Research article

Regularity and higher integrability of weak solutions to a class of non-Newtonian variation-inequality problems arising from American lookback options

  • Published: 20 April 2023
  • MSC : 35K99, 97M30

  • This paper presents the proofs of the higher integrability and regularity of weak solutions to a class of variation-inequality problems that are formulated by a non-Newtonian parabolic operator. After obtaining the gradient estimate, the higher order integrability of the weak solution is analyzed. We also examine the internal regularity estimate of the weak solution by utilizing a test function of the difference type.

    Citation: Zongqi Sun. Regularity and higher integrability of weak solutions to a class of non-Newtonian variation-inequality problems arising from American lookback options[J]. AIMS Mathematics, 2023, 8(6): 14633-14643. doi: 10.3934/math.2023749

    Related Papers:

  • This paper presents the proofs of the higher integrability and regularity of weak solutions to a class of variation-inequality problems that are formulated by a non-Newtonian parabolic operator. After obtaining the gradient estimate, the higher order integrability of the weak solution is analyzed. We also examine the internal regularity estimate of the weak solution by utilizing a test function of the difference type.



    加载中


    [1] J. Cao, J. Kim, X. Li, W. Zhang, Valuation of barrier and lookback options under hybrid CEV and stochastic volatility, Math. Comput. Simulat., 208 (2023), 660–676. https://doi.org/10.1016/j.matcom.2023.01.035 doi: 10.1016/j.matcom.2023.01.035
    [2] M. Ai, Z. Zhang, Pricing some life-contingent lookback options under regime-switching Lvy models, J. Comput. Appl. Math., 407 (2022), 114082. https://doi.org/10.1016/j.cam.2022.114082 doi: 10.1016/j.cam.2022.114082
    [3] Y. Gao, L. Jia, Pricing formulas of barrier-lookback option in uncertain financial markets, Chaos Soliton. Fract., 147 (2021), 110986. https://doi.org/10.1016/j.chaos.2021.110986 doi: 10.1016/j.chaos.2021.110986
    [4] C. Guan, Z. Xu, F. Yi, A consumption-investment model with state-dependent lower bound constraint on consumption, J. Math. Anal. Appl., 516 (2022), 126511. https://doi.org/10.1016/j.jmaa.2022.126511 doi: 10.1016/j.jmaa.2022.126511
    [5] T. Wu, Some results for a variation-inequality problem with fourth order p(x)-Kirchhoff operator arising from options on fresh agricultural products, AIMS Math., 8 (2023), 6749–6762. https://doi.org/10.3934/math.2023343 doi: 10.3934/math.2023343
    [6] J. Li, C. Bi, Study of weak solutions of variational inequality systems with degenerate parabolic operators and quasilinear terms arising Americian option pricing problems, AIMS Math., 7 (2022), 19758–19769. https://doi.org/10.3934/math.20221083 doi: 10.3934/math.20221083
    [7] C. O. Alves, L. M. Barros, C. E. T. Ledesma, Existence of solution for a class of variational inequality in whole ${\mathrm{R}}_N$ with critical growth, J. Math. Anal. Appl., 494 (2021), 124672. https://doi.org/10.1016/j.jmaa.2020.124672 doi: 10.1016/j.jmaa.2020.124672
    [8] I. Iqbal, N. Hussain, M. A. Kutbi, Existence of the solution to variational inequality, optimization problem, and elliptic boundary value problem through revisited best proximity point results, J. Comput. Appl. Math., 375 (2020), 112804. https://doi.org/10.1016/j.cam.2020.112804 doi: 10.1016/j.cam.2020.112804
    [9] J. Zheng, J. Chen, X. Ju, Fixed-time stability of projection neurodynamic network for solving pseudomonotone variational inequalities, Neurocomputing, 505 (2022), 402–412. https://doi.org/10.1016/j.neucom.2022.07.034 doi: 10.1016/j.neucom.2022.07.034
    [10] W. Han, Y. Li, Stability analysis of stationary variational and hemivariational inequalities with applications, Nonlinear Anal. Real, 50 (2019), 171–191. https://doi.org/10.1016/j.nonrwa.2019.04.009 doi: 10.1016/j.nonrwa.2019.04.009
    [11] Y. Bai, S. Migorski, S. Zeng, A class of generalized mixed variational-hemivariational inequalities Ⅰ: existence and uniqueness results, Comput. Math. Appl., 79 (2020), 2897–2911. https://doi.org/10.1016/j.camwa.2019.12.025 doi: 10.1016/j.camwa.2019.12.025
    [12] W. Han, A. Matei, Well-posedness of a general class of elliptic mixed hemivariational-variational inequalities, Nonlinear Anal. Real, 66 (2022), 103553. https://doi.org/10.1016/j.nonrwa.2022.103553 doi: 10.1016/j.nonrwa.2022.103553
    [13] M. A. Malik, M. I. Bhat, B. Zahoor, Solvability of a class of set-valued implicit quasi-variational inequalities: A Wiene CHopf equation method, Results Control Optim., 9 (2022), 100169. https://doi.org/10.1016/j.rico.2022.100169 doi: 10.1016/j.rico.2022.100169
    [14] Z. Wu, J. Zhao, H. Li, J. Yin, Nonlinear diffusion equations, Singapore: World Scientific Publishing, 2001.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(691) PDF downloads(98) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog