Processing math: 45%
Research article

On weakly bounded well-filtered spaces

  • In [16], using Rudin sets, Miao, Li and Zhao introduced a new concept of weakly well-filtered spaces—k-bounded well-filtered spaces. Now, also using Rudin sets, we introduce another type of T0 spaces—weakly bounded well-filtered spaces, which are strictly stronger than k-bounded well-filtered spaces. Some basic properties of k-bounded well-filtered spaces and weakly bounded well-filtered spaces are investigated and the relationships among some kinds of weakly sober spaces and weakly well-filtered spaces are posed. It is proved that the category KBWF is not reflective in the category Top0.

    Citation: Xiaoyuan Zhang, Meng Bao, Xinpeng Wen, Xiaoquan Xu. On weakly bounded well-filtered spaces[J]. AIMS Mathematics, 2022, 7(9): 17026-17044. doi: 10.3934/math.2022936

    Related Papers:

    [1] Song Lunji . A High-Order Symmetric Interior Penalty Discontinuous Galerkin Scheme to Simulate Vortex Dominated Incompressible Fluid Flow. AIMS Mathematics, 2016, 1(1): 43-63. doi: 10.3934/Math.2016.1.43
    [2] Dong Pan, Huizhen Qu . Finite-time boundary synchronization of space-time discretized stochastic fuzzy genetic regulatory networks with time delays. AIMS Mathematics, 2025, 10(2): 2163-2190. doi: 10.3934/math.2025101
    [3] Ailing Zhu, Yixin Wang, Qiang Xu . A weak Galerkin finite element approximation of two-dimensional sub-diffusion equation with time-fractional derivative. AIMS Mathematics, 2020, 5(5): 4297-4310. doi: 10.3934/math.2020274
    [4] Tiantian Zhang, Wenwen Xu, Xindong Li, Yan Wang . Multipoint flux mixed finite element method for parabolic optimal control problems. AIMS Mathematics, 2022, 7(9): 17461-17474. doi: 10.3934/math.2022962
    [5] Zonghong Xiong, Wei Wei, Ying Zhou, Yue Wang, Yumei Liao . Optimal control for a phase field model of melting arising from inductive heating. AIMS Mathematics, 2022, 7(1): 121-142. doi: 10.3934/math.2022007
    [6] Şuayip Toprakseven, Seza Dinibutun . Error estimations of a weak Galerkin finite element method for a linear system of 2 coupled singularly perturbed reaction-diffusion equations in the energy and balanced norms. AIMS Mathematics, 2023, 8(7): 15427-15465. doi: 10.3934/math.2023788
    [7] Essam R. El-Zahar, Ghaliah F. Al-Boqami, Haifa S. Al-Juaydi . Piecewise approximate analytical solutions of high-order reaction-diffusion singular perturbation problems with boundary and interior layers. AIMS Mathematics, 2024, 9(6): 15671-15698. doi: 10.3934/math.2024756
    [8] Junchi Ma, Lin Chen, Xinbo Cheng . Virtual element method for the Laplacian eigenvalue problem with Neumann boundary conditions. AIMS Mathematics, 2025, 10(4): 8203-8219. doi: 10.3934/math.2025377
    [9] Zuliang Lu, Xiankui Wu, Fei Huang, Fei Cai, Chunjuan Hou, Yin Yang . Convergence and quasi-optimality based on an adaptive finite element method for the bilinear optimal control problem. AIMS Mathematics, 2021, 6(9): 9510-9535. doi: 10.3934/math.2021553
    [10] Lingling Sun, Hai Bi, Yidu Yang . A posteriori error estimates of mixed discontinuous Galerkin method for a class of Stokes eigenvalue problems. AIMS Mathematics, 2023, 8(9): 21270-21297. doi: 10.3934/math.20231084
  • In [16], using Rudin sets, Miao, Li and Zhao introduced a new concept of weakly well-filtered spaces—k-bounded well-filtered spaces. Now, also using Rudin sets, we introduce another type of T0 spaces—weakly bounded well-filtered spaces, which are strictly stronger than k-bounded well-filtered spaces. Some basic properties of k-bounded well-filtered spaces and weakly bounded well-filtered spaces are investigated and the relationships among some kinds of weakly sober spaces and weakly well-filtered spaces are posed. It is proved that the category KBWF is not reflective in the category Top0.



    Let Ω be a convex polygonal domain in R2. In this paper, we consider the following Dirichlet boundary optimal control problem,

    min{q} J(y,q)=12yˆy2L2(Ω)+α2q2L2(Γ) (1.1)

    subject to the advection-diffusion equation

    Δy(x)+β(x)y(x)+c(x)y(x)=f(x),xΩ, (1.2a)
    y(x)=q(x),xΓ. (1.2b)

    Here, y(x) denotes the state variable, ˆy(x) is the desired state, (1.2a) and (1.2b) are called the state equation, q(x) is the control, Γ=Ω.

    We assume the given functions f(x),ˆy(x)L2(Ω), β(x)[W1(Ω)]2, c(x)L(Ω) with the assumption

    c(x)12β(x)0,

    and α>0 is a given scalar.

    This problem is important in many applications, for example distribution of pollution in air [1] or water [2] and for problems in computational electro-dynamics, gas and fluid dynamics [3]. However, there are several challenges involved in solving this problem numerically. One problem arises for higher order elements and nonsmooth Dirichlet data which can cause serious problems in using standard finite element methods (see [4,5]). Another difficulty lies in the fact that Dirichlet boundary conditions do not enter the bilinear form naturally and that causes problems for analyzing the finite element method (see [6,7,8,9,10] for further discussion).

    One faces another challenge in the presence of layers which are the regions where the gradient of the solution is large. Usually, the boundary layers occur because of the fact that problem has reduced to the first order PDEs and requires boundary conditions on inflow part of the boundary only. In this case, standard Galerkin methods fail when h|β|>1, where h is mesh size, producing highly oscillatory solutions. A lot of research has been done in last 40 years to address this difficulty (see [3,4,11,12,13]).

    We have an example to illustrate this difficulty in the following simple example,

    Example 1.1.

    ϵy(x)+y(x)=1,x(0,1),y(0)=y(1)=0. (1.3)

    The Figure 1 shows nonphysical oscillations of the standard Galerkin solution for h=0.1 and ϵ=0.0025.

    Figure 1.  Standard Galerkin.

    One way to solve this problem is to use stabilized methods (see [14]). We will mention some of them. One of the first stable method of arbitrary order is SUPG (Streamline Upwind Petrov Galerkin) [11,15,16]. In this method, the space of test function is different from the space of trial function and chosen such that the method is stable and consistent. Other stabilized methods where the space of trial and test functions are the same and used upwind stabilization are HDG (Hybridizable Discontinuous Galerkin), [17,18,19,20,21], SIPG (Symmetric Interior Petrov Galerkin) [5,7,10], and LDG (Local Discontinuous Galerkin) [22,23,24]. Another popular stabilized method where the space of trial and test functions are the same is edge stabilization [25,26].

    DG methods are shown to be robust for the advection-diffusion-reaction problem (see [7,27]) even for the advection-dominated case. DG methods were not only analyzed for the advection-diffusion-reaction problem but also for the optimal control problem of the advection-diffusion-reaction equation [28], (see other stabilized methods for the optimal control problem of the advection-diffusion-reaction equation [26,29,30]). In addition to being stable, the discontinuous Galerkin methods, such as SIPG, usually treat the boundary conditions weakly. The SIPG method was also analyzed for distributed optimal control problems and optimal local and global error estimates were obtained (see [28] but not for the boundary control problems. We would like to investigate the performance of the SIPG method applied to Dirichlet boundary control problem (1.1), (1.2a) and (1.2b) and prove a priori error estimates. We would also like to perform a number of numerical experiments to confirm our theoretical result which is the main subject of the current work.

    In this paper, we analyze the SIPG solution of Dirichlet boundary control problem and the difficulties with dealing with the stability issues as well as with the difficulty of the treatment of Dirichlet boundary conditions. This method has some attractive features and offers some advantages. This method is stable and accurate, can be of arbitrary order and has been shown analytically that the boundary layers do not pollute the solution into the subdomain of smoothness [28]. Another attractive feature of the method is that Dirichlet boundary conditions are enforced weakly through the penalty term and not through the finite dimensional subspace [25]. As a result of the weak treatment of the boundary conditions, Dirichlet boundary control enters naturally into the bilinear form and makes analysis more natural [6,7,8,31]. Finally, the SIPG method has the property that two strategies optimize-then-discretize and discretize-then-optimize produce the same discrete optimality system (see [10,23]), which is not the case for other stabilized methods, for example, SUPG method (see [15]).

    Let us show some features of SIPG method with Figure 2 in the previous example. Consider the problem 1.3 in the example 1 with the much more smaller diffiusion parameter 109 instead of 0.0025. Figure 2 shows the behavior of the SIPG solution for h=0.1 and ϵ=1e9. As one can see the solution is stable. The Dirichlet boundary condition at x=1 is almost ignored by the method as a result of weak treatment.

    Figure 2.  SIPG method.

    Our choice of this particular DG method was motivated by good approximation and stabilization properties of the method. Additional attractive feature of the method is the weak treatment of the boundary conditions which allows us to set Dirichlet optimal control problem in natural the finite element frame work and to prove optimal convergence rates for on general convex polygonal domain. Moreover, we state the main result of the paper is valid for any general convex domain, there exists a positive constant C independent of h for the error between exact solution of the control function ˉq and its approximation ˉqh such that

    ˉqˉqhL2(Γ)Ch1/2(|ˉq|H1/2(Γ)+ˉyH1(Ω)+ˆyL2(Ω)),

    for h small enough. Also, we performed several numerical examples to support our theoretical results, and additionally when we investigate numerically performance of the method in the advection-dominated case.

    Throughout the paper, we will use standard notation for spaces, completeness and norms. We will use the standard notation for Lebesgue and Sobolev space, their suitable norms, and L2- inner product. Thus,

    (u,v)Ω=Ωuvdx and u,vΓ=Γuvds are the inner products on the domain Ω and its boundary Γ, respectively.

    The corresponding norms respectively are

    uL2(Ω)=(Ω|u|2dx)1/2,uL2(Γ)=(Γ|u|2)ds)1/2.

    H1/2(Γ)={uL2(Γ)|˜uH1(Ω):u=tr(˜u)}.

    uH1/2(Γ)=inf{˜uH1(Ω)|tr(˜u)=u}.

    |u|H1/2(Γ)=inf{|˜u|H1(Ω)|tr(˜u)=u}.

    First, let us consider the state equation,

    Δy+βy+cy=fin Ω,y=qon Γ. (2.1)

    We review some regularity results for various conditions on data which we will use later in the analysis. The first result is standard and found in [32].

    Theorem 2.1. Let fH1(Ω) and qH1/2(Γ). Then Eq (2.1) admits a unique solution yH1(Ω). Moreover, the following estimate holds

    yH1(Ω)C(fH1(Ω)+qH12(Γ)).

    In the case of q=0 on Γ, fL2(Ω), and convex Ω, we can obtain a higher regularity of the solution (see [33]).

    Theorem 2.2. Let fL2(Ω) and q=0 on Γ. Then, the Eq (2.1) admits a unique solution yH2(Ω) and the following estimate holds

    yH2(Ω)CfL2(Ω).

    Remark 2.1. Since the adjoint equation defined by

    Δz(βz)+cz=yˆyin Ωz=0on Γ,

    it is also an advection-diffusion equation and the results of the above theorems are valid for the adjoint equation with similar estimates as well. Also, notice that βz+(cβ)z=(βz)+cz.

    The theory in the case of qL2(Γ) is more technical and to obtain the desired regularity result, we use the transposition method [34], which we will briefly describe next.

    Suppose q is smooth enough having continuous derivatives up to the desired order, ϕL2(Ω) and let y1 and y2 be the solutions of the following equations,

    Δy1+βy1+cy1=0 in Ω,y1=qon Γ,andΔy2(βy2)+cy2=ϕin Ω,y2=0on Γ,

    respectively. Then, by the integration by parts and using the fact that y2=0 on Γ, we obtain

    0=(Δy1+βy1+cy1,y2)Ω=(y1,y2)Ωy1n,y2Γ+y1βn,y2Γ(y1,(βy2))Ω+(cy1,y2)Ω=(y1,y2)Ω(y1,(βy2))Ω+(y1,cy2)Ω=(y1,Δy2)Ω+y1,y2nΓ(y1,(βy2))Ω+(y1,cy2)Ω=(y1,Δy2(βy2)+cy2)Ω+y1,y2nΓ=(y1,ϕ)Ω+q,y2nΓ,

    where in the last step we use that Δy2(βy2)+cy2=ϕ in Ω and y1=q on Γ. Hence we obtain

    (y1,ϕ)Ω=q,y2nΓ.

    The above formula defines a mapping Λ:ϕy2n that is linear and continuous from L2(Ω) to H1/2(Γ). Since the embedding H1/2(Γ)L2(Γ) is compact, Λ is a compact operator from L2(Ω) to L2(Γ). Hence, its adjoint Λ is a compact operator from L2(Γ) to L2(Ω).

    Since (y1,ϕ)Ω=Γqy2n=q,ΛϕΓ and q,ΛϕΓ=(Λq,ϕ)Ω, we conclude that y1=Λq. Using the above, we can define an "ultra-weak" solution for the Eq (2.1) for Dirichlet data in L2(Γ) as follows.

    Definition 2.1. We say that yL2(Ω) is a unique ultra-weak solution of the Eq (2.1) if

    Ωyϕ=(f,p)(H1(Ω),H10(Ω))Γqpn,ϕL2(Ω),

    where p satisfies

    Δp(βp)+cp=ϕin Ω,p=0 on Γ.

    Now we are ready to provide the following regularity result.

    Theorem 2.3. For any fH1(Ω) and qL2(Γ), the Eq (2.1) admits a unique ultra-weak solution yL2(Ω). Moreover, the following estimate holds,

    yL2(Ω)C(fH1(Ω)+qL2(Γ)). (2.2)

    Proof. Existence follows from the Definition (2.1). For the uniqueness, we assume that y1 and y2 are distinct solutions of the Eq (2.1) and let u=y1y2, then

    Δu(βu)+cu=0in Ω,u=0on Γ.

    Since H1(Ω) is dense in L2(Ω), it is enough to consider uH1(Ω). By the Theorem (2.1), we have

    uH1(Ω)=0.

    As a result u=0, hence y1=y2 and this contradiction proves the uniqueness.

    To show the desired estimate (2.2), we use a duality argument. Let w be the solution of the problem

    Δw(βw)+cw=yin Ω,w=0on Γ.

    By using the above duality argument and using integration by parts and the fact that w=0 on Γ, we obtain

    y2L2(Ω)=(y,Δw(βw)+cw)Ω=(y,w)Ωy,wnΓy,w(βn)Γ+(βy,w)Ω+(y,cw)Ω=(Δy,w)Ω+yn,wΓy,wnΓy,w(βn)Γ+(βy,w)Ω+(y,cw)Ω=(Δy+βy+cy,w)Ωy,wnΓ=(f,w)Ωq,wnΓ,

    where in the last step we use Δy+βy+cy=f.

    By the trace and the Cauchy-Schwarz inequalities, and by using the Theorem (2.2), we have the following estimate

    y2L2(Ω)fH1(Ω)wH1(Ω)+qL2(Γ)wnL2(Γ)C(fH1(Ω)+qL2(Γ))wH2(Ω)C(fH1(Ω)+qL2(Γ))yL2(Ω).

    Canceling yL2(Ω) on both sides, we prove the desired estimate (2.2).

    Next we will provide the first order optimality conditions for the problem (1.1)

    Theorem 3.1. Assume that f,ˆyL2(Ω) and let (ˉy,ˉq) be the optimal solution of the Eq (2.1). Then, the optimal control ˉq is given by ˉzn=αˉq, where ˉz is the unique solution of the equation,

    Δˉz(βˉz)+cˉz=ˉyˆyin Ω,ˉz=0 on Γ. (3.1)

    Proof. Let (ˉy,ˉq) be an optimal solution of the Eq (1.1). We set

    F(q)=J(y(q),q),

    where y(q) is the solution of the Eq (2.1) for a given qL2(Γ). Let yq be the solution of the problem

    Δyq+βyq+cyq=f in Ω,yq=q+ˉqon Γ.

    By the optimality of (ˉy,ˉq) and convexity of Ω, we have that 1λ(F(ˉq+λq)F(ˉq))0 for all q and λ(0,1] [35]. For λ=1, yq=q+ˉq, and so F(ˉq+q)F(ˉq)0.

    Equivalently, if F(ˉq+q)F(ˉq)0 for all q in L2(Γ), then ˉq is an optimal solution of the problem. We find

    F(ˉq+q)F(ˉq)=J(yq,q+ˉq)J(ˉy,ˉq)=12Ω(yqˉy)(yq+ˉy2ˆy)+α2Γ(2qˉq+q2)=12Ω(yqˉy)2+α2Γq2+Ω(yqˉy)(ˉyˆy)+αΓqˉq.

    Let ˉz be the solution of the Eq (3.1). Then, we can estimate the third term of the right hand side by using the Green's formula and using the fact that yq=ˉq+q and ˉz=0 on Γ. Thus, we obtain

    Ω(yqˉy)(ˉyˆy)=Ω(yqˉy)(Δˉz(βˉz)+cˉz)=Γˉzn(yqˉq)+Ωˉz(yqˉy)Γ(yqˉy)ˉz(βn)+Ωˉz(β(yqˉy))+Ω(yqˉy)cˉz=Γˉzn(ˉq+qˉq)+Ωˉz(yqˉy)+Ωˉz(β(yqˉy))+Ω(yqˉy)cˉz=Γqˉzn+(yqnˉyn)ˉz|Γ+Ωˉz(Δ(yqˉy)+β(yqˉy)+c(yqˉy))=0.

    Notice that Ωˉz(yqˉy)=(yqnˉyn)ˉz|ΓΩˉzΔ(yqˉy) by using integration by parts. By setting ˉzn=αˉq, we have

    Ω(yqˉy)(ˉyˆy)=Γqˉzn=αΓqˉq.

    Putting all results together, we have

    F(ˉq+q)F(ˉq)=12Ω(yqˉy)2+α2Γq2αΓqˉq+αΓqˉq=12Ω(yqˉy)2+α2Γq20,

    i.e., (ˉy,ˉq) is the optimal solution to the Eq (2.1) with ˉq=1αˉzn where α>0 given any scalar in the problem (1.1)

    The first order optimality conditions in the strong form are as the following

    Adjoint equation{Δzβz+(cβ)z=yˆyinΩ,z=0 onΓ. (3.2)
    Gradient equation{zn=αqonΓ, (3.3)
    State equation{Δy+βy+cy=finΩ,y=qonΓ. (3.4)

    In the next theorem, we establish the regularity of the optimal solution of the problem (1.2a) and (1.2b).

    Theorem 3.2. Let (ˉy,ˉq)L2(Ω)×L2(Γ) be the optimal solution to the optimization problem (1.1) subject to the problem (1.2a) and (1.2b), and ˉz be the optimal adjoint state (3.1). Then,

    (ˉy,ˉq,ˉz)H1(Ω)×H1/2(Γ)×H2(Ω).

    Proof. For ˉqL2(Γ), from the state Eq (3.4), ˉyL2(Ω) holds by Theorem (2.3).

    Since ˉy,ˆyL2(Ω) and Ω is a convex domain, from the adjoint Eq (3.2), ˉzH2(Ω) holds by Theorem (2.2).

    Since ˉzH2(Ω), we have ˉznH1/2(Γ), from the gradient Eq (3.3), ˉzn=αq implies ˉqH1/2(Γ).

    Since ˉqH1/2(Γ), from the state Eq (3.4), ˉyH1(Ω) holds by Theorem (2.1).

    Remark 3.1. Using regularity results, we can generalize the regularity which depends on the largest interior angle of the polygonal domain in R2 [36].

    The idea of the FEM is to construct Vh and Qh defined on a finite dimensional space that is well approximate the solution spaces V and Q. The Galerkin FEM is to find yhVh and qhQh such that

    ah(yh,vh)=h(f;qh,vh),vhVh, (4.1)

    where Vh is a finite dimensional space and h is a discretization parameter. We can easily see that if ah(,) satisfies the conditions of Lax-Milgram Lemma, the Eq (4.1) has a unique solution for each h.

    To construct Vh, we consider a family of conforming quasi-uniform shape regular triangulations Th of Ω such that ˉΩ=τiThτi and τiτj=0 τi,τjTh, ij with a mesh size

    h=supτiThdiam(τi).

    We define Eh as a collection of all edges Eh=E0hEh where E0h and Eh are the collections of interior and boundary edges, respectively, and we decompose the boundary edges as

    Eh=E+hh, (4.2)

    where Eh:={eEh:e{xΓ:β(x)n(x)<0}} and E+h:=EhEh i.e. these are the collections of the edges that belong to the inflow and outflow part of the boundary, respectively. In other words, for a given elements τTh and nτ indicates the outward normal to τ, then we can decompose its boundary τ as τ={xτ:β(x)nτ(x)<0} and τ+={xτ:β(x)nτ(x)0}.

    We define the standard jumps and averages on the set of interior edges by

    {φ}=φ1+φ22,[[φ]]=φ1n1+φ2n2,{ϕ}=ϕ1+ϕ22,[[ϕ]]=ϕ1n1+ϕ2n2,

    where n1 and n2 are outward normal vectors at the common boundary edge of neighboring elements τ1 and τ2, respectively. If eEh, then {φ}=[[φ]]=φ|e [37,38]. Define the discrete state and control spaces as

    Vh:={yhL2(Ω):yh|τPk(τ)τTh}, (4.3)
    Qh:={qhL2(Γ):qh|τPl(τ)τEh}, (4.4)

    respectively. We denote by Pk, Pl the space of polynomials of degree at most k on each element and at most l on each edge, respectively. In general, the state and control variables can be approximated by polynomials of different degrees k, lN.

    Here, we use the symmetric interior penalty Galerkin (SIPG) method to approximate to the problem. In deriving the SIPG method, we use the following identity

    τTh(ϕn,φ)τ=eEh({ϕ},[[φ]])e+eE0h([[ϕ]],{φ})e=eE0h({ϕ},[[φ]])e+([[ϕ]],{φ})e+eEh(ϕn,φ)e.

    The SIPG solutions qhQh, yhVh and a constant advection field β satisfies the Eq (4.1) for all vhVh where

    ah(yh,vh)=τTh(yh,vh)τ +τTh(βyh+cyh,vh)τ+eEh[γh([[yh]],[[vh]])e({yh},[[vh]])e([[yh]],{vh})e]+eE0h(y+hyh,|nβ|v+h)e+eEh(y+h,v+h|nβ|)e, (4.5)

    where γ is the penalty parameter, which should be chosen sufficiently large to ensure the stability of the SIPG scheme [37,39,40], and yh=limζ0+yh(xζβ), y+h(x)=limζ0+yh(x+ζβ),

    h(f;qh,vh)=τTh(f,vh)τ+eEh(γh(qh,[[vh]])e(qh,{vh})e)+eEh(qh,v+h|nβ|)e. (4.6)

    Then, DG solution is defined as a solution of ah(yh,vh)=h(f;qh,vh) for al all vhVh, and mesh dependent norm

    |||vh|||2=vh2h=τThvh2τ+vh2τ+eEhγh[[vh]]2e,

    which is equivalent to the energy norm [38].

    It has been shown, for example [7], that the bilinear form (4.5) is coercive and bounded on Vh i.e., ah(vh,vh)C|||vh|||2 and ah(yh,vh)C|||yh||||||vh|||, respectively. Thus, Lax-Milgram Lemma guarantees the existence of a unique solution yhVh of the Eq (4.1) for all vhVh.

    We apply the SIPG discretization to the optimal control problem (1.1). Now, define the discrete Lagrangian as

    Lh(ˉyh,ˉqh,ˉzh)=J(ˉyh,ˉqh)+ah(ˉyh,ˉzh)h(f,ˉqh).

    Then, setting the partial Frechet derivatives with respect to yh,qh and zh to be zero, we obtain the discrete optimality system.Then, the discretized optimal control problem has a unique solution (yh,qh)VhxQh if only if there exists zhVh holds the following system:

    Lhˉyhψh=0ah(ψh,ˉzh)=h(ˆyˉyh;0,ψh)ψhVh, (4.7)
    Lhˉqhϕh=0ˉzhn,ϕhΓ=αˉqh,ϕhΓ+γhˉzh,ϕhΓ+ˉzh|nβ|,ϕhΓ  ϕhQh, (4.8)
    Lhˉzhφh=0ah(φh,ˉyh)=h(f;qh,φh)φhVh. (4.9)

    We will need some auxiliary estimates that we will use in the proof of the main result. First, we have some standard estimates which are trace and inverse inequalities and the proofs can be found in [41,42,43].

    Lemma 5.1. There exist positive constants Ctr and Cinv independent of τ and h such that for τTh,

    vτCtr(h1/2vτ+h1/2vτ),vHk+1(τ), (5.1)
    vhτCinvh1vhτ,vhVh, (5.2)

    for integer k0

    Then, we need some basic estimates for L2-Projection where Ph:L2(Ω)Vh is the orthogonal projection such that (Phv,χ)τ=(v,χ)τ for all vL2(τ) and χVh.

    Lemma 5.2. Let Ph be L2-projection. Then, we have that Ph:Hk+1Vh such that for any τTh,

    vPhvL2(τ)Chk+1vHk+1(τ),vHk+1(τ),(vPhv)L2(τ)ChkvHk+1(τ),vHk+1(τ),

    where integer k0.

    Proof. From Local Approximation used in [30], we know that there exists a local interpolant operator Ph:Hk+1Vh such that for any τTh and vHk+1(τ),

    h(vPh(v))τ+vPh(v)τChk+1vHk+1(τ).

    Since h(vPh(v))τh(vPh(v))τ+vPh(v)τChk+1vHk+1(τ), we have

    h(vPh(v))τChk+1vHk+1(τ).

    Thus,

    (vPhv)L2(τ)ChkvHk+1(τ).

    Likewise, we obtain vPhvL2(τ)Chk+1vHk+1(τ).

    Now, we are ready to show the error estimate of SIPG solution in the energy norm.

    Lemma 5.3. Let v be the unique solution of the Eq (2.1) to satisfy vHk+1(Ω) and vhVh be the SIPG solution of the discretized state equation with piecewise polynomials of degree k. Then,

    |||vvh|||ChkvHk+1(Ω),

    for integer k0.

    The proof can be easily seen by using the well-posedness of the bilinear form (4.5), Lemmas (5.1) and (5.2), and it can be also found for example in [44,45]. Next, we will need the estimate of L2-Projection on the boundary Γ where Ph:L2(Γ)Qh is defined by qPhq,ϕhe=0 for all ϕhPs(e).

    Lemma 5.4. Let Ph be L2projection defined on the boundary. Then, for any edge eEh,

    qPqL2(e)+hsqPqWs,p(e)hs|q|Ws,p(e)eEh,

    where Eh is the set of boundary edges which is described in the Eq (4.2), qWs,p(e), 0s1, and 1<p<.

    The proof can be found in [6].

    Note that Lemmas (5.1)–(5.4) state for general reqularity which depends on the polynomial degree k used in SIPG, the regularity on the solution of the optimal control problem is (ˉy,ˉq,ˉz)H1(Ω)×H1/2(Γ)×H2(Ω) by Theorem (3.2). Thus, the following estimates and the main result will be done by using the regularity on the solution of the problem in Theorem (3.2).

    Since SIPG method treats the boundary conditions weakly, SIPG solution is not zero on the boundary even if its continuous solution z is. However, the following result says that the norm of SIPG solution zh on the boundary is rather small.

    Lemma 5.5. Let us define auxiliary variable ˜z to be a solution of the Eq (3.2)

    Δ˜z(β˜z)+c˜z=ˆyyh in Ω˜z=0on Γ,

    and ˜zhVh be the SIPG approximation solution. Then,

    ˜zhL2(Γ)Ch3/2ˆyyhL2(Ω).

    Proof. Let ˜z be a solution to the Eq (3.2). Since

    ˜zhL2(Γ)=˜zh˜zL2(Γ)=[[˜zh˜z]]L2(Γ),

    we can estimated that

    [[˜zh˜z]]L2(Γ)Ch1/2|||˜zh˜z|||,

    by using the definition of the energy norm. Thus, by Theorems (2.2), (3.2) and Lemma (5.3), we have that

    ˜zhL2(Γ)Ch1/2|||˜zh˜z|||Ch1/2h˜zH2(Ω)Ch3/2ˆyyhL2(Ω).

    The estimate of |||yyh||| is more involved because (yyh) does not satisfy the Galerkin orthogonality by (yyh)Vh and ah(yyh,vh)0 for vhVh. First, we can show the following result.

    Lemma 5.6. Let y and yh satisfy

    \begin{aligned} a_{h}(y, v)& = \ell_{h}(f;q, v), \quad\ \forall v\in H^1(\Omega), \\ a_{h}(y_{h}, \chi)& = \ell_{h}(f;q_{h}, \chi), \qquad\forall\chi\in V_{h}. \end{aligned}

    Then,

    {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} \le C(h^{-1/2}\|q-q_{h}\|_{L^2(\Gamma)} + \|y\|_{H^1(\Omega)}).

    Proof. By the coersivity, adding and subtracting P_{h}y , we have

    {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^2\le a_{h}(y-y_{h}, y-y_{h}) = \underbrace{a_{h}(y-y_{h}, P_{h}y-y_{h})}_{I} + \underbrace{a_{h}(y-y_{h}, y-P_{h}y)}_{II}.

    II:

    By using the boundedness of a_{h}(., .) , Theorem (3.2) and Lemma ( 5.3 ), k = 0 and we obtain

    a_{h}(y-y_{h}, y-P_{h}y)\le{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-P_{h}y} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le C{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert { y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\|y\|_{H^1(\Omega)}.

    I:

    Since (P_{h}y-y_{h})\in V_{h} , we have a_{h}(y-y_{h}, P_{h}y-y_{h}) = \ell_{h}(0;q-q_{h}, P_{h}y-y_{h}). Then, we have

    \begin{aligned} \ell_{h}(0;q-q_{h}, P_{h}y-y_{h})& = \sum\limits_{e\in E_{h}^{\partial}}(\frac{\gamma}{h}(q-q_{h}, [[P_{h}y-y_{h}]])_{e}-(q-q_{h}, \{\nabla (P_{h}y-y_{h})\})_{e})\\ &+\sum\limits_{e\in E_{h}^{-}}(q-q_{h}, (P_{h}y-y_{h})^{+}|\vec n\cdot\vec\beta|)_{e}. \end{aligned}

    By the definition of \ell_{h}(, ) , we can see that \sum_{e}\frac{\gamma}{h}(q-q_{h}, [[P_{h}y-y_{h}]])_{e} is the dominating term by being \frac{\gamma}{h} large. Using the fact that \|[[P_{h}y-y_{h}]]\|_{L^2(\Gamma)} is a part of the energy norm and Lemma ( 5.3 ) for k = 0 since y\in H^1(\Omega) , we have

    \begin{aligned} &\ell_{h}(0;q-q_{h}, P_{h}y-y_{h})\le C\sum\limits_{e}\frac{\gamma}{h}(q-q_{h}, [[P_{h}y-y_{h}]])_{e}\\ &\le Ch^{-1}\left(\sum\limits_{e}\|q-q_{h}\|^2_{L^2(e)}\right)^{1/2}\left(\sum\limits_{e}\|[[P_{h}y-y_{h}]]\|^2_{L^2(e)}\right)^{1/2}\\ &\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}\|[[P_{h}y-y_{h}]]\|_{L^2(\Gamma)}\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}h^{1/2}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {P_{h}y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\\ &\le Ch^{-1/2}\|q-q_{h}\|_{L^2(\Gamma)}( {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {P_{h}y-y} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} + {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert})\\ &\le Ch^{-1/2}\|q-q_{h}\|_{L^2(\Gamma)}( \|y\|_{H^1(\Omega)} + {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}). \end{aligned}

    The other terms in \ell_{h}(0;q-q_{h}, P_{h}y-y_{h}) can be estimated with the similar way. Thus,

    \begin{aligned} &{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^2\le I+II\\ &\le C\|y\|_{H^1(\Omega)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}+Ch^{-\frac{1}{2}}\|q-q_{h}\|_{L^2(\Gamma)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}+Ch^{-\frac{1}{2}}\|q-q_{h}\|_{L^2(\Gamma)}\|y\|_{H^1(\Omega)}\\ &\le\frac{1}{4}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}^2 + Ch^{-1}\|q-q_{h}\|^{2}_{L^2(\Gamma)} + C\|y\|^2_{H^1(\Omega)}. \end{aligned}

    By first taking the square root and then canceling {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} , we obtain

    {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le C(h^{-1/2}\|q-q_{h}\|_{L^2(\Gamma)} + \|y\|_{H^1(\Omega)}).

    Using a duality, we can show better estimate in L^2 norm.

    Lemma 5.7. Let y be the solution of the Eq (2.1) and y_{h} in V_{h} satisfy the bilinear form ( 4.5 ). Then,

    \|y-y_{h}\|_{L^2(\Omega)}\le C(h^{1/2}\|q-q_{h}\|_{L^2(\Gamma)} + h\|y\|_{H^1(\Omega)}).

    Proof. Since y_{h} is not a Galerkin projection of y , let us define \tilde y_{h} by a_{h}(y-\tilde y_{h}, \chi) = 0 for \chi\in V_{h}. Then, by the triangle inequality, we have

    \|y-y_{h}\|^2_{L^2(\Omega)}\le\underbrace{\|y-\tilde{y}_{h}\|^2_{L^2(\Omega)}}_{K_{1}} + \underbrace{\|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)}}_{K_{2}}.

    K_{1}

    Consider the following equation,

    \begin{aligned} -\Delta t-\nabla\cdot(\vec{\beta} t)+ct& = y-\tilde {y}_{h}\ \text{in}\ \Omega\\ t& = 0\qquad\ \text{on}\ \Gamma. \end{aligned}

    By the boundedness of the bilinear form and using the Galerkin orthogonality,

    \begin{aligned} \|y-\tilde{y}_{h}\|^2_{L^2(\Omega)}& = a_{h}(y-\tilde{y}_{h}, t)\\ & = a_{h}(y-\tilde{y}_{h}, t-P_{h}t) + \underbrace{a_{h}(y-\tilde{y}_{h}, P_{h}t)}_{ = 0}\\ &\le C{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {t-P_{h}t} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}.{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-\tilde{y}_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le Ch\|t\|_{H^2(\Omega)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert { y-\tilde{y}_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}.\\ \end{aligned}

    By using Theorem ( 2.2 ) and Lemma ( 5.3 ), we obtain

    \begin{aligned} K_{1}&\le Ch\|y-\tilde{y}_{h}\|_{L^2(\Omega)}\|y\|_{H^1(\Omega)}\le \frac{1}{4}\|y-\tilde{y}_{h}\|^2_{L^2(\Omega)} +Ch^2\|y\|^2_{H^1(\Omega)}. \end{aligned}

    By canceling \|y-\tilde{y}_{h}\|^2_{L^2(\Omega)} , we obtain that

    K_{1}\le Ch^2\|y\|^2_{H^1(\Omega)}.

    K_{2}:

    Let us define another dual equation,

    \begin{aligned} -\Delta v-\nabla\cdot(\vec{\beta}v)+cv& = \tilde y_{h}-y_{h}\quad \text{in}\ \Omega\\ v& = 0\qquad\qquad\text{on}\ \Gamma. \end{aligned}
    \begin{aligned} \|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)}& = a_{h}(\tilde{y}_{h}-y_{h}, v)\\ & = \underbrace{a_{h}(\tilde{y_{h}}-y, v)}_{K_{21}} + \underbrace{a_{h}(y-y_{h}, v)}_{K_{22}}. \end{aligned}

    K_{21}:

    Likewise K_{1} ,

    \begin{aligned} K_{21}& = a_{h}(\tilde y_{h}-y, v) = a_{h}(\tilde{y}_{h}-y, v-P_{h}v) + \underbrace{a_{h}(\tilde y_{h}-y, P_{h}v)}_{ = 0}\\ &\le C{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {v-P_{h}v} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {\tilde{y}_{h}-y} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le Ch\|v\|_{H^2(\Omega)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {\tilde{y}_{h}-y} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}. \end{aligned}

    By using Theorem (2.2) and Lemma (5.3), we obtain

    K_{21}\le Ch\|\tilde y_{h}-y_{h}\|_{L^2(\Omega)}\|y\|_{H^1(\Omega)}.

    K_{22}:

    K_{22} = a_{h}(y-y_{h}, v) = \underbrace{a_{h}(y-y_{h}, v-P_{h}v)}_{K_{221}} + \underbrace{a_{h}(y-y_{h}, P_{h}v)}_{K_{222}}.

    By using the boundedness of the bilinear form, Theorem ( 2.2 ) and Lemma ( 5.3 ),

    \begin{aligned} K_{221}& = a_{h}(y-y_{h}, v-P_{h}v)\le C{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {v-P_{h}v} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} \le Ch\|v\|_{H^2(\Omega)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\\ & \le Ch\|\tilde{y}_{h}-y_{h}\|_{L^2(\Omega)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}.\\ \end{aligned}

    By using Lemma ( 5.6 ), we obtain

    \begin{aligned} K_{221}&\le Ch\|\tilde y_{h}-y_{h}\|_{L^2(\Omega)}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {y-y_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\\ &\le Ch\|\tilde y_{h}-y_{h}\|_{L^2(\Omega)}(h^{-1/2}\|q-q_{h}\|_{L^2(\Gamma)} +\|y\|_{H^1(\Omega)}) \\ &\le C\|\tilde{y}_{h}-y_{h}\|_{L^2(\Omega)}(h^{1/2}\|q-q_{h}\|_{L^2(\Gamma)} + h\|y\|_{H^1(\Omega)}). \end{aligned}

    K_{222}:

    Using the fact that v = 0 on \Gamma , Theorems ( 2.2 ), ( 3.2 ) and Lemma ( 5.3 ), we have that

    \begin{aligned} K_{222}& = a_{h}(y-y_{h}, P_{h}v) = \ell_{h}(0;q-q_{h}, P_{h}v)\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}\|P_{h}v\|_{L^2(\Gamma)}\\ &\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}\|[[P_{h}v-v]]\|_{L^2(\Gamma)}\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}h^{1/2}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {P_{h}v-v} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\\ &\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}h^{1/2}h\| v\|_{H^2(\Omega)}\le Ch^{-1}\|q-q_{h}\|_{L^2(\Gamma)}h^{3/2}\|\tilde y_{h}-y_{h}\|_{L^2(\Omega)}. \end{aligned}

    Then, we obtain

    K_{222}\le Ch^{1/2}\|q-q_{h}\|_{L^2(\Gamma)}\|\tilde y_{h}-y_{h}\|_{L^2(\Omega)}.

    Thus, we have

    \begin{aligned} \|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)}&\le K_{21} +\underbrace{K_{22}}_{K_{221}+ K_{222}} \\ &\le Ch^2\|y\|_{H^1(\Omega)}+ C\|\tilde{y}_{h}-y_{h}\|_{L^2(\Omega)}\big(h^{1/2}\|q-q_{h}\|_{L^2(\Gamma)} + h\|y\|_{H^1(\Omega)}\big)\\ &\le \frac{1}{4}\|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)}+ Ch^2\|y\|^2_{H^1(\Omega)}+ Ch\|q-q_{h}\|^2_{L^2(\Gamma)}.\\ \end{aligned}

    By canceling \|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)} , we obtain

    \|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)}\le Ch^2\|y\|^2_{H^1(\Omega)}+ Ch\|q-q_{h}\|^2_{L^2(\Gamma)}.

    Finally, we obtain

    \begin{aligned} \|y-y_{h}\|^2_{L^2(\Omega)}&\le\|y-\tilde{y}_{h}\|^2_{L^2(\Omega)} + \|\tilde{y}_{h}-y_{h}\|^2_{L^2(\Omega)}\\ &\le C(h\|q-q_{h}\|^2_{L^2(\Gamma)}+h^2\|y\|^2_{H^1(\Omega)}). \end{aligned}

    By taking the square root, we conclude

    \|y-y_{h}\|_{L^2(\Omega)}\le C(h^{1/2}\|q-q_{h}\|_{L^2(\Gamma)} + h\|y\|_{H^1(\Omega)}).

    Now, we are ready to prove the main result of the paper. We will state it in the next theorem.

    Theorem 5.1. Let \Omega be a convex polygonal domain, \bar q be the optimal control of the problem (1.1) and \bar{q}_{h} be its optimal SIPG solution. Then, for h sufficiently small, there exists a positive constant C independent of h such that

    \begin{equation} \|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\le Ch^{1/2}\big(|\bar q|_{H^{1/2}(\Gamma)} + \|\bar y\|_{H^1(\Omega)} +\|\hat y\|_{L^2(\Omega)}\big), \end{equation} (5.3)

    where (\bar y, \bar q, \bar z) \in H^1(\Omega)\times H^{1/2}(\Gamma)\times H^2(\Omega) and \hat y\in L^2(\Omega) .

    Proof. Since \bar q is the optimal solution of the problem (1.1) and \bar q satisfies the Eq (3.3) , we have

    \begin{equation} \alpha\langle \bar q, \phi_{h}\rangle_{\Gamma}+\langle\phi_{h}, \frac{\partial\bar z}{\partial n}\rangle_{\Gamma} = 0, \quad \forall \mathit{ ϕ}_{h}\in Q_{h} . \end{equation} (5.4)

    Since \bar q_{h} is the approximate solution of the problem (1.1) and \bar q_{h} satisfies the Eq (4.8) , we have

    \begin{equation} \alpha\langle \bar q_{h}, \phi_{h}\rangle_{\Gamma}+\langle\phi_{h}, \frac{\partial\bar z_{h}}{\partial n}\rangle_{\Gamma}-\frac{\gamma}{h}\langle\phi_{h}, \bar z_{h}\rangle_{\Gamma}-\langle\bar z_{h}|\vec{n}\cdot\vec{\beta}|, \phi_{h}\rangle_{\Gamma^{-}} = 0, \quad \forall \mathit{ ϕ}_{h}\in\ Q_{h} . \end{equation} (5.5)

    Subtracting the Eq (5.4) from the Eq (5.5) , for any \phi_{h}\in Q_{h} , we have

    \begin{equation} \begin{aligned} \alpha\langle\bar q-\bar q_{h}, \phi_{h}\rangle_{\Gamma}+\langle\phi_{h}, \frac{\partial(\bar z-\bar z_{h})}{\partial n}\rangle_{\Gamma}+\frac{\gamma}{h}\langle\phi_{h}, \bar z_{h}\rangle_{\Gamma}+\langle\bar z_{h}|\vec{n}\cdot\vec{\beta}|, \phi_{h}\rangle_{\Gamma^{-}} = 0 . \end{aligned} \end{equation} (5.6)

    Taking \phi_{h} = P^{\partial}_{h}(\bar q-\bar q_{h}) = P^{\partial}_{h}\bar q-P^{\partial}_{h}\bar q_{h} = P^{\partial}_{h}\bar q-\bar q_{h} in the Eq (5.6) and splitting

    P^{\partial}_{h}\bar q-\bar q_{h} = (P^{\partial}_{h}\bar q-\bar q)+(\bar q-\bar q_{h}),

    we obtain

    \begin{equation} \begin{aligned} \alpha\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)}& = \alpha\langle\bar q-\bar q_{h}, \bar q-\bar q_{h}\rangle\\ &\le\boxed{\alpha\langle\bar q-\bar q_{h}, P^{\partial}_{h}\bar q-\bar q\rangle_{\Gamma}}_{J_{1}}+\boxed{\langle P^{\partial}_{h}\bar q-\bar q, \frac{\partial (\bar z-\bar z_{h})}{\partial n}\rangle_{\Gamma}}_{J_{2}}\\ &+\boxed{\frac{\gamma}{h}\langle P^{\partial}_{h}\bar q-\bar q, \bar z_{h}\rangle_{\Gamma}}_{J_{3}}+\boxed{\langle P^{\partial}_{h}\bar q-\bar q, \bar z_{h}|\vec{n}\cdot\vec{\beta}|\rangle_{\Gamma^{-}}}_{J_{4}}\\ &+\boxed{\langle \bar q-\bar q_{h}, \frac{\partial (\bar z-\bar z_{h})}{\partial n}\rangle_{\Gamma}}_{J_{5}}+\boxed{\frac{\gamma}{h}\langle \bar q-\bar q_{h}, \bar z_{h}\rangle_{\Gamma}}_{J_{6}}\\ &+\boxed{\langle \bar q-\bar q_{h}, \bar z_{h}|\vec{n}\cdot\vec{\beta}|\rangle_{\Gamma^{-}}}_{J_{7}}\\ & = J_{1}+J_{2}+J_{3}+J_{4}+J_{5}+J_{6}+J_{7}.\\ \end{aligned} \end{equation} (5.7)

    Now, we shall estimate each term separately. Most terms can be estimated by using the estimate of the L^2 -projection. However, the term (\bar z- \bar z_{h}) in J_{2} and J_{5} is not in the discrete space, so additional arguments are needed to treat these terms.

    Estimate for J_{1} : By the Cauchy-Schwarz inequality and using Lemma (5.4) ,

    \begin{aligned} J_{1} = \alpha\langle \bar q-\bar q_{h}, P^{\partial}_{h}\bar q-\bar q\rangle_{\Gamma}&\le \alpha\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\|P^{\partial}_{h}\bar q-\bar q\|_{L^2(\Gamma)}\\ &\le C_{1}h^{1/2}|\bar q|_{H^{1/2}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}, \end{aligned}

    where C_{1} depends on \alpha .

    Estimates for J_{3} and J_{6} : Using Lemma (5.5) to estimate \|\bar z_{h}\|_{L^2(\Gamma)} , the Cauchy-Schwarz inequality, Lemma (5.7) and the regularity of \bar y , then we have

    \begin{aligned} J_{3}& = \frac{\gamma}{h}\langle P^{\partial}_{h}\bar q-\bar q, \bar z_{h}\rangle_{\Gamma}\le\frac{\gamma}{h}\|P^{\partial}_{h}\bar q-\bar q\|_{L^2(\Gamma)}\|\bar z_{h}\|_{L^2(\Gamma)}.\\ &\le C_{3}h^{-1}h^{1/2}|\bar q|_{H^{1/2}(\Gamma)}h^{3/2}\|\hat y-\bar y_{h}\|_{L^2(\Omega)}\\ &\le C_{3}h|\bar q|_{H^{1/2}}\|\hat y-\bar y_{h}\|_{L^2(\Omega)}\le C_{3}h|q|_{H^{1/2}}(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+\|\bar y-\bar y_{h}\|_{L^2(\Omega)})\\ &\le C_{3}h|q|_{H^{1/2}}(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}). \end{aligned}

    Likewise,

    \begin{aligned} J_{6}& = \frac{\gamma}{h}\langle \bar q-\bar q_{h}, \bar z_{h}\rangle_{\Gamma}\le\frac{\gamma}{h}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\|\bar z_{h}\|_{L^2(\Gamma)}\\ &\le C_{6}h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\|\hat y-\bar y_{h}\|_{L^2(\Omega)}\\ &\le C_{6}h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\big(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+\|\bar y-\bar y_{h}\|_{L^2(\Omega)}\big)\\ &\le C_{6}h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\big(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}\big), \end{aligned}

    where C_{3} and C_{6} depend on \gamma .

    Estimates for J_{4} and J_{7} : By using the Cauchy-Schwarz inequality, Lemmas ( 5.5 ) and (5.7), we have

    \begin{aligned} J_{4}& = \langle P^{\partial}_{h}\bar q-\bar q, \bar z_{h}|\vec{n}\cdot\vec{\beta}|\rangle_{\Gamma^{-}}\le C_{4}h^{1/2}|\bar q|_{H^{1/2}(\Gamma)}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\|\bar z_{h}\|_{L^2(\Gamma)}\\ &\le C_{4}h^2|q|_{H^{1/2}(\Gamma)}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\|\hat y-\bar y_{h}\|_{L^2(\Omega)}\\ &\le C_{4}h^2|\bar q|_{H^{1/2}(\Gamma)}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\big(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+\|\bar y-\bar y_{h}\|_{L^2(\Omega)}\big)\\ &\le C_{4}h^2|\bar q|_{H^{1/2}(\Gamma)}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\big(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}\big). \end{aligned}

    Likewise,

    \begin{aligned} J_{7}& = \langle\bar q-\bar q_{h}, \bar z_{h}|\vec{n}\cdot\vec{\beta}|\rangle_{\Gamma^{-}}\le C_{7}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\|\bar z_{h}\|_{L^2(\Gamma)}\\ &\le C_{7}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}h^{3/2}\|\hat y-\bar y_{h}\|_{L^2(\Omega)}\\ &\le C_{7}h^{3/2}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\big(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+\|\bar y-\bar y_{h}\|_{L^2(\Omega)}\big)\\ &\le C_{7}h^{3/2}\|\beta\|^{1/2}_{L^{\infty}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\big(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}\big). \end{aligned}

    Estimate for J_{5} : By the Cauchy-Schwarz inequality,

    J_{5} = \langle \bar q-\bar q_{h}, \frac{\partial (\bar z-\bar z_{h})}{\partial n}\rangle_{\Gamma}\le\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\|\frac{\partial (\bar z-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)}.

    Let us define \tilde {z}_{h}\in V_{h} to be the SIPG solution to \bar z i.e. a_{h}(\chi, \tilde z_{h}) = (\hat y-\bar y, \chi) , \forall\chi\in V_{h} .

    In particular, a_{h}(\chi, \bar z-\tilde{z}_{h}) = 0 by the Galerkin orthogonality. Thus, we continue as following,

    \langle \bar q-\bar q_{h}, \frac{\partial(\bar z-\bar z_{h})}{\partial n}\rangle_{\Gamma}\le\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\left(\underbrace{\|\frac{\partial (\bar z-\tilde{z}_{h})}{\partial n}\|_{L^2(\Gamma)}}_{J_{51}}+\underbrace{\|\frac{\partial (\tilde{z}_{h}-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)}}_{J_{52}}\right).

    J_{51} :

    By the triangle inequality, we have

    \|\frac{\partial (\bar z-\tilde{z}_{h})}{\partial n}\|_{L^2(\Gamma)}\le\underbrace{\|\frac{\partial (\bar z-P_{h}\bar z)}{\partial n}\|_{L^2(\Gamma)}}_{J_{511}}+\underbrace{\|\frac{\partial (P_{h}\bar z-\tilde{z}_{h})}{\partial n}\|_{L^2(\Gamma)}}_{J_{512}}.

    J_{511}:

    By the trace inequality, Theorem ( 2.2 ) and Lemma (5.2), we obtain

    \begin{aligned} J_{511}& = \|\frac{\partial (\bar z-P_{h}\bar z)}{\partial n}\|^2_{L^2(\Gamma)} = \sum\limits_{e\in\Gamma}\|\frac{\partial (\bar z-P_{h}\bar z)}{\partial n}\|^2_{L^2(e)}\\ &\le\sum\limits_{\tau\in T_{h}}(Ch^{-1}\|\bar z-P_{h}\bar z\|^2_{H^1(\tau)}+Ch\|\bar z-P_{h}\bar z\|^2_{H^2(\tau)})\\ &\le\sum\limits_{\tau\in T_{h}}Ch\|\bar z\|^2_{H^2(\tau)} = Ch\|\bar z\|^2_{H^2(\Omega)}\le Ch\|\hat y-\bar y\|^2_{L^2(\Omega)}. \end{aligned}

    Thus,

    J_{511} = \|\frac{\partial (\bar z-P_{h}\bar z)}{\partial n}\|_{L^2(\Gamma)}\le Ch^{1/2}\|\hat y-\bar y\|_{L^2(\Omega)}.

    J_{512}:

    Since (P_{h}\bar z-\tilde{z}_{h})\in V_{h} , we can apply the trace theorem for discrete function and by using the inverse inequality and Lemma (5.2), we obtain that

    \begin{aligned} \|\frac{\partial (P_{h}\bar z-\tilde{z}_{h})}{\partial n}\|_{L^2(\Gamma)}&\le Ch^{-1/2}\|P_{h}\bar z-\tilde{z}_{h}\|_{H^1(\Omega)}\\ &\le Ch^{-1/2}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {P_{h}\bar z-\tilde{z}_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le Ch^{-1/2}({\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {P_{h}\bar z-\bar z} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert} + {\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {\bar z-\tilde{z}_{h}} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert})\\ &\le Ch^{-1/2}h\|\bar z\|_{H^2(\Omega)}\le Ch^{1/2}\|\hat y-\bar y\|_{L^2(\Omega)}, \end{aligned}

    where we have used Lemma ( 5.3 ) for k = 1 by Theorem ( 2.2 ) and Lemma (5.2).

    Thus,

    \|\frac{\partial (P_{h}\bar z-\tilde{z}_{h})}{\partial n}\|_{L^2(\Gamma)}\le Ch^{1/2}\|\hat y-\bar y\|_{L^2(\Omega)}.

    Since J_{51} = J_{511}+J_{512} , we obtain

    J_{51} = \|\frac{\partial (\bar z-\tilde{z}_{h})}{\partial n}\|_{L^2(\Gamma)}\le Ch^{1/2}\|\hat y-\bar y\|_{L^2(\Omega)}\le Ch^{1/2}(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}).

    J_{52}:

    Since we have

    \begin{aligned} a_{h}(\chi, \bar z_{h})& = (\hat y-\bar y_{h}, \chi), \\ a_{h}(\chi, \tilde{z}_{h})& = (\hat y-\bar y, \chi), \end{aligned}

    where \forall\chi\in V_{h} . We obtain

    \begin{equation} a_{h}(\chi, \tilde{z}_{h}-\bar z_{h}) = (\bar {y}_{h}-\bar y, \chi), \qquad \forall\chi\in V_{h}. \end{equation} (5.8)

    Now, let us define the following equation

    \begin{aligned} -\Delta w-\nabla\cdot(\vec{\beta}w) +cw& = \bar y_{h}-\bar y\quad\text{in}\ \Omega\\ w& = 0\qquad \text{on}\ \Gamma. \end{aligned}

    By using the Eq (5.8) ,

    a_{h}(\chi, \tilde{z}_{h}-\bar z_{h}) = a_{h}(\chi, \tilde{z}_{h})-a_{h}(\chi, \bar z_{h}) = (\hat y-\bar y, \chi)-(\hat y-\bar y_{h}, \chi) = (\bar y_{h}-\bar y, \chi) = a_{h}(\chi, w_{h}).

    The above equality shows that w_h = \tilde{z}_{h}-\bar z_{h} .

    Now, using the inverse inequality and the fact that w = 0 on \Gamma , we obtain

    \begin{aligned} \|\frac{\partial (\tilde{z}_{h}-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)}&\le Ch^{-1}\|\tilde{z}_{h}-\bar z_{h}\|_{L^2(\Gamma)} = Ch^{-1}\|\tilde{z}_{h}-\bar z_{h}-w\|_{L^2(\Gamma)}\\ &\le Ch^{-1}h^{1/2}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {(\tilde{z}_{h}-\bar z_{h})-w} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\\ &\le Ch^{-1/2}{\left\vert\kern-0.25ex\left\vert\kern-0.25ex\left\vert {w_{h}-w} \right\vert\kern-0.25ex\right\vert\kern-0.25ex\right\vert}\le Ch^{-1/2}h\|w\|_{H^2(\Omega)}\\ &\le Ch^{1/2}\|\bar y_{h}-\bar y\|_{L^2(\Omega)}\\ &\le Ch^{1/2}(h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}), \end{aligned}

    where we have used Theorem ( 2.2 ) and Lemma ( 5.3 ) for k = 1 by Lemmas (5.2) and (5.7) in the last step.

    Thus,

    J_{52} = \|\frac{\partial (\tilde{z}_{h}-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)}\le Ch^{1/2}(h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}).

    Finally, we obtain

    J_{5}\le \|\bar q-\bar q_{h}\|_{L^2(\Gamma)}(J_{51}+J_{52})\le C_{5}h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}).

    Estimate for J_{2} : By using the the estimation of \|\frac{\partial (\bar z-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)} in J_{5} , Cauchy-Schwarz inequality and Lemma (5.4), we have

    \begin{aligned} J_{2} = \langle P^{\partial}_{h}\bar q-\bar q, \frac{\partial (\bar z-\bar z_{h})}{\partial n}\rangle_{\Gamma}&\le\| P^{\partial}_{h}\bar q-\bar q\|_{L^2(\Gamma)}\|\frac{\partial (\bar z-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)}\\ &\le C_{2}h^{1/2}|\bar q|_{H^{1/2}(\Gamma)}\|\frac{\partial (\bar z-\bar z_{h})}{\partial n}\|_{L^2(\Gamma)}\\ &\le C_{2}h^{1/2}|\bar q|_{H^{1/2}(\Gamma)}h^{1/2}(\|\hat y\|_{L^(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}) \\ & = C_{2}h|\bar q|_{H^{1/2}(\Gamma)}(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}). \end{aligned}

    Thus,

    J_{2}\le C_{2}h|q|_{H^{1/2}(\Gamma)}(\|\hat y\|_{L^2(\Omega)} +\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)}).

    After using Lemma (5.7) to estimate \|\bar y-\bar y_{h}\|_{L^2(\Omega)} and combining J_{1}, J_{2}, J_{3}, J_{4}, J_{5}, J_{6}, J_{7} in the Eq (5.7), we obtain

    { \begin{aligned} &\alpha\|\bar q-\bar q_{h}\|^2_{L^2(\Omega)}\le J_{1}+J_{2}+J_{3}+J_{4}+J_{5}+J_{6}+J_{7}\\ &\le C_{1}h^{\frac{1}{2}}|\bar q|_{H^{1/2}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} \\ &+C_{2}h|\bar q|_{H^{1/2}(\Gamma)}(\|\hat y\|_{L^2(\Omega)}+\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)})\\ &+C_{3}h|\bar q|_{H^{1/2}}( \|\hat y\|_{L^2(\Omega)} + \|\bar y\|_{H^1(\Omega)}+ h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)})\\ &+C_{4}h^2|\bar q|_{H^{1/2}(\Gamma)}\|\beta\|^{\frac{1}{2}}_{L^{\infty}(\Gamma)}( \|\hat y\|_{L^2(\Omega)} + \|\bar y\|_{H^1(\Omega)} + h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)})\\ &+C_{5}h^{\frac{1}{2}}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}(\|\hat y\|_{H^1(\Omega)}+\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)})\\ &+C_{6}h^{\frac{1}{2}}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}( \|\hat y\|_{H^1(\Omega)} + \|\bar y\|_{H^1(\Omega)} + h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)} + h\|\bar y\|_{H^1(\Omega)})\\ &+C_{7}h^{\frac{3}{2}}\|\beta\|^{\frac{1}{2}}_{L^{\infty}(\Gamma)}\|\bar q-\bar q_{h}\|_{L^{2}(\Gamma)}\big(\|\hat y\|_{L^{2}(\Omega)}+\|\bar y\|_{H^{1}(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}+h\|\bar y\|_{H^{1}(\Omega)}\big). \end{aligned} }

    Notice that we can rewrite the above inequality as

    { \begin{aligned} &\alpha\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)}\le C_{I}h|\bar q|^2_{H^{1/2}(\Gamma)}+\frac{\alpha}{4}\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)}\\ &+C_{II}h\big(\|\hat y\|_{L^2(\Omega)}+\|\bar y\|_{H^1(\Omega)}+h^{1/2}\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}+h\|\bar y\|_{H^1(\Omega)}\big)^2+\frac{\alpha}{4}\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)}\\ &+C_{III}h\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)}. \end{aligned} }

    After all simplification, we obtain

    \alpha\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)}\le Ch(|\bar q|_{H^{1/2}(\Gamma)} + \|\hat y\|_{L^2(\Omega)} + \|\bar y\|_{H^1(\Omega)})^2 + C'h\|\bar q-\bar q_{h}\|_{L^2(\Gamma)}^2,

    where h is sufficiently small such that C'h\le\frac{\alpha}{2} to absorb C'h\|\bar q-\bar q_{h}\|^2_{L^2(\Gamma)} to the left hand side. Thus, we conclude that there exists a positive constant C such that

    \|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\le Ch^{1/2}\big(|\bar q|_{H^{1/2}(\Gamma)}+\|\hat y\|_{L^2(\Omega)}+\|\bar y\|_{H^1(\Omega)}\big),

    provided h is sufficiently small.

    In this section, we show the features of the method and some numerical examples to support our theoretical results by the method described for the main problem (1.1) , \rm (1.2a) and \rm (1.2b) . Here, we present numerical results depending on different kinds of domain as the following.

    Since the domain is one dimensional and the boundary is consisting of two points, there is no regularity limitation due to geometry restriction. Thus, we do not expect an optimal convergence rate, but we observe that the method is still stable and convergent in Tables 13 and Figures 34.

    Table 1.  1D Error rates for piecewise linear basis functions.
    h L^2-y_{rate} H^1-y_{rate} Left-q_{rate} Right-q_{rate}
    5.00e-01 1.959 1.002 2.007 1.965
    2.50e-01 1.979 1.001 2.006 1.982
    1.25e-01 1.990 1.001 2.004 1.991
    6.25e-02 1.995 1.000 2.002 1.996
    3.12e-02 1.997 1.001 2.001 1.998
    1.56e-03 1.999 1.000 2.001 1.999

     | Show Table
    DownLoad: CSV
    Table 2.  1D Error rates for piecewise quadratic basis functions.
    h L^2-y_{rate} H^1-y_{rate} Left-q_{rate} Right-q_{rate}
    5.00e-01 2.999 2.013 2.025 2.982
    2.50e-01 2.999 2.007 2.683 2.991
    1.25e-01 3.000 2.004 2.864 2.996
    6.25e-02 3.000 2.002 2.937 2.998
    3.12e-02 2.998 2.001 2.969 2.999
    1.56e-03 1.938 2.001 2.985 2.999

     | Show Table
    DownLoad: CSV
    Table 3.  1D Error rates for piecewise cubic basis functions.
    h L^2-y_{rate} H^1-y_{rate} Left-q_{rate} Right-q_{rate}
    5.00e-01 4.436 2.436 3.970 3.866
    2.50e-01 4.425 3.423 3.985 3.983
    1.25e-01 4.380 3.385 3.992 3.991
    6.25e-02 1.188 3.320 3.996 3.996
    3.12e-02 -0.777 3.223 3.998 3.998
    1.56e-03 -1.119 1.268 3.999 3.999

     | Show Table
    DownLoad: CSV
    Figure 3.  Computed and exact state solution.
    Figure 4.  State solution error.

    By setting \Omega = [0, 1] , \epsilon = 1 , \alpha = 1 , \vec{\beta} = [1] , \bar q = (1-x)^2(x^2) , c = 0 , \bar y = x^4-\frac{e^{\frac{x-1}{\epsilon}}-e^{\frac{-1}{\epsilon}}}{1-e^{\frac{-1}{\epsilon}}} , and \bar z = \frac{\alpha}{\epsilon}(1-x)^2x^2 .

    By setting the problem as the following,

    \begin{aligned} \Omega& = [0, 1]\times[0, 1], \ \vec{\beta} = [1;1], \ c = 1, \alpha = 1, \ \bar q = \frac{-1}{\epsilon}(x(1-x)+y(1-y)), \\ \bar y& = \frac{-1}{\epsilon}(x(1-x)+y(1-y)), \ \bar z = \frac{\alpha}{\epsilon}(xy(1-x)(1-y)). \end{aligned}

    Here, we consider piecewise linear continuous functions to approximate the optimal control.

    The first order conditions allow us deduce the regularity results of the optimal control and so the expected convergence rate has agreed well with the rate in [6] as \|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\le {\it Ch} by the square domain with the largest interior angle w_{max} = \frac{\pi}{2} .

    Lemma (5.7) and \|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\le {\it Ch} yield \|\bar y-\bar y_{h}\|_{L^2(\Omega)}\le{\it Ch^{3/2}} . Since the power of h on the right-hand side drops for one for each derivative of the error (\bar y-\bar y_{h}) , \|\bar y-\bar y_{h}\|_{H^1(\Omega)}\le{\it Ch^{1/2}} by Lemma (5.2). Likewise, From Lemma (5.2) and z\in H^2 , \|\bar z-\bar z_{h}\|_{L^2(\Omega)}\le{\it Ch^2} , and so \|\bar z-\bar z_{h}\|_{H^1(\Omega)}\le{\it Ch} as our expected convergence rates indicated in Tables 4 and 5. Also, the expected rates have agreed well with the rates for the different densities of the meshes in [6]. Also, we can see the stability of the method in Figure 5.

    Table 4.  Error for the regular case on the unit square domain.
    h \|\bar y-\bar y_{h}\|_{L^2} \|\bar y-\bar y_{h}\|_{H^1} \|\bar q-\bar q_{h}\|_{L^2} \|\bar z-\bar z_{h}\|_{L^2} \|\bar z-\bar z_{h}\|_{H^1}
    5.00e-01 1.92e-01 3.91e+00 1.07e+00 4.31e-02 9.19e-01
    2.50e-01 8.44e-02 2.25e+00 4.86e-01 1.38e-02 5.06e-01
    1.25e-01 3.14e-02 1.27e+00 2.29e-01 4.21e-03 2.62e-01
    6.25e-02 1.10e-02 7.33e-01 1.09e-01 1.22e-03 1.32e-01
    3.12e-02 3.80e-03 4.49e-01 5.20e-02 3.32e-04 6.66e-02

     | Show Table
    DownLoad: CSV
    Table 5.  Error rates for the regular case on the unit square domain.
    h L^2-y_{rate} H^1-y_{rate} L^2-q_{rate} L^2-z_{rate} H^1-z_{rate}
    5.00e-01 0.00 0.00 0.00 0.00 0.00
    2.50e-01 1.19 0.80 1.13 1.64 0.86
    1.25e-01 1.43 0.83 1.08 1.72 0.95
    6.25e-02 1.51 0.79 1.08 1.79 0.98
    3.12e-02 1.53 0.71 1.06 1.87 0.99
    expected 1.50 0.50 1.00 2.00 1.00

     | Show Table
    DownLoad: CSV
    Figure 5.  Exact and computed control for the regular case on the unit square domain are shown in green and red, respectively.

    Since \epsilon is too small for this case such as \epsilon = 10^{-5} , \frac{h{|\vec{\beta}|}}{\epsilon} > 1 which means the advection-diffusion dominated case occurs. The norm of y depends on \epsilon such that \|\bar y\|_{H^{k+1}(\Omega)}\le\frac{C}{\epsilon^{k+1/2}} . Since the convergence rate of \bar q depends on data of \bar y from the main result, we do not expect any convergence rate and so this case does not contradict with our main result. Also, the feature of the method shows itself that Dirichlet boundary condition is almost ignored by the method as a result of weak treatment and it does not resolve the layers and causes oscillations on the boundary. It can be seen in Figure 6 and Tables 6 and 7 that some oscillatory solutions and non-convergent rate of q appear on the inflow boundary, caused by non-stabilized terms of boundary edges E_{h}^{\partial} represented by E_{h}^{-} in the bilinear form (4.6) and (4.5), whereas it is stable on both the interior edges E_{h}^0 and the stabilized boundary edges E_{h}^{\partial} by the penalty term in the form.

    Figure 6.  Exact and computed control for the the advection-diffusion dominated case on the unit square domain are shown in green and red, respectively.
    Table 6.  Error for the the advection-diffusion dominated case on the unit square domain.
    h \|\bar y-\bar y_{h}\|_{L^2} \|\bar y-\bar y_{h}\|_{H^1} \|\bar q-\bar q_{h}\|_{L^2} \|\bar z-\bar z_{h}\|_{L^2} \|\bar z-\bar z_{h}\|_{H^1}
    5.00e-01 4.29e+00 2.68e+01 8.15e+00 5.66e+01 9.52e+02
    2.50e-01 7.69e-01 1.32e+01 2.22e+00 1.51e+01 5.15e+02
    1.25e-01 4.72e-01 1.58e+01 9.70e-01 3.85e+00 2.63e+02
    6.25e-02 3.78e-01 2.36e+01 6.66e-01 9.64e-01 1.32e+02
    3.12e-02 2.55e-01 2.88e+01 6.37e-01 2.40e-01 6.62e+01

     | Show Table
    DownLoad: CSV
    Table 7.  Error rates for the the advection-diffusion dominated case on the unit square domain.
    h L^2-y_{rate} H^1-y_{rate} L^2-q_{rate} L^2-z_{rate} H^1-z_{rate}
    5.00e-01 0.00 0.00 0.00 0.00 0.00
    2.50e-01 2.48 1.02 1.87 1.91 0.89
    1.25e-01 0.71 -0.26 1.20 1.97 0.97
    6.25e-02 0.32 -0.58 0.54 2.00 0.99
    3.12e-02 0.57 -0.28 0.06 2.01 1.00

     | Show Table
    DownLoad: CSV

    By a transformation from the unit square domain to obtain a diamond shaped domain \Omega with \frac{\pi}{4} , \frac{\pi}{8} and \frac{\pi}{10} angles, while the angle of the domain is getting smaller, we expect that the error rate is getting close to the predicted optimal error rate.

    After the transformation from the unit square domain to obtain a diamond shaped domain \Omega with \frac{\pi}{4} , \frac{\pi}{8} and \frac{\pi}{10} angles, we can observe from tables 810 that the regularity of the state is reducing sharply close to 1 and that we will obtain the predicted rate i.e., \|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\le {\it Ch^{1/2}} yields \|\bar y-\bar y_{h}\|_{L^2(\Omega)}\le{\it Ch^1} by Theorem (5.7). There are many researches, see [6,31,46], which obtained an error estimate for the optimal control of order depends on the largest angle of the boundary polygon. Also, we can see the stable behavior of the method in Figures 79.

    Table 8.  Error rates for the regular case with angle on the diamond shape domain with angle \pi/4 .
    h L^2-y_{rate} H^1-y_{rate} L^2-q_{rate} L^2-z_{rate} H^1-z_{rate}
    5.00e-01 0.00 0.00 0.00 0.00 0.00
    2.50e-01 1.51 0.80 0.65 1.43 1.78
    1.25e-01 1.47 0.84 0.96 1.75 1.91
    6.25e-02 1.69 0.85 1.05 1.89 1.96
    3.12e-02 1.75 0.81 1.05 1.95 1.98
    1.56e-02 1.73 0.74 1.03 1.97 1.99

     | Show Table
    DownLoad: CSV
    Table 9.  Error rates for the regular case with angle on the diamond shape domain with angle \pi/8 .
    h L^2-y_{rate} H^1-y_{rate} L^2-q_{rate} L^2-z_{rate} H^1-z_{rate}
    5.00e-01 0.00 0.00 0.00 0.00 0.00
    2.50e-01 1.75 0.72 0.32 1.11 0.76
    1.25e-01 1.16 0.41 0.72 1.63 0.95
    6.25e-02 1.60 0.50 0.97 1.88 0.99
    3.12e-02 1.70 0.55 1.01 1.96 1.00
    1.56e-02 1.66 0.53 1.02 1.99 1.00

     | Show Table
    DownLoad: CSV
    Table 10.  Error rates for the regular case with angle on the diamond shape domain with angle \pi/10 .
    h L^2-y_{rate} H^1-y_{rate} L^2-q_{rate} L^2-z_{rate} H^1-z_{rate}
    5.00e-01 0.00 0.00 0.00 0.00 0.00
    2.50e-01 0.85 0.17 0.17 1.03 0.61
    1.25e-01 0.92 0.17 1.59 1.60 1.04
    6.25e-02 1.32 0.26 0.90 1.89 1.14
    3.12e-02 1.50 0.42 1.00 1.98 1.10
    1.56e-02 1.55 0.50 1.02 2.00 1.05

     | Show Table
    DownLoad: CSV
    Figure 7.  Exact and computed control for the regular case with angle \pi/4 are shown in green and red, respectively.
    Figure 8.  Exact and computed control for the regular case with angle \pi/8 are shown in green and red, respectively.
    Figure 9.  Exact and computed control for the regular case with angle \pi/10 are shown in green and red, respectively.

    While the method still works, likewise the frame in the unit square domain, it can be seen in Figure 10 and Table 11 that some oscillatory solutions and non-convergent rate of q appear on the inflow boundary whereas it is stable on the interior edges and the stabilized boundary edges as a result of weak treatment because of not resolving the layers and causing oscillations on the boundary.

    Figure 10.  Exact and computed control for the advection-diffusion dominated case on the diamond shape domain with angle \pi/4 are shown in green and red, respectively.
    Table 11.  Error rates for the the advection-diffusion dominated case on the diamond shape domain with angle \pi/4 .
    h L^2-y_{rate} H^1-y_{rate} L^2-q_{rate} L^2-z_{rate} H^1-z_{rate}
    5.00e-01 0.00 0.00 0.00 0.00 0.00
    2.50e-01 3.35 2.45 3.36 2.87 1.89
    1.25e-01 0.31 0.23 1.41 2.96 1.97
    6.25e-02 -0.01 -0.64 0.81 2.97 1.99
    3.12e-02 0.01 -0.68 0.45 2.45 2.00

     | Show Table
    DownLoad: CSV

    In this paper, we consider Dirichlet boundary optimal control problem governed by the advection-diffusion equation and apply the DG methods to the problem. We show some attractive features of the method such as the stable behavior of the SIPG method into the domain of the smoothness and for the advection dominated case except on the boundary as a result of the boundary weak treatments. We have proven that the convergence rate for the SIPG method is optimal in the interior of the general convex domain. However, all convergence rates in numerical examples are higher than predicted by the main result because the predicted order exists for general convex domain, but obtaining the predicted optimal convergence rate depends on the maximal angle of the domain because of the regularity [6,36,47], which is an interesting topic for future work. Also, for general polygonal domains and Laplace equations it has been shown [6] that

    \|\bar q-\bar q_{h}\|_{L^2(\Gamma)}\le {\it C}h^{1-\frac{1}{p}},

    where p > 2 depends on the largest angle, and obtaining optimal convergence rates for the p = 2 case is another interesting topic for future work.

    I would like to thank to Prof. Dmitriy Leykekhman, my thesis advisor, for helpful discussions and his advisement on my academic journey.

    The author declares no conflict of interest.



    [1] D. Drake, W. Thron, On the representation of an abstract lattice as the family of closed sets of a topological space, Trans. Amer. Math. Soc., 120 (1965), 57–71. http://doi.org/10.2307/1994167 doi: 10.2307/1994167
    [2] R. Engelking, General topology, Warzawa: Polish Scientific Publishers, 1989.
    [3] M. Erné, The strength of prime separation, sobriety, and compactness theorems, Topol. Appl., 241 (2018), 263–290. http://doi.org/10.1016/j.topol.2018.04.002 doi: 10.1016/j.topol.2018.04.002
    [4] M. Erné, Categories of locally hypercompact spaces and quasicontinuous posets, Appl. Categor. Struct., 26 (2018), 823–854. http://doi.org/10.1007/s10485-018-9536-0 doi: 10.1007/s10485-018-9536-0
    [5] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, D. Scott, Continuous lattices and domains, Cambridge: Cambridge University Press, 2003. http://doi.org/10.1017/CBO9780511542725
    [6] J. Goubault-Larrecq, Non-Hausdorff topology and domain theory: Selected topics in point-set topology, Cambridge: Cambridge University Press, 2013. http://doi.org/10.1017/CBO9781139524438
    [7] R. Heckmann, An upper power domain construction in terms of strongly compact sets, In: Mathematical foundations of programming semantics, Berlin, Heidelberg: Springer, 1992, 272–293.
    [8] R. Heckmann, K. Keimel, Quasicontinuous domains and the Smyth powerdomain, Electron. Notes Theor. Comput. Sci., 298 (2013), 215–232. http://doi.org/10.1016/j.entcs.2013.09.015 doi: 10.1016/j.entcs.2013.09.015
    [9] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc., 142 (1969), 43–60. http://doi.org/10.1090/S0002-9947-1969-0251026-X doi: 10.1090/S0002-9947-1969-0251026-X
    [10] X. D. Jia, Meet-continuity and locally compact sober dcpos, PhD thesis, University of Birmingham, 2018.
    [11] P. T. Johnstone, Scott is not always sober, In: Continuous lattices, Berlin, Heidelberg: Springer, 1981, 282–283. http://doi.org/10.1007/BFb0089911
    [12] K. Keimel, J. Lawson, D-completion and d-topology, Ann. Pure Appl. Logic, 159 (2009), 292–306. https://doi.org/10.1016/j.apal.2008.06.019 doi: 10.1016/j.apal.2008.06.019
    [13] B. Liu, Q. G. Li, G. H. Wu, Well-filterifications of topological spaces, Topol. Appl., 279 (2020), 107245. http://doi.org/10.1016/j.topol.2020.107245 doi: 10.1016/j.topol.2020.107245
    [14] C. X. Lu, Q. G. Li, Weak well-filtered spaces and coherence, Topol. Appl., 230 (2017), 373–380. http://doi.org/10.1016/j.topol.2017.08.049 doi: 10.1016/j.topol.2017.08.049
    [15] S. Mac Lane, Categories for the working mathematician, 2 Eds., New York: Springer, 1997.
    [16] H. L. Miao, Q. G. Li, D. S. Zhao, On two problems about sobriety of topological spaces, Topol. Appl., 295 (2021), 107667. http://doi.org/10.1016/j.topol.2021.107667 doi: 10.1016/j.topol.2021.107667
    [17] A. Schalk, Algebras for generalized power constructions, PhD thesis, Technische Hochschule Darmstadt, 1993.
    [18] Q. D. Shan, M. Bao, X. P. Wen, X. Q. Xu, On almost sober spaces, Topol. Appl., 305 (2022), 107896. http://doi.org/10.1016/j.topol.2021.107896 doi: 10.1016/j.topol.2021.107896
    [19] C. Shen, X. Y. Xi, X. Q. Xu, D. S. Zhao, On well-filtered reflections of T_{0} spaces, Topol. Appl., 267 (2019), 106869. http://doi.org/10.1016/j.topol.2019.106869 doi: 10.1016/j.topol.2019.106869
    [20] C. Shen, X. Y. Xi, D. S. Zhao, The reflectivity of some categories of T_{0} spaces in domain theory, 2021, arXiv: 2110.01138.
    [21] M. B. Smyth, Powerdomains, J. Comput. Syst. Sci., 16 (1978), 23–36.
    [22] M. B. Smyth, Power domains and predicate transformers: A topological view, In: Automata, languages and programming, Berlin, Heidelberg: Springer, 1983, 662–675. http://doi.org/10.1007/BFb0036946
    [23] Y. Tang, Properties of hypersober spaces and k-bounded sober spaces, Master thesis, Jiangxi Normal University, 2020. http://doi.org/10.27178/d.cnki.gjxsu.2020.001512
    [24] X. P. Wen, X. Q. Xu, On some kinds of weakly sober spaces, Topol. Appl., 272 (2020), 107079. http://doi.org/10.1016/j.topol.2020.107079 doi: 10.1016/j.topol.2020.107079
    [25] G. H. Wu, X. Y. Xi, X. Q. Xu, D. S. Zhao, Existence of well-filterification of T_0 topological spaces, Topol. Appl., 270 (2020), 107044. https://doi.org/10.1016/j.topol.2019.107044 doi: 10.1016/j.topol.2019.107044
    [26] O. Wyler, Dedekind complete posets and scott topologies, In: Continuous lattices, Berlin, Heidelberg: Springer, 1981, 384–389. https://doi.org/10.1007/BFb0089920
    [27] X. Q. Xu, A direct approach to K-reflections of T_{0} spaces, Topol. Appl., 272 (2020), 107076. http://doi.org/10.1016/j.topol.2020.107076 doi: 10.1016/j.topol.2020.107076
    [28] X. Q. Xu, On H-sober spaces and H-sobrifications of T_{0} spaces, Topol. Appl., 289 (2021), 107548. http://doi.org/10.1016/j.topol.2020.107548 doi: 10.1016/j.topol.2020.107548
    [29] X. Q. Xu, C. Shen, X. Y. Xi, D. S. Zhao, On T_{0} spaces determined by well-filtered spaces, Topol. Appl., 282 (2020), 107323. http://doi.org/10.1016/j.topol.2020.107323 doi: 10.1016/j.topol.2020.107323
    [30] X. Q. Xu, C. Shen, X. Y. Xi, D. S. Zhao, First-countability, \omega-Rudin spaces and well-filtered determined spaces, Topol. Appl., 300 (2021), 107775. http://doi.org/10.1016/j.topol.2021.107775 doi: 10.1016/j.topol.2021.107775
    [31] X. Q. Xu, X. P. Wen, Non-reflective categories of some kinds of weakly sober spaces, Topol. Appl., 314 (2022), 108126. http://doi.org/10.1016/j.topol.2022.108126 doi: 10.1016/j.topol.2022.108126
    [32] X. Q. Xu, X. Y. Xi, D. S. Zhao, A complete Heyting algebra whose Scott space is non-sober, Funda. Math., 252 (2021), 315–323. https://doi.org/10.4064/fm704-4-2020 doi: 10.4064/fm704-4-2020
    [33] X. Q. Xu, D. S. Zhao, On topological Rudin's lemma, well-filtered spaces and sober spaces, Topol. Appl., 272 (2020), 107080. http://doi.org/10.1016/j.topol.2020.107080 doi: 10.1016/j.topol.2020.107080
    [34] Y. Yang, M. Bao, X. Q. Xu, Retracts and Smyth power spaces of k-bounded sober spaces, Pure Appl. Math., 38 (2022), 13–24. http://doi.org/10.3969/j.issn.1008-5513.2022.01.002 doi: 10.3969/j.issn.1008-5513.2022.01.002
    [35] W. Ye, Some properties of bounded sober spaces and bounded well-filtered spaces, Master thesis, Jiangxi Normal University, 2021. http://doi.org/10.27178/d.cnki.gjxsu.2021.000119
    [36] B. Zhao, J. Lu, K. Y. Wang, The answer to a problem posed by Zhao and Ho, Acta. Math. Sin.-English Ser., 35 (2019), 438–444. http://doi.org/10.1007/s10114-018-7535-6 doi: 10.1007/s10114-018-7535-6
    [37] D. S. Zhao, T. H. Fan, Dcpo-completion of posets, Theor. Comput. Sci., 411 (2010), 2167–2173. http://doi.org/10.1016/j.tcs.2010.02.020 doi: 10.1016/j.tcs.2010.02.020
    [38] D. S. Zhao, W. K. Ho, On topologies defined by irreducible sets, J. Log. Algebr. Methods, 84 (2015), 185–195. http://doi.org/10.1016/j.jlamp.2014.10.003 doi: 10.1016/j.jlamp.2014.10.003
  • This article has been cited by:

    1. Divay Garg, Kamana Porwal, Unified discontinuous Galerkin finite element methods for second order Dirichlet boundary control problem, 2023, 185, 01689274, 336, 10.1016/j.apnum.2022.12.001
    2. Kumar Rajeev Ranjan, S. Gowrisankar, Error analysis of discontinuous Galerkin methods on layer adapted meshes for two dimensional turning point problem, 2024, 70, 1598-5865, 2453, 10.1007/s12190-024-02054-y
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1635) PDF downloads(62) Cited by(0)

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog