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Abstract: Linear isotropic elasticity is an interesting branch of continuum mechanics, described by 

the fundamental laws of Hooke and Newton, which are combined in order to construct the governing 

generalized Navier equation of the displacement within any material. Implying time-independence and 

in the absence of external body forces, the latter is reduced to the corresponding form of a 

homogeneous second-order partial differential equation, whose solution is given via the Papkovich 

differential representation, which expresses the displacement field in terms of harmonic functions. On 

the other hand, spherical geometry provides the most widely used framework in real-life applications, 

concerning interior and exterior problems in elasticity. The present work aims to provide a little 

progress, by producing ready-to-use basic functions for linear isotropic elasticity in spherical 

coordinates. Hence, we calculate the Papkovich eigensolutions, generated by the spherical harmonic 

eigenfunctions, obtaining connections between Navier and spherical harmonic kernels. A set of useful 

results are provided at the end of the paper in the form of examples, regarding the evaluation of 

displacement field inside and outside a sphere. 
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1. Introduction 

Contemporary theoretical mechanics and engineering technology are mainly concerned with 

either the isotropic or the anisotropic behavior of elastic materials and structures [1,2]. Specifically, 
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the classical theory of linear elasticity is considered to be an indivisible branch of the more general 

field of non-linear elasticity [3], wherein the mathematical description of the physical quantities, 

associated with such media [4,5], incorporates the fundamental characteristics of the corresponding 

physical problems. Therein, the relationship between the strain and the stress of any solid body, 

subjected to external forces, is considered to be linear. On the other hand, isotropic elasticity, being set 

in conjunction with problems of elasticity in the linear regime with [6] or without [7,8] body forces 

present, is an extensively developed area of continuum mechanics, embodying solid analysis that 

requires both analytical and numerical attention [9]. Even though the most attractive area for 

developing new methodologies appears to be the anisotropic linear elasticity [10,11], it is evident that 

there still exist open problems in the isotropic spectrum. In fact, the continuing interest in elaborating 

with such kind of aspects is still effective and the necessity in producing purely analytical solutions 

towards this direction, ready to accept proper numerical handling, stands in the frontline of the current 

research. Indeed, such a complete and comprehensive survey in linear isotropic elasticity brings insight 

to new elements of applied mathematics, which lead to the next step of studying the wave propagation 

[12,13] and, in general, the theory of scattering [14] in elastic materials. 

Linear isotropic behavior of elastic media has an inherent mathematical interest due to the fact 

that even though the related theory is much simplified, many applications can accept the isotropic 

character without loss of robustness. In view of this aspect, this work is involved with the production 

of closed-type analytical formulae for the determination of the fundamental field in solid mechanics, 

i.e. the displacement. Doing so, we initially utilize the Hook’s law, which provides the second order 

stress tensor in terms of the strain dyadic and the stiffness tetratic, while, in the sequel, we invoke the 

result into the Newton’s law so as to obtain the generalized constitutive equation in elasticity. 

Thereafter, our purpose is twofold, that is we give special attention to elastostatics, neglecting the 

temporal derivatives and we exclude any external body forces, since any cause of disturbance can be 

entered into the boundary conditions of the particular physical problem. Moreover, we assume the 

specific expression for the stiffness tensor, which incorporates the appropriate components that inherit 

the isotropic character of the material. That way, we arrive at the known Navier partial differential 

equation for the displacement field, which accepts an analytical compact solution in the form of a 

partial differential operator, acting on harmonic functions with vector and scalar character, namely the 

Papkovich differential representation. This can be derived directly from the Naghdi-Hsu general 

solution [15] and since the spherical harmonics form a complete system, it also provides complete 

representations for the elastostatic fields. Hence, Papkovich representation of the solution of Navier 

equation is complete, that is any solution can be expressed in this form. The utility of such solutions is 

significant, considering the fact that they provide handy analytical expressions, for instance let us refer 

to a series of articles [16–18], which deal with elastic wave scattering at low frequencies around 

ellipsoidal solid bodies or cavities, using the Papkovich representation. Otherwise, the representation 

theory could be applied to inverse elastic scattering [19] or to more complicated mixed-type boundary 

value problems [20] in linear elasticity. Finally, let us not ignore a major advantage of Papkovich 

representation, which can offers us a certain degree of freedom, since the potentials needed to describe 

the field itself are redundant, thus the extra terms can be used conveniently, e.g. to compensate the force 

term in the case wherein it is included into the Navier equation. 

It is the purpose of this research to provide progress in this interesting mathematical aspect, hence, 

using the spherical coordinate system [21], we obtain connection formulae, which relate the spherical 

harmonics that lead, through the Papkovich representation, to the displacement in linear isotropic 
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elasticity. In other words, we calculate the displacement field, generated by the harmonic 

eigenfunctions [22], through the Papkovich representation, and then we provide the necessary 

analytical background so as to solve the inverse problem of identifying those harmonic eigenfunctions, 

which generate the same displacement fields. Henceforth, in the aim of solving sufficiently general 

interior and exterior problems, we use the internal and external solid spherical harmonic eigenfunctions 

in their complex form [22]. This way, we demonstrate the importance of attaining such kind of ready-

to-use mathematical tools, by showing some interesting example problems inside and outside a sphere. The 

background of this mathematical procedure comes from the low-frequency scattering in elasticity [23] and 

shows how one can obtain a solution basis of a finite dimensional subspace. This reduces the 

calculation of the solution to the calculation of a finite number of scalar coefficients. However, our 

work leads to building blocks for constructing the solution of any relative problem. 

Notwithstanding the existence of adequate and simultaneously convenient computational codes 

in solving problems in elasticity, we should not overlook the fact that pure analytical techniques are 

the backbone of numerical analysis. Hence, the important advantage of the performed mathematical 

analysis is based upon its ability to understand the physical background and to verify the credibility of 

numerical methods or other more sophisticated analytical models. On the other hand, the idea of building 

any solution from ready-to-use eigensolutions goes back to the classic references of Rayleigh [24], 

Kelvin [25], Maxwell [26], Sommerfeld [27] and Neuber [28]. In the present work, we tried to extend 

this idea to the theory of elasticity, wherein the ample literature survey of the fundamental classical 

references [29–40] verifies the necessity of such kind of analysis. Finally, by virtue of the 

representation theory, it is obvious that spherical geometry approximates sufficiently well most basic 

problems in linear isotropic elasticity. Nevertheless, the extension to spheroidal, ellipsoidal or even 

more complicated geometries [21,41] provides a challenging area for future investigation. 

2. Physical and mathematical development 

Let us introduce an arbitrarily defined smooth, either bounded or unbounded, three-dimensional 

elastic domain ( )3 , which could be designated as interior or interior as the case may be. Then, 

each field within ( )3  is written in terms of its position vector 1 1 2 2 3 3
ˆ ˆ ˆx x x= + +r x x x , expressed 

via the Cartesian basis ˆ
jx , 1,2,3j =  in Cartesian coordinates ( )1 2 3, ,x x x . On the other hand, the 

current investigation excludes the dependence on time, since we operate according to the steady state 

status of the particular situation, while the necessary fundamental information, which are adequate for 

this work can be found collected in [11]. 

The physical interpretation of linear isotropic elasticity is involved with the displacement field u , 

which comprises the measure of deformation of an elastic material. By means of the gradient   and 

the Laplacian   operators, the displacement satisfies the well-known Navier equation in the presence 

of body forces, i.e. 

( ) ( ) ( ) ( )   + +   + =  u r u r f r 0  for ( )3r ,   (1) 

wherein f  is an external applied force that renders expression (1) non-homogeneous, while ,    

are the elastic parameters of the isotropic theory, being known as the Lamé constants. Papkovich 

proposed a differential representation of the solution for the homogeneous Navier equation [15] with 
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no body forces, by considering =f 0  within (1), which expresses the displacement field in differential 

form, in terms of two harmonic functions, one vector A  and one scalar B , that is 

( ) ( )
( )

( ) ( )B
2 2

 

 

+
= −   +  +

u r A r r A r r , where ( ) =A r 0 , ( )B 0 =r  for ( )3r ,(2) 

which is known to be complete. It is not hard to prove that (2) satisfies (1), bearing in mind the vector 

identity ( ) ( ) ( ) ( ) ( )2 : 2 : 2 : 2  =   +  +   =  =  = r A r A r A r A I A I A A
Τ Τ  and the 

interchange  =  , since it readily holds that  =  =r A 0  and B 0 = , noting that I  is the unit 

dyadic, “ Τ ” denotes transposition, “ ” refers to the tensor product and “ : ” stands for the double inner 

product. The general differential solution (2) provides a powerful analytical tool for solving the 

homogeneous and time-independent linearized equation of classical dynamic elasticity. 

At this point we have to mention that even though representation (2) is complete, it is not unique, 

since we have four potentials (three components of the vector A  and one component, which is the 

scalar B ) to determine the three-dimensional vector displacement field. Actually, this is more than an 

advantage rather than a disadvantage, considering the fact that we are equipped with certain degrees 

of freedom to deploy conveniently the proper manner, which depends on the boundary value problem 

at hand. On the other end, this flexibility of the representation theory could be used to cancel the 

difficulty when the source term f  is not absent (see equation (1) for instance). More precisely, in the 

same sense, we could use a similar differential solution like (2), in order to obtain a general solution 

for the non-homogeneous Navier equation (1). In fact, we can keep the same form for the displacement 

field, potential A  could be harmonic, but then potential B  should satisfy the mixed-type equation 

( ) ( ) ( )B B 2 /       = +f , in order for (1) to be satisfied. However, obtaining B  is quite a 

difficult task. 

3. Interrelation between Navier and spherical harmonics 

This section includes the main results of our work, which are focused on the direct connection 

between the homogeneous Navier equation and the harmonic kernels of the implicated potentials A  

and B , using the spherical geometry. Before we proceed to the analysis in spherical coordinates, we 

take advantage of the already discussed flexibility of the differential general solution (2), thus and 

without loss of generality, we may suppose that the vector harmonic potential A  is adequate enough 

to provide us with a complete solution for the displacement field u  via (2). Consequently, assuming 

that B 0 , the representation (2) becomes 

( ) ( )
( )

( )
2 2

 

 

+
= −    +

u r A r r A r , where ( ) =A r 0  for ( )3r , (3) 

which constitutes a complete solution for the Navier equation (1) if =f 0 . Taking the curl on both 

sides of (3) and defining a new arbitrary function  , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =   − =   = −u r A r u r A r r A r u r r  for ( )3r . (4) 

Next, we apply the div on (3), which leads us to 
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( ) ( )
( )

( )
2 2

 

 

+
 =  −    +

u r A r r A r  

( ) ( )
2

 

 

+
=   −  

+
A r A r  

( ) ( ) ( )
2

2

  

  

+
=      =  

+
A r A r u r  for ( )3r . (5) 

Next, we take the divergence of relation (4) and use simultaneously the outcome (5), to arrive at 

( ) ( ) ( ) ( ) ( )
 



+
  =   −    = −  A r u r r r u r  for ( )3r , (6) 

which is a Poisson equation with respect to the unknown function  , whose solution is the result of 

implying the fundamental solution of the Laplace’s operator [20], obtaining  

( )
( )

( )
( )3

d
4

V
 







 +
 =

−
r u r

r r
r r

 for ( )3r .   (7) 

So, if we insert   from (7) into (4), we recover potential A  as 

( ) ( )
( )

( )
( )3

d
4

V
 







 +
= − 

−
r u r

A r u r r
r r

 for ( )3r .  (8) 

Therefore, given the displacement u , the harmonic potential A  is given by (8). Recapitulating the 

above reasoning, we calculate the displacement field u  , generated by the harmonic function A  

through the Papkovich representation (3) and then we face the inverse problem of determining this 

harmonic function A , which generates the displacement field u , via the integro-differential formula 

(8). This procedure is also invertible, in the sense that we can start with solutions of the form (8) and 

recover the displacement field via the Papkovich form (3). Both ways lead to the same result, 

independently of the coordinate system. 

Aiming to approach applications that require an easily amenable expression for the displacement, 

we focus our attention to the spherical geometry [19], so in terms of the spherical coordinate system 

1 sin cosx r  = , 2 sin sinx r  =  and 3 cosx r =    (9) 

for 0 r  + , 0     and 0 2   , the differential operators appearing into the Papkovich 

representation assume the forms 

ˆ ˆ
ˆ

sinr r r  

  
 = + +

  
r

 
 and 

2
2

2 2 2 2 2

1 1 1
sin

sin sin
r

r r r r r


    

       
 = + +   

       
, (10) 

where r̂ , ̂ , ̂  (see [19]) denote the coordinate vectors of the spherical system with position vector 

ˆr=r r  and unit dyadic ˆ ˆˆ ˆ ˆ ˆ=  +  + I r r      . For every value of the nature 0n   , there exist 

( )2 1n+  linearly independent complex spherical surface harmonics 
m

nY  of degree n  and of order 
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m n  [20], given in the orthonormalized form by 

( )
( )
( )

( ) i
!2 1

ˆ cos
4 !

mm m

n n

n mn
Y P e

n m


−+

=
 +

r  for ( )    )ˆ , 0, 0,2   =  r  (11) 

and with inner product 

( ) ( ) ( )
2

ˆ ˆ ˆd 1m m

n n

S

Y Y s =  r r  r  for ( )    )ˆ , 0, 0,2   =  r ,  (12) 

wherein 
m

nP  are the associated Legendre functions of the first kind [20], m

nY  denote the complex 

conjugate surface spherical harmonics and 2S  is the unit sphere in 3 . Thereafter, we introduce the 

interior ,in

m

nu  (regular as 0r +→ )  and the exterior ,ex

m

nu  (regular as r →+ ), solid spherical 

harmonic eigenfunctions for every 0,1,2,...n =  and ,..., 1,0,1,...,m n n= − − , which are given by the 

expression 

( ) ( ),in
ˆm n m

n nu r Y=r r  and ( ) ( ) ( )1

,ex
ˆnm m

n nu r Y
− +

=r r  for ( )3r ,   (13) 

respectively. Relationships (13) comprise a complete set of eigenfunctions for harmonic functions and 

belong to the kernel space of the Laplace’s operator from (10), i.e. 
,in 0m

nu =  and 
,ex 0m

nu =  for 

0n   and m n , while they are obtained once the classical method of separation of variables [21,22] 

is applied. 

Adopting the above mathematical analysis, the harmonic function A   in differential 

representation (3) admits series expansion in terms of functions (13), i.e.   

( ) ( ) ( ),in ,in ,ex ,ex

0

n

m m m m

n n n n

n m n

u u

+

= =−

 = + A r c r c r  for ( )3r ,  (14) 

where 

,1 ,2 ,3

,in ,in 1 ,in 2 ,in 3
ˆ ˆ ˆm m m m

n n n nc c c= + +c  x x  x  and 
,1 ,2 ,3

,ex ,ex 1 ,ex 2 ,ex 3
ˆ ˆ ˆm m m m

n n n nc c c= + +c  x  x  x  with 0n   and m n  (15) 

are arbitrary constant coefficients. Expansion (14) expresses the completeness of the interior and the 

exterior solid spherical harmonics. Consequently, substituting the potential (14) into the general 

solution (3), we obtain 

( )
( )

( ) ( ) ( )( ) ( ),in ,in ,in ,in

0

1
3

2 2

n

m m m m

n n n n

n m n

u u   
 

+

= =−

= + − +  
+ u r c r c r r  

  ( ) ( ) ( )( ) ( ),ex ,ex ,ex ,ex3 m m m m

n n n nu u    + + − +  


c r c r r  for ( )3r , (16) 

where we used the trivial differential identities ( ) ( )  = +  r A A A r  (note that   =r I ) and 

( ),y ,y ,y ,y

m m m m

n n n nu u =  c c   for y in, ex=  , where 0n    and m n  . Nevertheless, expression (16) 
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needs further elaboration in order for its processing to be feasible. To this direction, we analytically 

work as follows. Since the vector character of the harmonic function A  is reflected upon the constant 

coefficients, which are written in Cartesian coordinates, we are obliged to work in the Cartesian system. 

This is attainable but requires the expression of the displacement field u  in Cartesian coordinates 

involving constants and spherical surface harmonics. Therefore, we are able to transfer the connection 

between A  and u  to the corresponding connection via the constant coefficients. In order to do that, 

it is necessary to express the terms 
,in

m

nu   and 
,ex

m

nu   for 0n    and m n   as a function of 

spherical surface harmonics in Cartesian coordinates. This is possible, since these terms belong to the 

subspace that is produced by the spherical surface harmonics, while this task requires certain steps. 

Hence, in the interest of making this work complete and independent, we provide recurrence 

relations for the associated Legendre functions [20], which, by definition of the conveniently chosen 

variable  cos 1,1x =  − , since  0,  , they are furnished by the Rodrigues formula 

( ) ( ) ( )
/2

2 21 d
P 1 1

2 ! d

m+n
m nm

n n m+n
x x x

n x
= − −  for 0n   and m n ,   (17) 

where obviously ( )P 0
m

n x =   if m n  . Thus, the associated Legendre functions of the first kind 

satisfy 

( ) ( ) ( ) ( ) ( ) ( )1 12 1 P P 1 P ,
m m m

n n nn x x n m x n m x− ++ = + + − +     (18) 

( ) ( ) ( ) ( )1 12

1 12 1 1 P P P
m m m

n n nn x x x x
+ +

+ −+ − = −  

( )( ) ( ) ( )( ) ( )1 1

1 11 P 1 2 P
m m

n nn m n m x n m n m x
− −

− += + + − − − + − + ,  (19) 

( ) ( ) ( )( ) ( )1 1

2

2
P P 1 P

1

m m m

n n n

mx
x x n m n m x

x

+ −
= + + − +

−
    (20) 

and the first derivative relation 

( ) ( ) ( ) ( ) ( )
1/2 1/2 12 2d

P 1 1 P P
d

m m m

n n nx x m x x x x
x

− − + = − − − +
  

,   (21) 

all relationships (18)–(21) being provided for every value of 0n   and m n . On the other hand, 

the classical trigonometric functions imply the trivial identities 

( ) ( )
1

sin sin cos 1 cos 1
2

m m m    = − − +  ,    (22) 

( ) ( )
1

cos cos cos 1 cos 1
2

m m m    = − + +  ,    (23) 

( ) ( )
1

cos sin sin 1 sin 1
2

m m m    = + + −  ,    (24) 
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( ) ( )
1

sin cos sin 1 sin 1
2

m m m    = + − −      (25) 

for any m n  ( 0n  ). The derivation process to obtain handy expressions for 
,in

m

nu  and 
,ex

m

nu

with 0n   and m n  involves long and tedious calculations, however it is useful to provide the 

basic steps that gives us the necessary tools to accomplish this task. Under this aim, the procedure we 

follow is based on the utilization of the gradient operator within (10) in terms of the decomposition of 

the orthonormal spherical basis to the Cartesian one via the formulae 

1 2 3
ˆ ˆ ˆ ˆsin cos sin sin cos    = + +r x x x ,    (26) 

1 2 3
ˆ ˆ ˆ ˆcos cos cos sin sin    = + − x x x ,    (27) 

1 2
ˆ ˆ ˆsin cos = − + x x .        (28) 

Thus, substituting above (26)–(28) into the spherical gradient operator from (10), we initially invoke 

the surface spherical harmonics from (11) into the corresponding solid spherical harmonics (13), next 

we write ime    in the form 
i

cos isin
m

e m m


 


=    for every m n   ( 0n   ) and, finally, by 

virtue of cos x =  and 2sin 1 x = −  with  1,1x − , we use recurrence relations (17)–(21) for 

the associated Legendre functions of the first kind, as well as relationships (22)–(25) for the 

trigonometric functions, so as to perform our analysis. Consequently, combining properly the relative 

terms to reproduce surface spherical harmonics, we derive for the interior solid spherical harmonic 

eigenfunctions 
,in

m

nu  in ( )3  the expressions 

( ) ( )( )
( ) ( )1 1

1 1 1

,in 11 1

1 1

ˆ ˆ1
ˆ1

2

m m

n nm m n

n n m m

n n

Y Y
u n m n m r

 

− +

− − −

− +

− −

 
 = + + − − 

 

r r
r x  

( )( )
( ) ( )1 1

1 1 1

21 1

1 1

ˆ ˆi
ˆ1

2

m m

n nm n

n m m

n n

Y Y
n m n m r

 

− +

− − −

− +

− −

 
+ + + − + 

 

r r
x  

( )
( ) ( )1

1 1 1

31

1 1

ˆ ˆ
ˆ

m m

n nm n

n m m

n n

Y Y
n m r

 

+

− − −

+

− −

 
+ + + 

 

r r
x  for 0n   and ,..., 1,1,...,m n n= − −  (29) 

and for the case 0m =  

( )
( ) ( )1 1

1 10 0 1

,in 11 1

1 1

ˆ ˆ1
ˆ

2

n n n

n n

n n

Y Y
u r

 

−

− − −

−

− −

 
 = − − 

 

r r
r x  

( ) ( )1 1

1 10 1

21 1

1 1

ˆ ˆi
ˆ

2

n n n

n

n n

Y Y
r

 

−

− − −

−

− −

 
+ + 

 

r r
x  

( ) ( )0 1

1 10 1

30 1

1 1

ˆ ˆ
ˆn n n

n

n n

Y Y
n r

 

−

− − −

−

− −

 
+ − 

 

r r
x  for 0n  ,      (30) 
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while for the exterior solid spherical harmonic eigenfunctions 
,ex

m

nu  in ( )3 , we similarly receive 

the expressions 

( ) ( )( )
( ) ( ) ( )

1 1

21 1

,ex 11 1

1 1

ˆ ˆ1
ˆ1 2

2

m m

nn nm m

n n m m

n n

Y Y
u n m n m r

 

− +

− ++ +

− +

+ +

 
 = − + − + − 

 

r r
r x  

( )( )
( ) ( ) ( )

1 1

21 1

21 1

1 1

ˆ ˆi
ˆ1 2

2

m m

nn nm

n m m

n n

Y Y
n m n m r

 

− +

− ++ +

− +

+ +

 
+ − + − + + 

 

r r
x  

( )
( ) ( ) ( )

1

21 1

31

1 1

ˆ ˆ
ˆ1

m m

nn nm

n m m

n n

Y Y
n m r

 

+

− ++ +

+

+ +

 
− − + + 

 

r r 
x  for 0n   and ,..., 1,1,...,m n n= − −   (31) 

and for the case 0m =  

( )
( ) ( ) ( )

1 1

21 10 0

,ex 11 1

1 1

ˆ ˆ1
ˆ

2

nn n

n n

n n

Y Y
u r

 

−

− ++ +

−

+ +

 
 = − + 

 

r r
r x  

( ) ( ) ( )
1 1

21 10

21 1

1 1

ˆ ˆi
ˆ

2

nn n

n

n n

Y Y
r

 

−

− ++ +

−

+ +

 
+ − 

 

r r
x  

( )
( ) ( )

0

210

30

1

ˆ
ˆ1

nn

n

n

Y
n r



− ++

+

 
− + 

 

r
x  for 0n  ,      (32) 

where 

( )
( )

!2 1

4 !

m

n

n mn

n m


−+
=

 +
 for 0n   and m n      (33) 

are the normalizing constants of the spherical surface harmonics. It is obvious, from the definition of 

the associated Legendre functions, that 

( )ˆ 0m

nY− r  for 0n   and m n  with ( )    )ˆ , 0, 0,2   =  r ,   (34) 

while 

( )ˆ 0m

nY r  for 0n   and m n  with ( )    )ˆ , 0, 0,2   =  r ,    (35) 

rendering formulae (29)–(32) with (33) applicable for every value of n  and m . 

In order to validate the correctness and demonstrate the effectiveness of the produced formulae, 

we provide a simple example of evaluating 1

1,inu , utilizing two different approaches, one with direct 

calculation and the other with the aid of expression (29) for 1n =  and 1m = , showing that both the 

two results coincide. Towards this direction, from (11) and (33) we obtain 
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( ) ( )1 1 1 i 1 i

1 1 1 1
ˆ cos sinY P e e    = =r  with 1

1

3
 =


for ( )    )ˆ , 0, 0,2   =  r , (36) 

since ( )1

1 cos sinP  = , therefore (13) yields 

( ) ( ) ( )1 1 1 1 1 i 1 i

1,in 1 1 1 1
ˆ cos sinu r Y rP e r e    = = =r r  for ( )3r .  (37) 

Thus, by direct action of the gradient operator from (10) on the interior harmonic (37) and in view of 

equations (26)–(28), it holds 

( ) ( )1 1 i

1,in 1

ˆ ˆ
ˆ sin

sin
u r e

r r r

 
  

   
 = + + 

   
r r

 
 

1 i 1 i 1 i

1 1 1
ˆˆ ˆsin cos ie e e      = + +r    

( )1 i

1 1 2 3
ˆ ˆ ˆsin cos sin sin cos sin e       = + +x x x  

( )1 i

1 1 2 3
ˆ ˆ ˆcos cos cos sin sin cos e       + + −x x x  

( )1 i

1 1 2
ˆ ˆi sin cos e   + − +x x  

( ) ( )1 i 1 i

1 1 1 2
ˆ ˆcos isin sin icose e      = − + +x x  for ( )3r  (38) 

or  

( ) ( )1 1 1 1

1,in 1 1 1 2 1 1 2
ˆ ˆ ˆ ˆi iu    = + = +r x x x x  for ( )3r     (39) 

because 
i cos isine   = + . Otherwise, if we utilize the derived formula (29) for 1n m= =  and we 

take profit from the property (35), yielding 
1

0 0Y   and 
2

0 0Y  , we have 

( )
( ) ( )0 0

0 01 1 1

1,in 1 1 1 20 0

0 0

ˆ ˆ1 i
ˆ ˆ2 2

2 2

Y Y
u  

 

   
 = +   

   

r r
r x x  for ( )3r     (40) 

or 

( ) ( )1 1 1 1

1,in 1 1 1 2 1 1 2
ˆ ˆ ˆ ˆi iu    = + = +r x x x x  for ( )3r ,     (41) 

since 
0

0 1 =   and 
0

0 1Y =  . Obviously, (39) and (41) are identical, not only validating the obtained 

expression (29), but also confirming that our approach is much more efficient and faster than the direct 

calculation of the gradient on solid spherical harmonics. It is evident that following a similar way, we 

can reproduce the subspace of any space of harmonic functions in the Cartesian basis, while a general 

procedure can be readily established. 

Concluding, the result (16) for the displacement field, via the Papkovich differential 

representation, can be now rewritten in a handy form, by substituting the outcomes (29)–(32) with 

(33)–(35) into (16), using the Cartesian expressions for the implicated constant coefficients (15) and 
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the interior, as well as the exterior harmonic eigenfunctions (13). Even though the current theory is 

applied on spherical boundaries, it can be extended to any surface. For instance, we indicate as an 

example that in a scattering problem by an arbitrary compact body we can always consider a sphere 

surrounding the scatterer. In this case, utilizing Green’s second identity [22] we can transfer any 

information from the boundary of the scatterer to the sphere including the scatterer. This way, we 

reduce the exterior problem to the spherical geometry, where the boundary conditions are globally 

introduced. After this, it is obvious that the displacement field is now easily accessible to be applied to 

any kind of boundary value problem that concerns the wide area of linear isotropic elasticity. 

4. Application: Displacement field inside and outside a spherical boundary 

The purpose of this section is to demonstrate the usefulness and the efficiency of the proposed 

analytical methodology, by invoking some special case problems in spherical geometry, which can be 

found in simple but quite important physical problems in linear isotropic elasticity. The specific 

choices of the examples come from specific boundary value problems appearing in the theory of low-

frequency scattering [23]. In fact, the assumed elastic fields describe the leading low-frequency 

approximations of the incident excitation field. Consequently, the forthcoming examples come from 

real physical problems and they are not artificial. 

We consider a spherical body of radius a , whose center coincides with the center of the Cartesian 

coordinate system. Therefore, the surrounding boundary S   corresponds to the spherical variable 

at r a=  for any  0,   and  )0,2  . This spherical surface separates the domain of interest 

( )3    into two subdomains, one interior −  for every r a  and one exterior +  for every 

r a , such as S− + =    . In order to facilitate our calculations, we define the ratio of the main 

phase velocities in an elastic medium [14] via the formula 

2



 
 =

+
,         (42) 

hence, the differential representation of the displacement field (3) becomes 

( ) ( ) ( )
2 21 1

2 2

− − − +  −
 = +    u r A r A r r , where ( )− =A r 0  for −r  (43) 

inside the sphere and 

( ) ( ) ( )
2 21 1

2 2

+ + + +  −
 = +    u r A r A r r , where ( )+ =A r 0  for +r  (44) 

outside the sphere, where we have once more utilized the identity ( ) ( )  = +   r A A A r . The 

harmonic potentials −
A  and +

A  admit expansions similar to (14) with (15), taking profit of their 

interior and exterior character, respectively, thus, using (13), we have 

( ) ( ) ( ),in ,in ,in

0 0

ˆ

n n

m m m n m

n n n n

n m n n m n

u r Y

+ +

−

= =− = =−

= = A r c r c r  for −r ,  (45) 
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in order for the potential −
A  to be regular at the origin and 

( ) ( ) ( ) ( )1

,ex ,ex ,ex

0 0

ˆ

n n

nm m m m

n n n n

n m n n m n

u r Y

+ +

− ++

= =− = =−

= = A r c r c r  for +r ,  (46) 

in order for the potential +
A  to remain bounded as we move towards infinity. The unknown vector 

constant coefficients 

,1 ,2 ,3

,y ,y 1 ,y 2 ,y 3
ˆ ˆ ˆm m m m

n n n nc c c= + +c x x x  for y in, ex= , where 0n   and m n  (47) 

within (45) and (46) are calculated, when a particular set of boundary conditions is applied on the 

surface boundary S  at r a=  . In the sequel, we focus ourselves in providing general solutions of 

particular interest in −  and +  for specific values of the degree 0n  , without getting involved 

with the boundary value problem itself. 

– 1st Example: If c  is a constant vector, then it is not difficult to prove, performing direct substitution, 

that the Papkovich potentials 

( )− =A r c , r a  and ( )
r

=+ c
A r , r a      (48) 

generate the displacement fields  

( )
2 1

2

−  +
=u r c  for −r         (49) 

and 

( )
2 21 1

ˆ ˆ
2 2 r

  +  −
= −   

 

+ c
u r I r r  for +r ,    (50) 

respectively. 

– 2nd Example: If C  is a constant tensor, let us introduce the Papkovich potentials 

( )− = A r C r , r a  and ( ) 3r
= + r

A r C , r a ,   (51) 

which, by virtue of the identities 

( ) ( ) ( )−  =    +    =A r C r r C C      (52) 

and 

( ) ( )
ˆ ˆ3

3 3 3r r r

−  
  =    +    =  

 

+ r r I r r
A r C C C   (53) 

generate the displacement fields 
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( )
2 21 1

2 2

−   +  −
= +  

 
u r C C r  for −r     (54) 

and 

( ) ( )
2 21 1

ˆ ˆ3
2 2 3r

  +  −
= + −    

 

+ r
u r C I r r C  for +r , (55) 

respectively. Here, we must remark that, if we consider the potentials − =  = A r C C r   and 

( ) ( )/ /3 3r r=  = +
A r C C r , we obtain the displacements generated by C  instead of C . On the 

other hand, if C  is symmetric, i.e. if =C C , then the interior and exterior displacements (54) and 

(55) are rewritten as 

( ) ( )2τ− = u r C r  for −r  and ( ) ( )( )2 23
ˆ ˆτ τ 1

2 3r

+  
= − −   

 

r
u r C C r r I  for +r , (56) 

respectively. In particular, if =C I , then (56) simplify to 

( ) 2τ− =u r r  for −r  and ( )
23 τ

2 3r

+ −
=

r
u r  for +r ,   (57) 

respectively. Finally, if C  is antisymmetric, i.e. if = −C C , then obviously 

( ) ( )
1 1

2 2
= + = −C C C C C        (58) 

and since 

ˆ ˆ ˆ ˆ = C r r C r r ,          (59) 

we obtain 

1 1
ˆ ˆ ˆ ˆ ˆ ˆ 0

2 2
 =  −  =C r r C r r C r r .     (60) 

Taking into account (58)–(60), the interior and exterior fields (54) and (55) are transformed to 

( )− = u r C r  for −r  and ( ) 3r
= + r

u r C  for +r ,   (61) 

respectively, which coincide with the harmonic potentials (51). 

– 3rd Example: If C  is a constant dyadic, then we want to find the displacement field that the exterior 

harmonic potential 

( )
1

r

 
=   

 

+
A r C , r a  with 

3

1

i i

i=

= C a b ,    (62) 
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produces. To prove it we first show that 

1
3r r

 = −
r

 and 
ˆ ˆ1 3

3 3r r r

 − 
  =   − = 

 

r r r I
.     (63) 

Then, combining (62) and (63), we have 

( )
3

5 3

1

ˆ ˆ3 3 1
i i3

i
r r r

=

  −   
=  =    −    

   
+ r r I

A r C r r Ia b  

( )( ) ( )
3

5 3

1

3 1
i i i i

i
r r

=

 
=    −  

 
 r ra b a b  

( )
3

7 5 5 5

1

15 3 3 3
i i i i i i i i

i
r r r r

=

 
= −    +   +   +  

 
 r r r r r ra b a b b a a b  

( )
3

5

1

3
ˆ ˆ5 i i i i i i i i

i
r

=

= −    +   +   +    r r r r r ra b a b b a a b     (64) 

or 

( ) ( ) ( ) ( )5

3
ˆ ˆ5

r
 = + + −  
 

+A r C I I C C C r r I r , r a .   (65) 

Thereafter, the gradient of the Papkovich potential (65), i.e.   +
A , is then calculated, using classical 

identities and algebra as follows, 

   ( ) ( ) ( )( ) ( )( )
3

7

1

1
3 i i5

i
r r

=

   
  =  + +  −      

   
+ r

A r C I I C C r r ra b  

    ( ) ( )3
5r

   =   + +    

r
C I I C C  

   ( )
3

5 5 5 5

1

7 1 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

i i i i i i i i

i
r r r r

=

 
− −    +    +    +   

 
 r r r r r r r r r Ia b a b b a a b  

   ( ) ( )5 5

5 1
ˆ ˆ3

r r

   = −  +  + +    
r r I C I I C C  

( ) ( ) ( )5 5 5

7 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ15

r r r

 
+   − +   −  

 
C r r r r C C r r C r r I , r a .   (66) 
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Contracting   +
A  of (66) with r  from the right, we obtain 

( ) ( ) ( )
3

ˆ ˆ
5 5r r

      = −  +  + +       

+
A r r r r I C I r C C r  

( ) ( ) ( )5 5 5

7 1 1
ˆ ˆ ˆ ˆ

r r r

 
+  − +  −  

 
C r r r C C r C r r r  

( ) ( ) ( )5 5 5

15 3 15
ˆ ˆ

r r r
= − + − +  C I r C I r C C r r r  

( ) ( ) ( )5 5 5

3 90 15
ˆ ˆ

r r r
+ +  +  − + C C r C r r r C C r  

( ) ( ) ( )5 5 5

12 60 12
ˆ ˆ

r r r
= − +  − + C I r C r r r C C r  

( ) ( ) ( )5

3
ˆ ˆ4 5

r
 = − + + −  
 

C I I C C C r r I r  

( )4= − +
A r , r a .            (67) 

Substituting (67) into the Papkovich representation (44) for the exterior field, we obtain 

( ) ( ) ( ) ( )
2 2 2τ 1 τ 1 5 3τ

4
2 2 2

+ + − −
 = + − = 

+ + +
u r A r A r A r  for +r ,  (68) 

which is the requested. Herein, we remark that, since +
A  is harmonic and +

u  solves the equation 

of elastostatics (3), we obtain that  +
A = 0 . Indeed, 

( )
1 1 1

r r r

        
 =     =    =     =       

        

+
A r C C C 0 , r a . (69) 

Another interesting remark is that if C  is an antisymmetric dyadic, i.e. if = −C C , then it is not 

hard to prove 

( )
1

r

 
=   = 

 

+
A r C 0 , r a  and therefore ( )+ =u r 0  for +r . (70) 

This means that the potential +
A   is symmetric and it generates a symmetric displacement. In 

particular, any C  generates a symmetric +
A  and thus, a symmetric +

u . 

– 4th Example: In this case, we consider the equation of elastostatics (1) for =f 0 , which in terms of 

(42) is rewritten as 

( ) ( ) ( )2 21− −   + −    = u r u r 0  for −r     (71) 

and we wish to find the coefficients , ,    for which the linear combination of the displacement field 
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( ) 2 2r Sr  − =   +  +u r S r r r S r r  for −r    (72) 

belongs to the ( )2 2ker 1   + −  
 

, where =  =  =S a b b a S  is a constant symmetric dyadic 

and S = a b   is its trace. This example makes use of the previous three examples, as well as the 

linearity of the Navier equation, to expand the physical important interior displacement field in a three-

dimensional solution subspace and to calculate the actual solution by calculating the three scalar 

coefficients. We primarily have to evaluate the following expressions, 

( ) ( )( ) ( )( ) ( )( ) ( )( )2   =    =    +    +               S r r r a r b r r a r b r r a r b r r a r b r r r  

( ) ( )2 2 2 4S=  +  +   = + a b r a b b a r r S r , (73) 

( ) ( ) ( ) ( ) ( )2 2 2 22 6 4 10r r r r  =   +   +    =  +  = S r S r S r S r S r r S S r , (74) 

( )2 6 2 2 10r = +   =r r r Ι r , (75) 

( ) ( )( ) ( ) ( )( )3   =    =   +   +        S r r r a r b r r a b b a r r a r b r

( ) ( )5 5 10=   =  +   = S r r a b b a r S r , (76) 

( ) ( ) ( )( )2 2 22 2r r r      =    +    =    +  
S r r S r S r a r b r S  

( )2 2 4 2S S=  +   + =  +a b b a r r S r r       (77) 

and 

( )2 2 22 3 5 10r r r  =   + =  = r r r r ,      (78) 

wherein we have assumed that ( ) / 2=  + S a b b a , so that ( )( ) =  S r r a r b r  and S = a b . 

In view of the above formulae (73)–(78) and with respect to (71) and (72), we now obtain 

( ) ( )  2 2 2 2 2τ 1 τ τ 2 4 τ 10 τ 10S S  −      + −  = +  +  +    
u r r S r S r r  

( ) ( ) ( ) 2 2 21 τ 10 1 τ 2 4 1 τ 10S S     + −  + − +  + −   S r r S r r  

( ) ( )2 2 2 22 τ 10 τ 2 1 τ 10 1 τS S S S    = + + − + −
 

r  

( ) ( )2 2 2 24 τ 10 τ 10 1 τ 4 1 τS    + + + − + − 
 

S r  

( )2 22 τ 2 1 τ 10S S S   = + − +
 

r  

( ) ( )2 210 6τ 4 6τ  + − + +  =
 

S r 0  for −r ,    (79) 
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which implies 

( )2 2τ 1 τ 5S S S  + − −=  and ( ) ( )2 25 3τ 2 3τ 0 − + + = , (80) 

leading to the constants 

23τ 2 = + , 
23τ 5 = −  and 

21 2τ = − .      (81) 

Hence, the solution is provided via (72) by 

( ) ( ) ( ) ( )2 2 2 2 23τ 2 3τ 5 1 2τr Sr− = +   + −  + −u r S r r r S r r  for −r ,  (82) 

which is the interior displacement field of the specific static elasticity problem. 

Recapitulating, we offered the analytical solution for the displacement fields of four interesting 

problems in linear isotropic elastostatics in the absence of body forces, inside and outside a spherical 

boundary in the absence of boundary conditions. These solutions are solid and can be directly derived 

from the theory of differential representation, which we developed and analyzed in the previous section. 

5. Conclusions and discussions 

In this study, we presented a mathematical method for recovering the main spherical components 

of the well-known Navier equation in linear isotropic elastostatics, under the circumstance of no 

external forces present. To this end, we primarily combined the Hooke’s and Newton’s law, via the 

correlation of the displacement field with the strain, the stress and the stiffness tensors, reproducing 

the linearized equation of dynamic isotropic elasticity. In the sequel, we introduced the Papkovich 

differential representation, which offered solutions in terms of scalar and vector harmonic functions. 

Then, connection formulae were obtained, by which we transformed any solution of the Navier system 

from the Papkovich to the potential-type eigenform and vice versa. In order to enhance this procedure, 

we implied the commonly used spherical geometry and we calculated the time-independent 

displacement field, generated by the well-known spherical harmonic eigenfunctions. In order to 

demonstrate the effectiveness of our method, we presented some important degenerate cases for the 

evaluation of the interior and the exterior displacement field on either side of a spherical boundary. 

Work under progress involves research directed towards the extension of the current analysis to 

more complicated geometries, e.g. spheroidal and ellipsoidal, producing ready-to-use functions and 

their Navier counterparts. 
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