In this paper, we consider a two-sided jumps risk model with proportional investments and random observation periods. The downward jumps represent the claim while the upward jumps represent the random returns. Suppose an insurance company invests all of their surplus in risk-free and risky investments in proportion. In real life, corporate boards regularly review their accounts rather than continuously monitoring them. Therefore, we assume that insurers regularly observe surplus levels to determine whether they will ruin and that the random observation periods are exponentially distributed. Our goal is to study the Gerber-Shiu function (i.e., the expected discounted penalty function) of the two-sided jumps risk model under random observation. First, we derive the integral differential equations (IDEs) satisfied by the Gerber-Shiu function. Due to the difficulty in obtaining explicit solutions for the IDEs, we utilize the sinc approximation method to obtain the approximate solution. Second, we analyze the error between the approximate and explicit solutions and find the upper bound of the error. Finally, we discuss examples of sensitivity analysis.
Citation: Chunwei Wang, Jiaen Xu, Naidan Deng, Shujing Wang. Two-sided jumps risk model with proportional investment and random observation periods[J]. AIMS Mathematics, 2023, 8(9): 22301-22318. doi: 10.3934/math.20231137
[1] | Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046 |
[2] | Minghung Lin, Yiyou Hou, Maryam A. Al-Towailb, Hassan Saberi-Nik . The global attractive sets and synchronization of a fractional-order complex dynamical system. AIMS Mathematics, 2023, 8(2): 3523-3541. doi: 10.3934/math.2023179 |
[3] | Rahat Zarin, Amir Khan, Aurangzeb, Ali Akgül, Esra Karatas Akgül, Usa Wannasingha Humphries . Fractional modeling of COVID-19 pandemic model with real data from Pakistan under the ABC operator. AIMS Mathematics, 2022, 7(9): 15939-15964. doi: 10.3934/math.2022872 |
[4] | Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Michal Niezabitowski . A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks. AIMS Mathematics, 2021, 6(5): 4526-4555. doi: 10.3934/math.2021268 |
[5] | Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216 |
[6] | Jingfeng Wang, Chuanzhi Bai . Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay. AIMS Mathematics, 2023, 8(10): 22538-22552. doi: 10.3934/math.20231148 |
[7] | Yuehong Zhang, Zhiying Li, Wangdong Jiang, Wei Liu . The stability of anti-periodic solutions for fractional-order inertial BAM neural networks with time-delays. AIMS Mathematics, 2023, 8(3): 6176-6190. doi: 10.3934/math.2023312 |
[8] | Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan . A generalized Gronwall inequality via ψ-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191 |
[9] | Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed . On generalized fractional integral operator associated with generalized Bessel-Maitland function. AIMS Mathematics, 2022, 7(2): 3027-3046. doi: 10.3934/math.2022167 |
[10] | Yonghong Liu, Ghulam Farid, Dina Abuzaid, Hafsa Yasmeen . On boundedness of fractional integral operators via several kinds of convex functions. AIMS Mathematics, 2022, 7(10): 19167-19179. doi: 10.3934/math.20221052 |
In this paper, we consider a two-sided jumps risk model with proportional investments and random observation periods. The downward jumps represent the claim while the upward jumps represent the random returns. Suppose an insurance company invests all of their surplus in risk-free and risky investments in proportion. In real life, corporate boards regularly review their accounts rather than continuously monitoring them. Therefore, we assume that insurers regularly observe surplus levels to determine whether they will ruin and that the random observation periods are exponentially distributed. Our goal is to study the Gerber-Shiu function (i.e., the expected discounted penalty function) of the two-sided jumps risk model under random observation. First, we derive the integral differential equations (IDEs) satisfied by the Gerber-Shiu function. Due to the difficulty in obtaining explicit solutions for the IDEs, we utilize the sinc approximation method to obtain the approximate solution. Second, we analyze the error between the approximate and explicit solutions and find the upper bound of the error. Finally, we discuss examples of sensitivity analysis.
As we all know, the study of variable exponent function space inspired by nonlinear elasticity theory and nonstandard growth differential equations is one of the key contents of harmonic analysis in the past three decades, attracting extensive attention from many scholars. In [19], the theory of function spaces with variable exponent was progressed since some elementary properties were established by Kováčik and Rákosník, and they studied many basic properties of variable exponent Lebesgue spaces and Sobolev spaces on Rn. Later, the Lebesgue spaces with variable exponent Lp(⋅)(Rn) were extensively investigated; see [7,8,22]. In [14], Izuki first introduced the Herz spaces with variable exponent ˙Kα,qp(⋅)(Rn), which are generalizations of the Herz spaces ˙Kα,qp(Rn), and considered the boundedness of commutators of fractional integrals on Herz spaces with variable exponent. In [13], Izuki introduced the Herz-Morrey spaces with variable exponent M˙Kα,λq,p(⋅)(Rn), which are generalizations of the Herz-Morrey spaces M˙Kα,λq,p(Rn), and studied the boundedness of vector valued sublinear operators on Herz-Morrey spaces with variable exponent M˙Kα,λq,p(⋅)(Rn). On the other hand, in the study of boundary value problems for the Laplace equation on Lipschitz domains, the classical theory of Muckenhoupt weights is a powerful tool in harmonic analysis; see [21]. Generalized Muckenhoupt weights with variable exponent have been intensively studied; see [4,5].
In [11], Hardy defined the classical Hardy operators as:
P(f)(x):=1x∫x0f(t)dt,x>0. | (1.1) |
In [6], Christ and Grafakos defined the n−dimensional Hardy operators as:
H(f)(x):=1|x|n∫|t|<|x|f(t)dt,x∈Rn∖{0}, | (1.2) |
and established the boundedness of P(f)(x) in Lp(Rn), getting the best constants.
In [9], under the condition of 0≤β<n and |x|=√∑ni=1x2i, Fu et al. defined the n−dimensional fractional Hardy operators and its adjoint operators as:
Hβf(x):=1|x|n−β∫|t|<|x|f(t)dt,H∗βf(x):=∫|t|≥|x|f(t)|t|n−βdt,x∈Rn∖{0}, | (1.3) |
and established the boundedness of their commutators in Lebesgue spaces and homogeneous Herz spaces.
Let L1loc(Rn) be the collection of all locally integrable functions on Rn. Given a function b∈L1loc(Rn) and m∈N, Wang et al. [23] defined the mth order commutators of n−dimensional fractional Hardy operators and adjoint operators as:
Hmβ,bf(x):=1|x|n−β∫|t|<|x|(b(x)−b(t))mf(t)dt | (1.4) |
and
H∗mβ,bf(x):=∫|t|≥|x|(b(x)−b(t))mf(t)|t|n−βdt,x∈Rn∖{0}. | (1.5) |
Obviously, when m=0, H0β,b=Hβ, H∗0β,b=H∗β, and when m=1, H1β,b=Hβ,b, H∗1β,b=H∗β,b. More important results with regard to these commutators, see [20,26,27].
Due to the need of future calculation in this paper, let 0<β<n, and the fractional integral operator Iβ is defined as:
Iβ(f)(x):=∫Rnf(y)|x−y|n−βdy,x∈Rn. | (1.6) |
Let 0≤β<n and f∈L1loc(Rn), and the fractional maximal operator Mβ is defined as:
Mβf(x):=supx∈B1|B|1−βn∫B|f(y)|dy,x∈Rn, | (1.7) |
where the supremum is taken over all balls B⊂Rn containing x. When β=0, we simply write M instead of M0, which is exactly the Hardy-Littlewood maximal function.
Let f∈L1loc(Rn) and BMO(Rn) consist of all f∈L1loc(Rn) with BMO(Rn)<∞. b is a bounded mean oscillation function if ‖b‖BMO<∞, and the ‖b‖BMO is defined as follow:
‖b‖BMO:=supB∫B|b(x)−bB|dx, | (1.8) |
where the supremum is taken all over the balls B∈Rn and bB:=|B|−1∫Bb(y)dy. For a comprehensive review of the bounded mean oscillation (BMO) space, please see the book [10].
Recently, Muhammad Asim et al. established the estimates of fractional Hardy operators on weighted variable exponent Morrey-Herz spaces in [1]. Amjad Hussain et al. established the boundedness of the commutators of the Fractional Hardy operators on weighted variable Herz-Morrey spaces in [12]. Motivated by the mentioned work, in this paper, we will give the boundedness of the mth order commutators of n−dimensional fractional Hardy operators Hmβ,b and its adjoint operators H∗mβ,b on weighted variable exponent Morrey-Herz space M˙Kα,λq,p(⋅)(ω).
The paper is organized as follows. In Section 2, we provide some preliminary knowledge. The main results and their proofs are given in Section 3. In Section 4, we provide the conclusion of this paper. Throughout this paper, we use the following symbols and notations:
(1) For a constant R>0 and a point x∈Rn, we write B(x,R):={y∈Rn:|x−y|<R}.
(2) For any measurable set E⊂Rn, |E| denotes the Lebesgue measure, and χE means the characteristic function.
(3) Given k∈Z, we write Bk:=¯B(0,2k)={x∈Rn:|x|≤2k}.
(4) We define a family {Ak}∞k=−∞ by Ak:=Bk∖Bk−1={x∈Rn:2k−1<|x|≤2k}. Moreover χk denotes the characteristic function of Ak, namely, χk:=χAk.
(5) For any index 1<p(x)<∞, p′(x) denotes its conjugate index, namely, 1p(x)+1p′(x)=1.
(6) If there exists a positive constant C independent of the main parameters such that A≤CB, then we write A≲. Additionally, A\approx B means that both A\lesssim B and B\lesssim A hold.
\mathbf{Definition\; 2.1.} ([7]) Let p(\cdot): \mathbb{R}^{n}\rightarrow [1, \infty) be a measurable function.
(ⅰ) The Lebesgue space with variable exponent L^{p(\cdot)}(\mathbb{R}^{n}) is defined by
L^{p(\cdot)}(\mathbb{R}^{n}): = \Big\{f\; \mathrm{is\; measurable\; function}:\int_{\mathbb{R}^{n}}\Big(\frac{|f(x)|}{\lambda}\Big)^{p(x)}\mathrm{d}x < \infty \; \mathrm{for\; some\; constant}\; \lambda > 0\Big\}. |
(ⅱ) The spaces with variable exponent L_{\mathrm{loc}}^{p(\cdot)}(\mathbb{R}^{n}) are defined by
L^{p(\cdot)}_{\mathrm{loc}}(\mathbb{R}^{n}): = \{f\; \mathrm{is\; measurable\; function}:f\in L^{p(\cdot)}(K) \mathrm{\; for\; all\; compact\; subsets\; } K\subset \mathbb{R}^{n}\}. |
The Lebesgue space L^{p(\cdot)}(\mathbb{R}^{n}) is a Banach space with the norm defined by
\|f\|_{L^{p(\cdot)}(\mathbb{R}^{n})}: = \inf\Big\{\lambda > 0:\int_{\mathbb{R}^{n}}\Big(\frac{|f(x)|}{\lambda}\Big)^{p(x)}\mathrm{d}x\leq 1 \Big\}. |
\mathbf{Definition\; 2.2.} ([7]) (ⅰ) The set \mathcal{P}(\mathbb{R}^{n}) consists of all measurable functions p(\cdot): \mathbb{R}^{n}\rightarrow [1, \infty) satisfying
1 < p_{-}\leq p(x)\leq p_{+} < \infty, |
where
p_{-}: = \mathrm{essinf}\{p(x): x\in \mathbb{R}^{n}\} > 1,\; \; \; p_{+}: = \mathrm{esssup}\{p(x): x\in \mathbb{R}^{n}\} < \infty. |
(ⅱ) The set \mathcal{B}(\mathbb{R}^{n}) consists of all measurable function p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) satisfying that the Hardy-Littlewood maximal operator M is bounded on L^{p(\cdot)}(\mathbb{R}^{n}) .
\mathbf{Definition\; 2.3.} ([7]) Suppose that p(\cdot) is a real-valued function on \mathbb{R}^{n} . We say that
(ⅰ) \mathcal{C}_{\mathrm{loc}}^{\mathrm{log}}(\mathbb{R}^{n}) is the set of all local log-Hölder continuous functions p(\cdot) satisfying
\begin{align} |p(x)-p(y)|\leq -\frac{C}{\mathrm{log}(|x-y|)},\; |x-y|\leq\frac{1}{2}, \; \; x,y\in \mathbb{R}^{n}. \end{align} | (2.1) |
(ⅱ) \mathcal{C}_{0}^{\mathrm{log}}(\mathbb{R}^{n}) is the set of all local log-Hölder continuous functions p(\cdot) satisfying at origin
\begin{align} |p(x)-p_{0}|\leq \frac{C}{\mathrm{log}(e+\frac{1}{|x|})},\; \; x\in \mathbb{R}^{n}. \end{align} | (2.2) |
(ⅲ) \mathcal{C}_{\mathrm{\infty}}^{\mathrm{log}}(\mathbb{R}^{n}) is the set of all local log-Hölder continuous functions satisfying at infinity
\begin{align} |p(x)-p_{\infty}|\leq \frac{C_{\infty}}{\mathrm{log}(e+|x|)},\; \; x\in \mathbb{R}^{n}. \end{align} | (2.3) |
(ⅳ) \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) = \mathcal{C}_{\mathrm{\infty}}^{\mathrm{log}}(\mathbb{R}^{n})\cap \mathcal{C}_{\mathrm{loc}}^{\mathrm{log}}(\mathbb{R}^{n}) denotes the set of all global log-Hölder continuous functions p(\cdot) .
It was proved in [7] that if p(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) , then the Hardy-Littlewood maximal operator M is bounded on L^{p(\cdot)}(\mathbb{R}^{n}) .
\mathbf{Definition\; 2.4.} ([21]) Given a non-negative, measure function \omega , for 1 < p < \infty , \omega\in A_{p} if
[\omega]_{A_{p}}: = \sup\limits_{B}\Big(\frac{1}{|B|}\int_{B}\omega(x)\mathrm{d}x\Big)\Big(\frac{1}{|B|}\int_{B}\omega(x)^{1-p^{\prime}}\mathrm{d}x\Big)^{p-1} < \infty, |
where the supremum is taken over all balls B\subset \mathbb{R}^{n} . Especially, we say \omega\in A_{1} if
[\omega]_{A_{1}}: = \sup\limits_{B}\frac{\frac{1}{|B|}\int_{B}\omega(x)\mathrm{d}x}{\mathrm{essinf}\{\omega(x): x\in B\}} < \infty. |
These weights characterize the weighted norm inequalities for the Hardy-Littlewood maximal operator, that is, \omega\in A_{p} , 1 < p < \infty , if and only if M:L^{p}(\omega)\rightarrow L^{p}(\omega) .
\mathbf{Definition\; 2.5.} ([15]) Suppose that p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) . A weight \omega is in the class A_{p(\cdot)} if
\begin{align} \sup\limits_{B:\mathrm{ball}}|B|^{-1}\|\omega^{\frac{1}{p(\cdot)}}\chi_{B}\|_{L^{p(\cdot)}}\|\omega^{-\frac{1}{p(\cdot)}}\chi_{B}\|_{L^{p^{\prime}(\cdot)}} < \infty. \end{align} | (2.4) |
Obviously, if p(\cdot) = p, 1 < p < \infty , then the above definition reduces to the classical Muckenhoupt A_{p} class.
From [15], if p(\cdot), q(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) , and p(\cdot)\leq q(\cdot) , then A_{1}\subset A_{p(\cdot)}\subset A_{q(\cdot)} .
\mathbf{Definition\; 2.6.} ([15]) Let 0 < \beta < n and p_{1}(\cdot), p_{2}(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) such that \frac{1}{p_{2}(x)} = \frac{1}{p_{1}(x)}-\frac{\beta}{n} . A weight \omega is said to be an A(p_{1}(\cdot), p_{2}(\cdot)) weight if
\begin{align} \|\chi_{B}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\|\chi_{B}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})^{\prime}}\leq C|B|^{1-\frac{\beta}{n}}. \end{align} | (2.5) |
\mathbf{Definition\; 2.7.} ([25]) Let p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) and \omega\in A_{p(\cdot)} . The weighted variable exponent Lebesgue space L^{p(\cdot)}(\omega) denotes the set of all complex-valued measurable functions f satisfying
L^{p(\cdot)}(\omega): = \{f:f\omega^{\frac{1}{p(\cdot)}}\in L^{p(\cdot)}(\mathbb{R}^{n})\}. |
This is a Banach space equipped with the norm
\|f\|_{L^{p(\cdot)}(\omega)}: = \|f\omega^{\frac{1}{p(\cdot)}}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}. |
\mathbf{Definition\; 2.8.} ([1]) Let \omega be a weight on \mathbb{R}^{n} , 0\leq \lambda < \infty , 0 < q < \infty , p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) , and \alpha(\cdot): \mathbb{R}^{n}\rightarrow \mathbb{R} with \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n}) . The weighted variable exponent Morrey-Herz space \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega) is the set of all measurable functions f given by
\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega): = \{f\in L_{\mathrm{loc}}^{p(\cdot)}(\mathbb{R}^{n}\backslash\{0\}, \omega): \|f\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega)} < \infty \}, |
where
\|f\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega)}: = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda}\Big\{\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(\cdot) q}\|f\chi_{k}\|_{L^{p(\cdot)}(\omega)}^{q} \Big\}^{\frac{1}{q}}. |
It is noted that \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), 0}(\omega) = \mathrm{\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot)}(\omega) is the variable exponent weighted Herz space defined in [2].
\mathbf{Definition\; 2.9.} ([15]) Let \mathcal{M} be the set of all complex-valued measurable functions defined on \mathbb{R}^{n} and X be a linear subspace of \mathcal{M} .
(1) The space X is said to be a Banach function space if there exists a function \|\cdot\|_{X}:\mathcal{M}\rightarrow [0, \infty] satisfying the following properties: Let f, g, f_{j}\in\mathcal{M}\; (j = 1, 2, \ldots) . Then
(a) f\in X holds if and only if \|f\|_{X} < \infty .
(b) Norm property:
ⅰ. Positivity: \|f\|_{X}\geq 0 .
ⅱ. Strict positivity: \|f\|_{X} = 0 holds if and only if f(x) = 0 for almost every x\in \mathbb{R}^{n} .
ⅲ. Homogeneity: \|\lambda f\|_{X} = |\lambda|\cdot\|f\|_{X} holds for all \lambda\in\mathbb{C} .
ⅳ. Triangle inequality: \|f+g\|_{X}\leq \|f\|_{X}+\|g\|_{X} .
(c) Symmetry: \|f\|_{X} = \||f|\|_{X} .
(d) Lattice property: If 0\leq g(x)\leq f(x) for almost every x\in \mathbb{R}^{n} , then \|g\|_{X}\leq\|f\|_{X} .
(e) Fatou property: If 0\leq f_{j}(x)\leq f_{j+1}(x) for all j , and f_{j}(x)\rightarrow f(x) as j\rightarrow \infty for almost every x\in \mathbb{R}^{n} , then \lim\limits_{j\rightarrow \infty}\|f_{j}\|_{X} = \|f\|_{X} .
(f) For every measurable set F\subset \mathbb{R}^{n} such that |F| < \infty , \|\chi_{F}\|_{X} is finite. Additionally, there exists a constant C_{F} > 0 depending only on F so that \int_{F}|h(x)|\mathrm{d}x\leq C_{F}\|h\|_{X} holds for all h\in X .
(2) Suppose that X is a Banach function space equipped with a norm \|\cdot\|_{X} . The associated space X^{\prime} is defined by
X^{\prime}: = \{f\in \mathcal{M}:\|f\|_{X^{\prime}} < \infty\}, |
where
\|f\|_{X^{\prime}}: = \sup\limits_{g}\Big\{\Big|\int_{\mathbb{R}^{n}}f(x)g(x)\mathrm{d}x\Big|:\|g\|_{X}\leq 1 \Big\}. |
\mathbf{Lemma\; 2.1.} ([3]) Let X be a Banach function space, and then we have the following:
(ⅰ) The associated space X^{\prime} is also a Banach function space.
(ⅱ) \|\cdot\|_{(X^{\prime})^{\prime}} and \|\cdot\|_{X} are equivalent.
(ⅲ) If g\in X and f\in X^{\prime} , then
\begin{align} \int_{\mathbb{R}^{n}}|f(x)g(x)|\mathrm{d}x\leq \|f\|_{X}\|g\|_{X^{\prime}} \end{align} | (2.6) |
is the generalized Hölder inequality.
\mathbf{Lemma\; 2.2.} ([15]) If X is a Banach function space, then we have, for all balls B ,
\begin{align} 1\leq |B|^{-1}\|\chi_{B}\|_{X}\|\chi_{B}\|_{X^{\prime}}. \end{align} | (2.7) |
\mathbf{Lemma\; 2.3.} ([16]) Let X be a Banach function space. Suppose that the Hardy-Littlewood maximal operator M is weakly bounded on X , that is,
\|\chi_{\{Mf > \lambda\}}\|_{X}\lesssim \lambda^{-1}\|f\|_{X} |
is true for all f\in X and all \lambda > 0 . Then, we have
\begin{align} \sup\limits_{B:\mathrm{ball}}\frac{1}{|B|}\|\chi_{B}\|_{X}\|\chi_{B}\|_{X^{\prime}} < \infty. \end{align} | (2.8) |
\mathbf{Lemma\; 2.4.} ([15]) Given a function W such that 0 < W(x) < \infty for almost every x\in \mathbb{R}^{n} , W\in X_{\mathrm{loc}}(\mathbb{R}^{n}) and W^{-1}\in (X^{\prime})_{\mathrm{loc}}(\mathbb{R}^{n}) ,
(ⅰ) X(\mathbb{R}^{n}, W) is Banach function space equipped with the norm
\begin{align} \|f\|_{X(\mathbb{R}^{n}, W)}: = \|fW\|_{X}, \end{align} | (2.9) |
where
\begin{align} X(\mathbb{R}^{n}, W): = \{f\in\mathcal{M}: fW\in X\}. \end{align} | (2.10) |
(ⅱ) The associated space X^{\prime}(\mathbb{R}^{n}, W^{-1}) of X(\mathbb{R}^{n}, W) is also a Banach function space.
\mathbf{Lemma\; 2.5.} ([15]) Let X be a Banach function space and M be bounded on X^{\prime} . Then, there exists a constant \delta\in(0, 1) for all B\subset \mathbb{R}^{n} and E\subset B ,
\begin{align} \frac{\|\chi_{_{E}}\|_{X}}{\|\chi_{_{B}}\|_{X}}\leq \Big( \frac{|E|}{|B|}\Big)^{^{\delta}}. \end{align} | (2.11) |
The paper [19] shows that L^{p(\cdot)}(\mathbb{R}^{n}) is a Banach function space and the associated space L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}) with equivalent norm.
\mathbf{Remark\; 2.6.} ([1]) Let p(\cdot)\in\mathcal{P}(\mathbb{R}^{n}) , and by comparing the L^{p(\cdot)}(\omega^{p(\cdot)}) and L^{p^{\prime}(\cdot)}(\omega^{-p^{\prime}(\cdot)}) with the definition of X(\mathbb{R}^{n}, W) , we have the following:
(1) If we take W = \omega and X = L^{p(\cdot)}(\mathbb{R}^{n}) , then we get L^{p(\cdot)}(\mathbb{R}^{n}, \omega) = L^{p(\cdot)}(\omega^{p(\cdot)}) .
(2) If we consider W = \omega^{-1} and X = L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}) , then we get L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}, \omega^{-1}) = L^{p^{\prime}(\cdot)}(\omega^{-p^{\prime}(\cdot)}) .
By virtue of Lemma 2.4, we get
(L^{p(\cdot)}(\mathbb{R}^{n}, \omega))^{\prime} = (L^{p(\cdot)}(\omega^{p(\cdot)}))^{\prime} = L^{p^{\prime}(\cdot)}(\omega^{-p^{\prime}(\cdot)}) = L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}, \omega^{-1}). |
\mathbf{Lemma\; 2.7.} ([17]) Let p(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) be a log-Hölder continuous function both at infinity and at origin, if \omega^{p_{_{2}}(\cdot)}\in A_{p_{_{2}}(\cdot)} implies \omega^{-p^{\prime}_{_{2}}(\cdot)}\in A_{p^{\prime}_{_{2}}(\cdot)} . Thus, the Hardy-Littlewood operator is bounded on L^{p^{\prime}_{_{2}}(\cdot)}(\omega^{-p^{\prime}_{_{2}}(\cdot)}) , and there exist constants \delta_{1}, \delta_{2}\in (0, 1) such that
\begin{align} \frac{\|\chi_{E}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}}{\|\chi_{B}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}} = \frac{\|\chi_{E}\|_{(L^{p^{\prime}_{2}(\cdot)}(\omega^{-p^{\prime}_{2}(\cdot)}))^{\prime}}}{\|\chi_{B}\|_{(L^{p^{\prime}_{2}(\cdot)}(\omega^{-p^{\prime}_{2}(\cdot)}))^{\prime}}} \leq C\Big(\frac{|E|}{|B|}\Big)^{\delta_{1}}, \end{align} | (2.12) |
and
\begin{align} \frac{\|\chi_{E}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}}{\|\chi_{B}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}}\leq C\Big(\frac{|E|}{|B|}\Big)^{\delta_{2}}, \end{align} | (2.13) |
for all balls B\subset \mathbb{R}^{n} and all measurable sets E\subset B .
\mathbf{Lemma\; 2.8.} ([15]) Let p_{1}(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) and 0 < \beta < \frac{n}{p_{1}^{+}} . Define p_{2}(\cdot) by \frac{1}{p_{1}(x)}-\frac{1}{p_{2}(\cdot)} = \frac{\beta}{n} . If \omega\in A(p_{1}(\cdot), p_{2}(\cdot)) , then I_{\beta} is bounded from L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}) to L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}) .
\mathbf{Lemma\; 2.9.} ([24, Corollary 3.11]) Let b\in \mathrm{BMO}(\mathbb{R}^{n}), m\in \mathbb{N} , and k, j\in \mathbb{Z} with k > j . Then, we have
\begin{align} C^{-1}\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\leq \sup\limits_{B}\frac{1}{\|\chi_{B}\|_{L^{p(\cdot)}(\omega)}}\|(b-b_{B})^{m}\chi_{B}\|_{L^{p(\cdot)}(\omega)}\leq C\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}. \end{align} | (2.14) |
\begin{align} \|(b-b_{B_{j}})^{m}\chi_{B_{k}}\|_{L^{p(\cdot)}(\omega)}\leq C(k-j)^{m}\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\|\chi_{B_{k}}\|_{L^{p(\cdot)}(\omega)}. \end{align} | (2.15) |
\mathbf{Proposition\; 3.1.} ([12] Let q(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) , 0 < p < \infty , and 0\leq \lambda < \infty . If \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) , then
\begin{align*} \|f\|_{\mathrm{M\dot{K}}_{p, q(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{q(\cdot)})}^{p}& = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda p}\sum\limits_{j = -\infty}\limits^{k_{0}}2^{j\alpha(\cdot)p}\|f\chi_{j}\|^{p}_{L^{q(\cdot)}(\omega^{q(\cdot)})}\\ &\leq \max\Big\{\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda p}\Big(\sum\limits_{j = -\infty}\limits^{k_{0}}2^{j\alpha(0)p}\|f\chi_{j}\|^{p}_{L^{q(\cdot)}(\omega^{q(\cdot)})}\Big), \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}\Big(2^{-k_{0}\lambda p}\Big(\sum\limits_{j = -\infty}\limits^{-1}2^{j\alpha(0)p}\|f\chi_{j}\|^{p}_{L^{q(\cdot)}(\omega^{q(\cdot)})}\Big)\\ &+2^{-k_{0}\lambda p}\Big(\sum\limits_{j = 0}\limits^{k_{0}}2^{j\alpha(\infty)p}\|f\chi_{j}\|^{p}_{L^{q(\cdot)}(\omega^{q(\cdot)})}\Big)\Big)\Big\}. \end{align*} |
\mathbf{Theorem\; 3.1.} Let 0 < q_{1}\leq q_{2} < \infty , p_{2}(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) and p_{1}(\cdot) be such that \frac{1}{p_{2}(\cdot)} = \frac{1}{p_{1}(\cdot)}-\frac{\beta}{n} . Also, let \omega^{p_{2}(\cdot)}\in A_{1} , b\in \mathrm{BMO}(\mathbb{R}^{n}) , \lambda > 0 and \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) be log-Hölder continuous at the origin, with \alpha(0)\leq \alpha(\infty) < \lambda+n\delta_{2}-\beta , where \delta_{2}\in(0, 1) is the constant appearing in (2.13). Then,
\begin{align} \|\mathcal{H}^{m}_{_{\beta,b}}f\|_{\mathrm{M\dot{K}}_{q_{2}, p_{2}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{2}(\cdot)})}\lesssim \|b\|^{m}_{\mathrm{BMO}}\|f\|_{\mathrm{M\dot{K}}_{q_{1}, p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align} | (3.1) |
Proof. For arbitrary f\in \mathrm{M\dot{K}}_{q_{1}, p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)}) , let f_{j} = f\cdot\chi_{j} = f\cdot\chi_{A_{j}} for every j\in \mathbb{Z} , and then
\begin{align} f(x) = \sum\limits_{j = -\infty}^{\infty}f(x)\cdot\chi_{j}(x) = \sum\limits_{j = -\infty}^{\infty}f_{j}(x). \end{align} | (3.2) |
By the inequality of C_{p} , it is not difficult to see that
\begin{align*} |\mathcal{H}^{m}_{_{\beta,b}}f(x)\chi_{k}(x)|&\leq \frac{1}{|x|^{n-\beta}}\int_{|t| < |x|}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \frac{1}{|x|^{n-\beta}}\int_{B(0,|x|)}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \frac{1}{|x|^{n-\beta}}\int_{B_{k}}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\lesssim 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(x)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\; \; \; +2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(t)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x) = E_{1}+E_{2}. \end{align*} | (3.3) |
For E_{1} , by the generalized Hölder inequality, we have
\begin{align*} E_{1}& = 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(x)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}|b(x)-b_{A_{j}}|^{m}\cdot\chi_{k}(x)\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}. \end{align*} | (3.4) |
By taking the (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) -norm on both sides of (3.4) and using (2.15) of Lemma 2.9, we get
\begin{align*} \|E_{1}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))} &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\||b(x)-b_{A_{j}}|^{m}\cdot\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\lesssim 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}. \end{align*} | (3.5) |
For E_{2} , by the generalized Hölder inequality, we have
\begin{align*} E_{2}& = 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(t)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\||b(t)-b_{A_{j}}|^{m}\cdot\chi_{j}(x)\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\cdot\chi_{k}(x). \end{align*} | (3.6) |
By taking the (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) -norm on both sides of (3.6) and using (2.14) of Lemma 2.9, we get
\begin{align*} \|E_{2}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))} &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\||b(x)-b_{A_{j}}|^{m}\cdot\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\\ &\lesssim 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}. \end{align*} | (3.7) |
Hence, from inequalities (3.3), (3.5) and (3.7), we get
\begin{align*} &\|\mathcal{H}^{m}_{_{\beta,b}}f(x)\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\\ &\lesssim 2^{-k(n-\beta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big\{\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &+\sum\limits_{j = -\infty}^{k}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\Big\}\\ &\lesssim 2^{-k(n-\beta)}\|b\|_{\mathrm{BMO}}^{m}\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}. & \end{align*} | (3.8) |
By virtue of Lemma 2.5, we have
\begin{align} \frac{\|\chi_{B_{k}}\|_{X}}{\|\chi_{k}\|_{X}}\leq (\frac{|B_{k}|}{|A_{k}|})^{\delta} = C\; \Longrightarrow\; \|\chi_{B_{k}}\|_{X}\leq C\|\chi_{k}\|_{X}. \end{align} | (3.9) |
Note that \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \leq\|\chi_{B_{j}}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} and \chi_{B_{j}}(x)\lesssim 2^{-j\beta}I_{\beta}(\chi_{B_{j}}) (see [18, p. 350]). By applying (2.8), (3.9) and Lemma 2.8, we obtain
\begin{align*} \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}&\leq\|\chi_{B_{j}}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\lesssim 2^{-j\beta}\|I_{\beta}(\chi_{B_{j}})\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\lesssim 2^{-j\beta}\|\chi_{B_{j}}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\lesssim 2^{-j\beta}\|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})} \lesssim 2^{j(n-\beta)}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}^{-1}. & \end{align*} | (3.10) |
By virtue of (2.7) and (2.8), combining (2.13) and (3.10), we have
\begin{align*} &2^{k(\beta-n)}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; = 2^{k\beta}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}} 2^{-kn}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; \lesssim 2^{k\beta}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}} \|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}^{-1}\\ &\; \; \; \; = 2^{k\beta} \|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}} \|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}^{-1}\frac{ \|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}}{ \|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}}\\ &\; \; \; \; \lesssim 2^{k\beta}2^{n\delta_{2}(j-k)} \|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}} \|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}^{-1}\\ &\; \; \; \; \lesssim 2^{k\beta}2^{n\delta_{2}(j-k)}2^{j(n-\beta)} \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}^{-1} \|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}^{-1}\\ &\; \; \; \; = 2^{k\beta}2^{n\delta_{2}(j-k)}2^{-j\beta} \Big(2^{-jn}\|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}\Big)^{-1}\\ &\; \; \; \; \lesssim 2^{(\beta-n\delta_{2})(k-j)}. & \end{align*} | (3.11) |
Hence by virtue of (3.8) and (3.11), we have
\begin{align*} \|\mathcal{H}^{m}_{_{\beta,b}}f(x)\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\lesssim \|b\|_{\mathrm{BMO}}^{m}\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(\beta-n\delta_{2})(k-j)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}. & \end{align*} | (3.12) |
In order to estimate \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})} , we consider two cases as below.
Case 1: For j < 0 , we get
\begin{align*} \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}& = 2^{-j\alpha(0)}\Big(2^{j\alpha(0) q_{1}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\\ &\leq 2^{-j\alpha(0)}\Big(\sum\limits_{i = -\infty}^{j}2^{i\alpha(0) q_{1}}\|f_{i}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\\ & = 2^{j(\lambda-\alpha(0))}\Big\{2^{-j\lambda}\Big(\sum\limits_{i = -\infty}^{j}2^{i\alpha(\cdot) q_{1}}\|f_{i}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\Big\}\\ &\lesssim 2^{j(\lambda-\alpha(0))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. & \end{align*} | (3.13) |
Case 2: For j\geq0 , we get
\begin{align*} \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}& = 2^{-j\alpha(\infty)}\Big(2^{j\alpha(\infty) q_{1}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\\ &\leq 2^{-j\alpha(\infty)}\Big(\sum\limits_{i = -\infty}^{j}2^{i\alpha(\infty) q_{1}}\|f_{i}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\\ & = 2^{j(\lambda-\alpha(\infty))}\Big\{2^{-j\lambda}\Big(\sum\limits_{i = -\infty}^{j}2^{i\alpha(\cdot) q_{1}}\|f_{i}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\Big\}\\ &\lesssim 2^{j(\lambda-\alpha(\infty))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. & \end{align*} | (3.14) |
Now, by virtue of the condition q_{1}\leq q_{2} and the definition of weighted variable exponent Morrey-Herz space along with the use of Proposition 3.1, we get
\begin{align*} \|\mathcal{H}^{m}_{_{\beta,b}}f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{2},p_{2}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{2}(\cdot)})}& = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(\cdot) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\leq \max\Big\{\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &\; \; \; \; \; \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\Big(\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; \; \; \; \; \; +\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\|\mathcal{H}^{m}_{\beta,b}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)\Big\}\\ & = \max\{J_{1}, J_{2}+J_{3}\}, & \end{align*} | (3.15) |
where
\begin{align*} &J_{1} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &J_{2} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &J_{3} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}. \end{align*} |
First, we estimate J_{1} . Since \alpha(0)\leq \alpha(\infty) < n\delta_{2}+\lambda-\beta , combining (3.12) and (3.13), we get
\begin{align*} J_{1}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{(\beta-n\delta_{2})(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{(\beta-n\delta_{2})(k-j)}2^{j(\lambda-\alpha(0))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(\beta-n\delta_{2})(k-j)}2^{j(\lambda-\alpha(0))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(j-k)(n\delta_{2}+\lambda-\beta-\alpha(0))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*} |
The estimate of J_{2} is similar to that of J_{1} .
Lastly, we estimate J_{3} . Since \alpha(0)\leq \alpha(\infty) < n\delta_{2}+\lambda-\beta , combining (3.12) and (3.14), we get
\begin{align*} J_{3}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{(\beta-n\delta_{2})(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{(\beta-n\delta_{2})(k-j)}2^{j(\lambda-\alpha(\infty))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(\beta-n\delta_{2})(k-j)}2^{j(\lambda-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(j-k)(n\delta_{2}+\lambda-\beta-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*} |
The desired result is obtained by combining the estimates of J_{1} , J_{2} and J_{3} .
\mathbf{Theorem\; 3.2.} Let 0 < q_{1}\leq q_{2} < \infty , p_{2}(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) and p_{1}(\cdot) be such that \frac{1}{p_{2}(\cdot)} = \frac{1}{p_{1}(\cdot)}-\frac{\beta}{n} . Also, let \omega^{p_{2}(\cdot)}\in A_{1} , b\in \mathrm{BMO}(\mathbb{R}^{n}) , \lambda > 0 and \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) be log-Hölder continuous at the origin, with \lambda-n\delta_{1} < \alpha(0)\leq\alpha(\infty) , where \delta_{1}\in(0, 1) is the constant appearing in (2.12). Then,
\begin{align} \|\mathcal{H}^{\ast m}_{_{\beta,b}}f\|_{\mathrm{M\dot{K}}_{q_{2}, p_{2}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{2}(\cdot)})}\lesssim \|b\|^{m}_{\mathrm{BMO}}\|f\|_{\mathrm{M\dot{K}}_{q_{1}, p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align} | (3.16) |
Proof. From an application of the inequality of C_{p} , it is not difficult to see that
\begin{align*} |\mathcal{H}^{\ast m}_{_{\beta,b}}f(x)\chi_{k}(x)|&\leq \int_{\mathbb{R}^{n}\setminus B_{k}}|t|^{\beta-n}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \sum\limits_{j = k+1}^{\infty}\int_{A_{j}}|t|^{\beta-n}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\lesssim \sum\limits_{j = k+1}^{\infty}\int_{A_{j}}|t|^{\beta-n}|b(x)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\; \; \; +\sum\limits_{j = k+1}^{\infty}\int_{A_{j}}|t|^{\beta-n}|b(t)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ & = F_{1}+F_{2}. \end{align*} | (3.17) |
For F_{1} , by the generalized Hölder inequality, we have
\begin{align*} F_{1}&\leq\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\int_{A_{j}}|b(x)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}|b(x)-b_{A_{j}}|^{m}\cdot\chi_{k}(x)\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}. \end{align*} | (3.18) |
By taking the (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) -norm on both sides of (3.18) and using (2.15) of Lemma 2.9, we get
\begin{align*} \|F_{1}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))} &\leq \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\||b(x)-b_{A_{j}}|^{m}\cdot\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\lesssim \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}. \end{align*} | (3.19) |
For F_{2} , by the generalized Hölder inequality, we have
\begin{align*} F_{2}&\leq\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\int_{A_{j}}|b(t)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\||b(t)-b_{A_{j}}|^{m}\cdot\chi_{j}(x)\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\cdot\chi_{k}(x). \end{align*} | (3.20) |
By taking the (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) -norm on both sides of (3.20) and using (2.15) of Lemma 2.9, we get
\begin{align*} \|F_{2}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))} &\leq \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\||b(t)-b_{A_{j}}|^{m}\cdot\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\\ &\lesssim \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}. \end{align*} | (3.21) |
Hence, from inequalities (3.17), (3.19) and (3.21), we get
\begin{align*} &\|\mathcal{H}^{\ast m}_{_{\beta,b}}f(x)\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\\ &\; \; \; \lesssim \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big\{\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\; \; \; \; \; \; +\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\Big\}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{m}\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}(j-k)^{m}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}. & \end{align*} | (3.22) |
On the other hand, by (2.7) and (2.8), combining (2.12) and (3.10), we have
\begin{align*} & 2^{-j(n-\beta)}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\; \; \; \; = 2^{j\beta}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} 2^{-jn}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\; \; \; \; \lesssim 2^{j\beta}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{-1}\\ &\; \; \; \; = 2^{j\beta} \|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{-1} \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \frac{ \|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}}{\|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}}\\ &\; \; \; \; \lesssim 2^{j\beta}2^{n\delta_{1}(k-j)} \|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{-1} \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; \lesssim 2^{j\beta}2^{n\delta_{1}(k-j)}2^{j(n-\beta)} \|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{-1} \|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}^{-1}\\ &\; \; \; \; = 2^{j\beta}2^{n\delta_{1}(k-j)}2^{-j\beta}\Big(2^{-jn}\|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\Big)^{-1} \lesssim 2^{n\delta_{1}(k-j)}. & \end{align*} | (3.23) |
Hence combining (3.22) and (3.23), we obtain
\begin{align*} \|\mathcal{H}^{\ast m}_{_{\beta,b}}f(x)\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\lesssim \|b\|_{\mathrm{BMO}}^{m}\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{n\delta_{1}(k-j)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}. & \end{align*} | (3.24) |
Next, by virtue of the condition q_{1}\leq q_{2} and the definition of weighted variable exponent Morrey-Herz space along with the use of Proposition 3.1, we get
\begin{align*} \|\mathcal{H}^{\ast m}_{_{\beta,b}}f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{2},p_{2}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{2}(\cdot)})}& = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(\cdot) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\leq \max\Big\{\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &\; \; \; \; \; \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\Big(\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; \; \; \; \; \; +\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\|\mathcal{H}^{\ast m}_{\beta,b}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)\Big\}\\ & = \max\{Y_{1}, Y_{2}+Y_{3}\}, & \end{align*} | (3.25) |
where
\begin{align*} &Y_{1} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &Y_{2} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &Y_{3} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}. \end{align*} |
First, we estimate Y_{1} . Since \lambda-n\delta_{1} < \alpha(0)\leq \alpha(\infty) , combining (3.24) and (3.13), we get
\begin{align*} Y_{1}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(0))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(0))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{(j-k)(\lambda-n\delta_{1}-\alpha(0))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*} |
The estimate of Y_{2} is similar to that of Y_{1} .
Lastly, we estimate Y_{3} . Since \lambda-n\delta_{1} < \alpha(0)\leq \alpha(\infty) , combining (3.24) and (3.14), we get
\begin{align*} Y_{3}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(\infty))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{(j-k)(\lambda-n\delta_{1}-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*} |
The desired result is obtained by combining the estimates of Y_{1} , Y_{2} and Y_{3} .
This paper considers the boundedness for m th order commutators of n- dimensional fractional Hardy operators \mathcal{H}^{m}_{_{\beta, b}} and adjoint operators \mathcal{H}_{\beta, b}^{\ast m} on weighted variable exponent Morrey-Herz spaces \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega) . When m = 0 , our main result holds on weighted variable exponent Morrey-Herz space for fractional Hardy operators and generalizes the result of Asim et al. in [1, Theorems 4.2 and 4.3]. When m = 1 , our main result holds on weighted variable exponent Morrey-Herz space for commutators of the fractional Hardy operators and generalizes the result of Hussain et al. in [12, Theorems 18 and 19].
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This paper is supported by the National Natural Science Foundation of China (Grant No. 12161071), Qinghai Minzu University campus level project (Nos. 23GH29, 23GCC10).
All authors declare that they have no conflicts of interest.
[1] |
R. J. Boucherie, O. J. Boxma, K. Sigman, A note on negative customers, GI/G/1 workload, and risk processes, Insur. Math. Econ., 11 (1997), 305–311. https://doi.org/10.1017/S0269964800004848 doi: 10.1017/S0269964800004848
![]() |
[2] |
L. Zhang, The expected discounted penalty function in the generalized Erlang (n) risk model with two-sided jumps and a constant dividend barrier, B. Iran. Math. Soc., 47 (2021), 569–583. https://doi.org/10.1007/s41980-020-00399-1 doi: 10.1007/s41980-020-00399-1
![]() |
[3] |
E. C. Cheung, H. Liu, G. E. Willmot, Joint moments of the total discounted gains and losses in the renewal risk model with two-sided jumps, Appl. Math. Comput., 331 (2018), 358–377. https://doi.org/10.1016/j.amc.2018.03.037 doi: 10.1016/j.amc.2018.03.037
![]() |
[4] |
H. Dong, Z. Liu, The ruin problem in a renewal risk model with two-sided jumps, Math. Comput. Model., 57 (2013), 800–811. https://doi.org/10.1016/j.mcm.2012.09.005 doi: 10.1016/j.mcm.2012.09.005
![]() |
[5] |
J. Ivanovs, On scale functions for Lévy processes with negative phase-type jumps, Queueing Syst., 98 (2021), 3–19. https://doi.org/10.1007/s11134-021-09696-w doi: 10.1007/s11134-021-09696-w
![]() |
[6] |
E. M. Martín-Gonz\acute{\rm a }lez, A. Murillo-Salas, H. Pantí, Gerber-Shiu function for a class of Markov-modulated Lévy risk processes with two-sided jumps, Methodol. Comput. Appl. Probab., 24 (2022), 2779–2800. https://doi.org/10.1007/s11009-022-09954-1 doi: 10.1007/s11009-022-09954-1
![]() |
[7] |
Z. Palmowski, E. Vatamidou, Phase-type approximations perturbed by a heavy-tailed component for the Gerber-Shiu function of risk processes with two-sided jumps, Stoch. Models, 36 (2020), 337–363. https://doi.org/10.1080/15326349.2020.1717344 doi: 10.1080/15326349.2020.1717344
![]() |
[8] |
L. Zhang, The Erlang(n) risk model with two-sided jumps and a constant dividend barrier, Commun. Stat.-Theor. M., 50 (2021), 5899–5917. https://doi.org/10.1080/03610926.2020.1737712 doi: 10.1080/03610926.2020.1737712
![]() |
[9] |
H. Albrecher, E. C. Cheung, S. Thonhauser, Randomized observation periods for the compound Poisson risk model: The discounted penalty function, Scand. Actuar. J., 2013 (2013), 424–452. https://doi.org/10.1080/03461238.2011.624686 doi: 10.1080/03461238.2011.624686
![]() |
[10] |
H. Albrecher, E. C. Cheung, S. Thonhauser, Randomized observation periods for the compound Poisson risk model: Dividends, Astin Bull., 41 (2011), 645–672. https://doi.org/10.2143/AST.41.2.2136991 doi: 10.2143/AST.41.2.2136991
![]() |
[11] |
W. Zhuo, H. Yang, X. Chen, Expected discounted penalty function for a phase-type risk model with stochastic return on investment and random observation periods, Kybernetes, 47 (2018), 1420–1434. https://doi.org/10.1108/K-05-2017-0153 doi: 10.1108/K-05-2017-0153
![]() |
[12] |
E. C. Cheung, Z. Zhang, Periodic threshold-type dividend strategy in the compound Poisson risk model, Scand. Actuar. J., 2019 (2019), 1–31. https://doi.org/10.1080/03461238.2018.1481454 doi: 10.1080/03461238.2018.1481454
![]() |
[13] |
X. Peng, W. Su, Z. Zhang, On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy, J. Ind. Manag. Optim., 16 (2020), 1967–1986. https://doi.org/10.3934/jimo.2019038 doi: 10.3934/jimo.2019038
![]() |
[14] |
Z. Zhang, E. C. Cheung, H. Yang, On the compound Poisson risk model with periodic capital injections, Astin Bull., 48 (2018), 435–477. https://doi.org/10.1017/asb.2017.22 doi: 10.1017/asb.2017.22
![]() |
[15] |
H. U. Gerber, E. S. Shiu, On the time value of ruin, North Am. Actuar. J., 2 (1998), 48–72. https://doi.org/10.1080/10920277.1998.10595671 doi: 10.1080/10920277.1998.10595671
![]() |
[16] |
K. Hu, J. Li, J. Zhou, On the dual risk model with Parisian implementation delays under a mixed dividend strategy, Probab. Engrg. Inform. Sci., 37 (2023), 442–461. https://doi.org/10.1017/S0269964822000481 doi: 10.1017/S0269964822000481
![]() |
[17] |
Y. Yang, J. Xie, Z. Zhang, Nonparametric estimation of some dividend problems in the perturbed compound Poisson model, Probab. Engrg. Inform. Sci., 37 (2023), 418–441. https://doi.org/10.1017/s0269964822000298 doi: 10.1017/s0269964822000298
![]() |
[18] |
K. C. Yuen, G. Wang, Some ruin problems for a risk process with stochastic interest, N. Am. Actuar. J., 9 (2005), 129–142. https://doi.org/10.1080/10920277.2005.10596215 doi: 10.1080/10920277.2005.10596215
![]() |
[19] |
X. Chen, H. Ou, A compound Poisson risk model with proportional investment, J. Comput. Appl. Math., 242 (2013), 248–260. https://doi.org/10.1016/j.cam.2012.10.027 doi: 10.1016/j.cam.2012.10.027
![]() |
[20] |
L. Bo, R. Song, D. Tang, Y. Wang, X. Yang, Lévy risk model with two-sided jumps and a barrier dividend strategy, Insur. Math. Econ., 50 (2012), 280–291. https://doi.org/10.1016/j.insmatheco.2011.12.002 doi: 10.1016/j.insmatheco.2011.12.002
![]() |
[21] |
D. Gao, K. P. Sendova, Applications of the classical compound Poisson model with claim sizes following a compound distribution, Probab. Engrg. Inform. Sci., 37 (2023), 357–386. https://doi.org/10.1017/S0269964822000195 doi: 10.1017/S0269964822000195
![]() |
[22] |
E. C. Cheung, H. Liu, Joint moments of discounted claims and discounted perturbation until ruin in the compound Poisson risk model with diffusion, Probab. Eng. Inform. Sci., 37 (2022), 387–417. https://doi.org/10.1017/S0269964822000080 doi: 10.1017/S0269964822000080
![]() |
[23] |
C. Wang, N. Deng, S. Shen, Numerical method for a perturbed risk model with proportional investment, Mathematics, 11 (2023), 43. https://doi.org/10.3390/math11010043 doi: 10.3390/math11010043
![]() |
[24] | F. Stenger, Numerical Methods Based on Sinc and Analytic Functions, New York: Springer-Verlag, 1993. https://doi.org/10.1007/978-1-4612-2706-9 |
[25] | F. Stenger, Handbook of Sinc Numerical Methods, Boca Raton: CRC Press, 2011. https://doi.org/10.1201/b10375 |
[26] |
Y. Liu, X. Chen, W. Zhuo, Dividends under threshold dividend strategy with randomized observation periods and capital-exchange agreement, J. Comput. Appl. Math., 366 (2020), 112426. https://doi.org/10.1016/j.cam.2019.112426 doi: 10.1016/j.cam.2019.112426
![]() |
[27] |
Y. Wu, X. Wu, Linearized and rational approximation method for solving non-linear burgers' equation, Int. J. Numer. Meth. Fluids, 45 (2004), 509–525. https://doi.org/10.1002/fld.714 doi: 10.1002/fld.714
![]() |
[28] |
F. Stenger, Summary of sinc numerical methods, J. Comput. Appl. Math., 121 (2000), 379–420. https://doi.org/10.1016/s0377-0427(00)00348-4 doi: 10.1016/s0377-0427(00)00348-4
![]() |
[29] |
F. Dufresne, H. U. Gerber, The surpluses immediately before and at ruin, and the amount of the claim causing ruin, Insurance Math. Econom., 7 (1988), 193–199. https://doi.org/10.1016/0167-6687(88)90076-5 doi: 10.1016/0167-6687(88)90076-5
![]() |
[30] |
D. A. Zuanetti, C. A. Diniz, J. G. Leite, A lognormal model for insurance claims data, REVSTAT-Stat. J., 4 (2006), 131–142. https://doi.org/10.57805/revstat.v4i2.31 doi: 10.57805/revstat.v4i2.31
![]() |
[31] |
X. Xing, W. Zhang, Y. Jiang, On the time to ruin and the deficit at ruin in a risk model with double-sided jumps, Statist. Probab. Lett., 78 (2004), 82692–2699. https://doi.org/10.1016/j.spl.2008.03.034 doi: 10.1016/j.spl.2008.03.034
![]() |
[32] |
Z. Zhang, H. Yang, A generalized penalty function in the Sparre-Andersen risk model with two-sided jumps, Statist. Probab. Lett., 80 (2010), 597–607. https://doi.org/10.1016/j.spl.2009.12.016 doi: 10.1016/j.spl.2009.12.016
![]() |
[33] |
J. Xu, C. Wang, N. Deng, S. Wang, Numerical method for a risk model with two-sided jumps and proportional investment, Mathematics, 11 (2023), 1584. https://doi.org/10.3390/math11071584 doi: 10.3390/math11071584
![]() |
[34] |
H. Albrecher, H. U. Gerber, H. Yang, A direct approach to the discounted penalty function, North Am. Actuar. J., 14 (2010), 420–434. https://doi.org/10.1080/10920277.2010.10597599 doi: 10.1080/10920277.2010.10597599
![]() |
[35] |
E. C. Cheung, On a class of stochastic models with two-sided jumps, Queueing Syst., 69 (2011), 1–28. https://doi.org/10.1007/s11134-011-9228-z doi: 10.1007/s11134-011-9228-z
![]() |
[36] |
J. J. Rebello, K. Thampi, Some ruin theory components of two sided jump problems under renewal risk process, Int. Math. Forum, 12 (2017), 311–325. https://doi.org/10.12988/imf.2017.611147 doi: 10.12988/imf.2017.611147
![]() |
1. | Rishi Kumar Pandey, Kottakkaran Sooppy Nisar, Enhanced numerical techniques for solving generalized rotavirus mathematical model via iterative method and ρ-Laplace transform, 2024, 12, 26668181, 100963, 10.1016/j.padiff.2024.100963 | |
2. | Huda Alsaud, Muhammad Owais Kulachi, Aqeel Ahmad, Mustafa Inc, Muhammad Taimoor, Investigation of SEIR model with vaccinated effects using sustainable fractional approach for low immune individuals, 2024, 9, 2473-6988, 10208, 10.3934/math.2024499 | |
3. | Cicik Alfiniyah, Tutik Utami, Nashrul Millah, Reuben Iortyer Gweryina, Optimal control and stability analysis of an alcoholism model with treatment centers, 2025, 22150161, 103311, 10.1016/j.mex.2025.103311 |