Research article Special Issues

Direct connection between Navier and spherical harmonic kernels in elasticity

  • Received: 12 July 2022 Revised: 22 October 2022 Accepted: 03 November 2022 Published: 15 November 2022
  • MSC : 74H10, 74B05, 35Q74, 35J05, 33C55

  • Linear isotropic elasticity is an interesting branch of continuum mechanics, described by the fundamental laws of Hooke and Newton, which are combined in order to construct the governing generalized Navier equation of the displacement within any material. Implying time-independence and in the absence of external body forces, the latter is reduced to the corresponding form of a homogeneous second-order partial differential equation, whose solution is given via the Papkovich differential representation, which expresses the displacement field in terms of harmonic functions. On the other hand, spherical geometry provides the most widely used framework in real-life applications, concerning interior and exterior problems in elasticity. The present work aims to provide a little progress, by producing ready-to-use basic functions for linear isotropic elasticity in spherical coordinates. Hence, we calculate the Papkovich eigensolutions, generated by the spherical harmonic eigenfunctions, obtaining connections between Navier and spherical harmonic kernels. A set of useful results are provided at the end of the paper in the form of examples, regarding the evaluation of displacement field inside and outside a sphere.

    Citation: Dimitra Labropoulou, Panayiotis Vafeas, George Dassios. Direct connection between Navier and spherical harmonic kernels in elasticity[J]. AIMS Mathematics, 2023, 8(2): 3064-3082. doi: 10.3934/math.2023158

    Related Papers:

  • Linear isotropic elasticity is an interesting branch of continuum mechanics, described by the fundamental laws of Hooke and Newton, which are combined in order to construct the governing generalized Navier equation of the displacement within any material. Implying time-independence and in the absence of external body forces, the latter is reduced to the corresponding form of a homogeneous second-order partial differential equation, whose solution is given via the Papkovich differential representation, which expresses the displacement field in terms of harmonic functions. On the other hand, spherical geometry provides the most widely used framework in real-life applications, concerning interior and exterior problems in elasticity. The present work aims to provide a little progress, by producing ready-to-use basic functions for linear isotropic elasticity in spherical coordinates. Hence, we calculate the Papkovich eigensolutions, generated by the spherical harmonic eigenfunctions, obtaining connections between Navier and spherical harmonic kernels. A set of useful results are provided at the end of the paper in the form of examples, regarding the evaluation of displacement field inside and outside a sphere.



    加载中


    [1] C. Truesdell, Mechanics of Solids Ⅱ (in Encyclopedia of Physics, vol. VIa/2), Springer, New York, 1972. https://doi.org/10.1007/978-3-642-69567-4
    [2] T. C. T. Ting, Anisotropic Elasticity. Theory and Applications, Oxford University Press, New York, 1996.
    [3] P. M. Naghdi, A. J. M. Spencer, A. H. England, Non-linear Elasticity and Theoretical Mechanics, Oxford University Press, Oxford, 1994.
    [4] I. S. Sokolnikoff, R. D. Specht, Mathematical Theory of Elasticity, McGraw-Hill, New York, 1946.
    [5] A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, Cambridge, 2013.
    [6] D. Danson, Linear Isotropic elasticity with Body Forces (in Progress in Boundary Element Methods, chap. 4), Springer, New York, 1983. https://doi.org/10.1007/978-1-4757-6300-3_4
    [7] M. F. Beatty, A class of universal relations in isotropic elasticity theory, J. Elasticity, 43 (1987), 113–121. https://doi.org/10.1007/BF00043019 doi: 10.1007/BF00043019
    [8] A. Goriely, C. Goodbrake, A. Yavari, Universal displacements in linear elasticity, J. Mech. Phys. Solids, 135 (2020), 103782. https://doi.org/10.1016/j.jmps.2019.103782 doi: 10.1016/j.jmps.2019.103782
    [9] A. E. Green, W. Zerna, Theoretical Elasticity, Oxford University Press, New York, 1968, republished (1992) and reissued (2012) by Dover Publications unaltered; first published at the Clarendon Press, Oxford, 1954.
    [10] O. Rand, V. Rovenski, Analytical Methods in Anisotropic Elasticity, Springer Science & Business Media, New York, 2005.
    [11] D. Labropoulou, P. Vafeas, G. Dassios, Anisotropic elasticity and harmonic functions in Cartesian geometry, Mathematical Analysis in Interdisciplinary Research (Springer Optimization and Its Applications), 179 (2021), 523–553. https://doi.org/10.1007/978-3-030-84721-0_23 doi: 10.1007/978-3-030-84721-0_23
    [12] J. M. Carcione, Wave Fields in Real Media, Elsevier Science, Amsterdam, 38 (2015).
    [13] R. G. Payton, Elastic Wave Propagation in Transversely Isotropic Media, Kluwer Academic Publishers, New York, 1983. https://doi.org/10.1007/978-94-009-6866-0
    [14] G. Dassios, R. E. Kleinman, Low Frequency Scattering, Oxford University Press, Oxford, 2000.
    [15] P. M. Naghdi, C. S. Hsu, On the representation of displacements in linear elasticity in terms of three stress functions, J. Math. Mech., 10 (1961), 233–245. https://doi.org/10.1512/iumj.1961.10.10016 doi: 10.1512/iumj.1961.10.10016
    [16] G. Dassios, K. Kiriaki, The low-frequency theory of elastic wave scattering, Q. Appl. Math., 42 (1984), 225–248. https://doi.org/10.1090/qam/745101 doi: 10.1090/qam/745101
    [17] G. Dassios, K. Kiriaki, The rigid ellipsoid in the presence of a low frequency elastic wave, Q. Appl. Math., 43 (1986), 435–456. https://doi.org/10.1090/qam/846156 doi: 10.1090/qam/846156
    [18] G. Dassios, K. Kiriaki, The ellipsoidal cavity in the presence of a low-frequency elastic wave, Q. Appl. Math., 44 (1987), 709–735. https://doi.org/10.1090/qam/872823 doi: 10.1090/qam/872823
    [19] V. Sevroglou, The far-field operator for penetrable and absorbing obstacles in 2D inverse elastic scattering, Inverse Probl., 21 (2005), 717–738. https://doi.org/10.1088/0266-5611/21/2/017 doi: 10.1088/0266-5611/21/2/017
    [20] A. Kaiafa, V. Sevroglou, Interior scattering by a non-penetrable partially coated obstacle and its shape recovering, Mathematics, 9 (2021), 1–24. https://doi.org/10.3390/math9192485 doi: 10.3390/math9192485
    [21] P. Moon, E. Spencer, Field Theory Handbook, Springer-Verlag, Berlin, 1971. https://doi.org/10.1007/978-3-642-83243-7
    [22] E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Chelsea Publishing Company, New York, 1965.
    [23] G. Dassios, R. E. Kleinman, Low Frequency Scattering, Oxford University Press, Oxford, 2000.
    [24] J. W. S. B. Rayleigh, The Theory of Sound, Macmillan & Company, 2 (1896).
    [25] W. T. Thomson, Transmission of elastic waves through a stratified solid medium, J. Appl. Phys., 21 (1950), 89–93. https://doi.org/10.1063/1.1699629 doi: 10.1063/1.1699629
    [26] J. C. Maxwell, VⅢ. A dynamical theory of the electromagnetic field, Philos. T. Royal Soc. London, 155 (1865), 459–512. https://doi.org/10.1098/rstl.1865.0008 doi: 10.1098/rstl.1865.0008
    [27] A. Sommerfeld, Partial Differential Equations in Physics, Academic Press, 1949. https://doi.org/10.1016/B978-0-12-654658-3.50006-9
    [28] H. Neuber, Ein neuer ansatz zur lösung räumblicher probleme der elastizitätstheorie, J. Appl. Math. Mech., 14 (1934), 203–212. https://doi.org/10.1002/zamm.19340140404 doi: 10.1002/zamm.19340140404
    [29] J. Boussinesq, Applications des Potentiels a l'Étude de l'Équilibre et du Mouvements de Solides Élastiques, Paris (in French), 1885.
    [30] J. W. Harding, I. N. Sneddon, The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch, Proceedings of the Cambridge Philosophical Society, 41 (1945), 16–26. https://doi.org/10.1017/S0305004100022325 doi: 10.1017/S0305004100022325
    [31] A. E. Green, I. N. Sneddon, The distribution of stress in the neighborhood of a flat elliptical crack in an elastic solid, Proceedings of the Cambridge Philosophical Society, 46 (1950), 159–164. https://doi.org/10.1017/S0305004100025585 doi: 10.1017/S0305004100025585
    [32] A. E. Green, W. Zerna, Theoretical Elasticity, Clarendon Press, Oxford, 1954.
    [33] J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, P. Royal Soc. A, 241 (1957), 376–396. https://doi.org/10.1098/rspa.1957.0133 doi: 10.1098/rspa.1957.0133
    [34] L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Pergamon Press, 1959.
    [35] J. D. Eshelby, The elastic field outside an ellipsoidal inclusion, and related problems, P. Royal Soc. A, 252 (1959), 561–569. https://doi.org/10.1098/rspa.1959.0173 doi: 10.1098/rspa.1959.0173
    [36] R. M. Christensen, Mechanics of Composite Materials, Wiley, New York, 1979.
    [37] K. Aki, P. G. Richards, Quantitative Seismology, Freeman, San Francisco, I (1980).
    [38] I. A. Kunin, Elastic Media with Microstructure, Springer-Verlag, Berlin, Ⅱ (1983). https://doi.org/10.1007/978-3-642-81960-5
    [39] T. Mura, Micromechanics of Defects in Solids, Kluwer Academic, Dordrecht, 1987. https://doi.org/10.1007/978-94-009-3489-4
    [40] T. C. T. Ting, V. G. Lee, The three-dimensional elastostatic Green's function for general anisotropic linear elastic solids, Q. J. Mech. Appl. Math., 50 (1997), 407–426. https://doi.org/10.1093/qjmam/50.3.407 doi: 10.1093/qjmam/50.3.407
    [41] G. Dassios, Ellipsoidal Harmonics: Theory and Applications, Cambridge University Press, Cambridge, 2012. https://doi.org/10.1017/CBO9781139017749
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(898) PDF downloads(77) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog