuniform partition | Uniform partition | Nonuniform partition |
direct | 4.4575e-06 | 3.2280e-08 | 4.1010e-08 | 2.2749e-09 |
partial | 4.4573e-06 | 3.2245e-08 | 5.4191e-07 | 1.5951e-07 |
Newton | 4.4560e-06 | 3.2215e-08 | 1.2972e-06 | 3.5137e-07 |
Uniform partition | Nonuniform partition | |||
t | (8,8)ds=dt=7 | (16,16)ds=dt=15 | (8,8)ds=dt=7 | (16,16)ds=dt=15 |
0.3 | 1.5449e-01 | 1.3163e-06 | 6.2692e-02 | 2.4769e-08 |
0.9 | 1.4211e-01 | 1.1737e-06 | 6.1721e-02 | 2.3846e-08 |
2 | 1.2162e-01 | 1.0785e-06 | 5.8680e-02 | 2.3685e-08 |
4 | 9.1544e-02 | 9.4383e-07 | 5.3241e-02 | 2.3353e-08 |
8 | 5.1798e-02 | 7.2283e-07 | 4.3721e-02 | 2.2440e-08 |
16 | 1.6540e-02 | 4.1712e-07 | 2.9435e-02 | 1.9220e-08 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 4.1317e-01 | 3.2652e-03 | 3.3180e-01 | |||
16, 16 | 1.8608e-01 | 1.1508 | 3.1257e-02 | - | 3.3919e-02 | 3.2902 |
32, 32 | 9.5437e-02 | 0.9633 | 1.0198e-02 | 1.6159 | 3.3873e-03 | 3.3239 |
64, 64 | 4.7221e-02 | 1.0151 | 2.6490e-03 | 1.9448 | 3.5472e-04 | 3.2554 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 1.3997e-01 | 1.4004e-01 | 1.4008e-01 | |||
16, 16 | 5.4923e-03 | 4.6716 | 5.4957e-03 | 4.6714 | 5.4973e-03 | 4.6714 |
32, 32 | 1.2850e-04 | 5.4176 | 1.2883e-04 | 5.4148 | 1.2891e-04 | 5.4143 |
64, 64 | 2.9976e-06 | 5.4218 | 3.0728e-06 | 5.3898 | 3.0798e-06 | 5.3874 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 5.4754e-01 | 2.9399e-02 | 8.5922e-02 | |||
16, 16 | 1.0318e-01 | 2.4078 | 4.6815e-03 | 2.6507 | 1.2658e-03 | 6.0849 |
32, 32 | 9.6912e-02 | 0.0904 | 8.0675e-04 | 2.5368 | 1.9577e-05 | 6.0148 |
64, 64 | 4.8014e-01 | - | 1.7672e-03 | - | 2.2716e-05 | - |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 6.1344e-02 | 6.1386e-02 | 6.1415e-02 | |||
16, 16 | 8.1492e-05 | 9.5561 | 8.1163e-05 | 9.5629 | 8.0977e-05 | 9.5669 |
32, 32 | 1.4204e-07 | 9.1642 | 1.4183e-07 | 9.1606 | 1.5487e-07 | 9.0303 |
64, 64 | 6.3190e-06 | - | 3.8960e-06 | - | 1.4861e-06 | - |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 1.3587e+00 | 8.9361e-01 | 6.3703e-01 | |||
16, 16 | 2.1617e-01 | 2.6520 | 2.7467e-01 | 1.7019 | 2.5682e-01 | 1.3106 |
32, 32 | 6.7743e-02 | 1.6740 | 6.8822e-02 | 1.9967 | 4.7078e-02 | 2.4476 |
64, 64 | 2.5175e-02 | 1.4281 | 1.3216e-02 | 2.3806 | 4.3739e-03 | 3.4281 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 3.6253e-01 | 3.6380e-01 | 3.6446e-01 | |||
16, 16 | 1.8147e-01 | 0.9984 | 1.8124e-01 | 1.0052 | 1.8121e-01 | 1.0081 |
32, 32 | 6.4076e-02 | 1.5019 | 6.4158e-02 | 1.4982 | 6.4141e-02 | 1.4983 |
64, 64 | 8.9037e-04 | 6.1692 | 8.9840e-04 | 6.1581 | 8.9863e-04 | 6.1574 |
m,n | ds=2 | hα | ds=3 | hα | ds=4 | hα |
8, 8 | 6.5990e-01 | 4.0742e-01 | 3.6175e-01 | |||
16, 16 | 1.1154e-01 | 2.5646 | 1.7539e-01 | 1.2160 | 2.1752e-01 | 0.7338 |
32, 32 | 4.3052e-02 | 1.3735 | 8.6654e-03 | 4.3391 | 1.2511e-03 | 7.4418 |
64, 64 | 3.9204e-02 | 0.1351 | 2.3776e-03 | 1.8658 | 3.5682e-04 | 1.8099 |
m,n | dt=2 | τα | dt=3 | τα | dt=4 | τα |
8, 8 | 4.3760e-01 | 4.3745e-01 | 4.3739e-01 | |||
16, 16 | 1.1801e-01 | 1.8908 | 1.1801e-01 | 1.8902 | 1.1801e-01 | 1.8900 |
32, 32 | 9.9842e-04 | 6.8850 | 9.9854e-04 | 6.8849 | 9.9801e-04 | 6.8857 |
64, 64 | 2.5749e-06 | 8.5990 | 2.5052e-06 | 8.6388 | 4.8401e-06 | 7.6879 |