Research article

Reflexive edge strength of convex polytopes and corona product of cycle with path

  • For a graph G, we define a total k-labeling φ is a combination of an edge labeling φe(x){1,2,,ke} and a vertex labeling φv(x){0,2,,2kv}, such that φ(x)=φv(x) if xV(G) and φ(x)=φe(x) if xE(G), then k=max{ke,2kv}. The total k-labeling φ is an edge irregular reflexive k-labeling of G if every two different edges xy and xy, the edge weights are distinct. The smallest value k for which such labeling exists is called a reflexive edge strength of G. In this paper, we focus on the edge irregular reflexive labeling of antiprism, convex polytopes Dn, Rn, and corona product of cycle with path. This study also leads to interesting open problems for further extension of the work.

    Citation: Kooi-Kuan Yoong, Roslan Hasni, Gee-Choon Lau, Muhammad Ahsan Asim, Ali Ahmad. Reflexive edge strength of convex polytopes and corona product of cycle with path[J]. AIMS Mathematics, 2022, 7(7): 11784-11800. doi: 10.3934/math.2022657

    Related Papers:

    [1] Ridha Dida, Hamid Boulares, Bahaaeldin Abdalla, Manar A. Alqudah, Thabet Abdeljawad . On positive solutions of fractional pantograph equations within function-dependent kernel Caputo derivatives. AIMS Mathematics, 2023, 8(10): 23032-23045. doi: 10.3934/math.20231172
    [2] Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with ABC fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071
    [3] Abdelkader Moumen, Hamid Boulares, Tariq Alraqad, Hicham Saber, Ekram E. Ali . Newly existence of solutions for pantograph a semipositone in Ψ-Caputo sense. AIMS Mathematics, 2023, 8(6): 12830-12840. doi: 10.3934/math.2023646
    [4] Ayub Samadi, Chaiyod Kamthorncharoen, Sotiris K. Ntouyas, Jessada Tariboon . Mixed Erdélyi-Kober and Caputo fractional differential equations with nonlocal non-separated boundary conditions. AIMS Mathematics, 2024, 9(11): 32904-32920. doi: 10.3934/math.20241574
    [5] Hui Huang, Kaihong Zhao, Xiuduo Liu . On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses. AIMS Mathematics, 2022, 7(10): 19221-19236. doi: 10.3934/math.20221055
    [6] Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
    [7] Mohamed Houas, Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence and stability results of pantograph equation with three sequential fractional derivatives. AIMS Mathematics, 2023, 8(3): 5216-5232. doi: 10.3934/math.2023262
    [8] Ahmed M. A. El-Sayed, Wagdy G. El-Sayed, Kheria M. O. Msaik, Hanaa R. Ebead . Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral equations. AIMS Mathematics, 2025, 10(3): 4970-4991. doi: 10.3934/math.2025228
    [9] Isra Al-Shbeil, Abdelkader Benali, Houari Bouzid, Najla Aloraini . Existence of solutions for multi-point nonlinear differential system equations of fractional orders with integral boundary conditions. AIMS Mathematics, 2022, 7(10): 18142-18157. doi: 10.3934/math.2022998
    [10] Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176
  • For a graph G, we define a total k-labeling φ is a combination of an edge labeling φe(x){1,2,,ke} and a vertex labeling φv(x){0,2,,2kv}, such that φ(x)=φv(x) if xV(G) and φ(x)=φe(x) if xE(G), then k=max{ke,2kv}. The total k-labeling φ is an edge irregular reflexive k-labeling of G if every two different edges xy and xy, the edge weights are distinct. The smallest value k for which such labeling exists is called a reflexive edge strength of G. In this paper, we focus on the edge irregular reflexive labeling of antiprism, convex polytopes Dn, Rn, and corona product of cycle with path. This study also leads to interesting open problems for further extension of the work.



    The key to solving the general quadratic congruence equation is to solve the equation of the form x2amodp, where a and p are integers, p>0 and p is not divisible by a. For relatively large p, it is impractical to use the Euler criterion to distinguish whether the integer a with (a,p)=1 is quadratic residue of modulo p. In order to study this issue, Legendre has proposed a new tool-Legendre's symbol.

    Let p be an odd prime, the quadratic character modulo p is called the Legendre's symbol, which is defined as follows:

    (ap)={1, if a is a quadratic residue modulo p;1, if a is a quadratic non-residue modulo p;0, if pa.

    The Legendre's symbol makes it easy for us to calculate the level of quadratic residues. The basic properties of Legendre's symbol can be found in any book on elementary number theory, such as [1,2,3].

    The properties of Legendre's symbol and quadratic residues play an important role in number theory. Many scholars have studied them and achieved some important results. For examples, see the [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21].

    One of the most representative properties of the Legendre's symbol is the quadratic reciprocal law:

    Let p and q be two distinct odd primes. Then, (see Theorem 9.8 in [1] or Theorems 4–6 in [3])

    (pq)(qp)=(1)(p1)(q1)4.

    For any odd prime p with p1mod4 there exist two non-zero integers α(p) and β(p) such that

    p=α2(p)+β2(p). (1)

    In fact, the integers α(p) and β(p) in the (1) can be expressed in terms of Legendre's symbol modulo p (see Theorems 4–11 in [3])

    α(p)=12p1a=1(a3+ap)andβ(p)=12p1a=1(a3+rap),

    where r is any integer, and (r,p)=1, (rp)=1, (p)=χ2 denote the Legendre's symbol modulo p.

    Noting that Legendre's symbol is a special kind of character. For research on character, Han [7] studied the sum of a special character χ(ma+ˉa), for any integer m with (m,p)=1, then

    |p1a=1χ(ma+ˉa)|2=2p+(mp)p1a=1χ(a)p1b=1(b(b1)(a2b1)p),

    which is a special case of a general polynomial character sums N+Ma=N+1χ(f(a)), where M and N are any positive integers, and f(x) is a polynomial.

    In [8], Du and Li introduced a special character sums C(χ,m,n,c;p) in the following form:

    C(χ,m,n,c;p)=p1a=0p1b=0χ(a2+nab2nb+c)e(mb2ma2p),

    and studied the asymptotic properties of it. They obtained

    p1c=1|C(χ,m,n,c;p)|2k={p2k+1+k23k22p2k+O(p2k1),ifχ is the Legendre symbol modulo p;p2k+1+k23k22p2k+O(p2k1/2),ifχ is a complex character modulo p.

    Recently, Yuan and Zhang [12] researched the question about the estimation of the mean value of high-powers for a special character sum modulo a prime, let p be an odd prime with p1mod6, then for any integer k0, they have the identity

    Sk(p)=13[dk+(d+9b2)k+(d9b2)k],

    where

    Sk(p)=1p1p1r=1Ak(r),
    A(r)=1+p1a=1(a2+rˉap),

    and for any integer r with (r,p)=1.

    More relevant research on special character sums will not be repeated. Inspired by these papers, we have the question: If we replace the special character sums with Legendre's symbol, can we get good results on p1mod4?

    We will convert β(p) to another form based on the properties of complete residues

    β(p)=12p1a=1(a+nˉap),

    where ˉa is the inverse of a modulo p. That is, ˉa satisfy the equation xa1modp for any integer a with (a,p)=1.

    For any integer k0, G(n) and Kk(p) are defined as follows:

    G(n)=1+p1a=1(a2+nˉa2p)andKk(p)=1p1p1n=1Gk(n).

    In this paper, we will use the analytic methods and properties of the classical Gauss sums and Dirichlet character sums to study the computational problem of Kk(p) for any positive integer k, and give a linear recurrence formulas for Kk(p). That is, we will prove the following result.

    Theorem 1. Let p be an odd prime with p1mod4, then we have

    Kk(p)=(4p+2)Kk2(p)8(2α2p)Kk3(p)+(16α416pα2+4p1)Kk4(p),

    for all integer k4 with

    K0(p)=1,K1(p)=0,K2(p)=2p+1,K3(p)=3(4α22p),

    where

    α=α(p)=p12a=1(a+ˉap).

    Applying the properties of the linear recurrence sequence, we may immediately deduce the following corollaries.

    Corollary 1. Let p be an odd prime with p1mod4. Then we have

    1p1p1n=111+p1a=1(a2+nˉa2p)=16α2p28α28p2+14p16α416α2p+4p1.

    Corollary 2. Let p be an odd prime with p1mod4. Then we have

    1p1p1n=1p1m=0(1+p1a=1(a2+nˉa2p))e(nm2p)=p.

    Corollary 3. Let p be an odd prime with p1mod4. Then we have

    1p1p1n=1p1m=0[1+p1a=1(a2+nˉa2p)]2e(nm2p)=(4α22p)p.

    Corollary 4. Let p be an odd prime with p1mod8. Then we have

    p1n=1(1+p1a=1(a2+nˉa2p))p1m=0e(nm4p)=p(1+B(1))p,

    where

    B(1)=p1m=0e(m4p).

    If we consider such a sequence Fk(p) as follows: Let p be a prime with p1mod8, χ4 be any fourth-order character modulo p. For any integer k0, we define the Fk(p) as

    Fk(p)=p1n=11Gk(n),

    we have

    Fk(p)=116α416α2p+4p1Fk4(p)(4p+2)16α416α2p+4p1Fk2(p)+4(4α22p)16α416α2p+4p1Fk1(p).

    Lemma 1. Let p be an odd prime with p1mod4. Then for any fourth-order character χ4modp, we have the identity

    τ2(χ4)+τ2(¯χ4)=2pα,

    where

    τ(χ4)=p1a=1χ4(a)e(ap)

    denotes the classical Gauss sums, e(y)=e2πiy,i2=1, and α is the same as in the Theorem 1.

    Proof. See Lemma 2.2 in [9].

    Lemma 2. Let p be an odd prime. Then for any non-principal character ψ modulo p, we have the identity

    τ(ψ2)=ψ2(2)τ(χ2)τ(ψ)τ(ψχ2),

    where χ2=(p) denotes the Legendre's symbol modulo p.

    Proof. See Lemma 2 in [12].

    Lemma 3. Let p be a prime with p1mod4, then for any integer n with (n,p)=1 and fourth-order character χ4modp, we have the identity

    p1a=1(a2+nˉa2p)=1χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)).

    Proof. For any integer a with (a,p)=1, we have the identity

    1+χ4(a)+χ2(a)+¯χ4(a)=4,

    if a satisfies ab4modp for some integer b with (b,p)=1 and

    1+χ4(a)+χ2(a)+¯χ4(a)=0,

    otherwise. So from these and the properties of Gauss sums we have

    p1a=1(a2+nˉa2p)=p1a=1(a2p)(a4+np)=p1a=1χ2(a4)χ2(a4+n)=p1a=1(1+χ4(a)+χ2(a)+¯χ4(a))χ2(a)χ2(a+n)=p1a=1(1+χ4(na)+χ2(na)+¯χ4(na))χ2(na)χ2(na+n)=p1a=1χ2(a)χ2(a+1)+p1a=1χ4(na)χ2(a)χ2(a+1) (2)
    +p1a=1χ2(na)χ2(a)χ2(a+1)+p1a=1¯χ4(na)χ2(a)χ2(a+1)=p1a=1χ2(1+ˉa)+p1a=1χ4(na)χ2(a)χ2(a+1)+p1a=1χ2(n)χ2(a+1)+p1a=1¯χ4(na)χ2(a)χ2(a+1).

    Noting that for any non-principal character χ,

    p1a=1χ(a)=0

    and

    p1a=1χ(a)χ(a+1)=1τ(ˉχ)p1b=1p1a=1ˉχ(b)χ(a)e(b(a+1)p).

    Then we have

    p1a=1χ2(1+ˉa)=1,p1a=1χ2(a+1)=1,
    p1a=1χ4(a)χ2(a)χ2(a+1)=1τ(χ2)p1b=1p1a=1χ2(b)χ4(a)χ2(a)e(b(a+1)p)=1τ(χ2)p1b=1¯χ4(b)e(bp)p1a=1χ4(ab)χ2(ab)e(abp) (3)
    =1τ(χ2)τ(¯χ4)τ(χ4χ2).

    For any non-principal character ψ, from Lemma 2 we have

    τ(ψ2)=ψ2(2)τ(χ2)τ(ψ)τ(ψχ2). (4)

    Taking ψ=χ4, note that

    τ(χ2)=p,  τ(χ4)τ(¯χ4)=χ4(1)p,

    from (3) and (4), we have

    p1a=1χ4(a)χ2(a)χ2(a+1)=¯χ42(2)τ(χ24)τ(χ2)τ(¯χ4)τ(χ2)τ(χ4)=χ2(2)τ(χ2)τ2(¯χ4)τ(χ4)τ(¯χ4)=χ2(2)pτ2(¯χ4)χ4(1)p (5)
    =χ2(2)τ2(¯χ4)χ4(1)p.

    Similarly, we also have

    p1a=1¯χ4(a)χ2(a)χ2(a+1)=χ2(2)τ2(χ4)χ4(1)p. (6)

    Consider the quadratic character modulo p, we have

    (2p)=χ2(2)={1,if p±1mod8;1,if p±3mod8. (7)

    And when p1mod8, we have χ4(1)=1; when p5mod8, we have χ4(1)=1. Combining (2) and (5)–(7) we can deduce that

    p1a=1(a2+nˉa2p)=1χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)).

    This prove Lemma 3.

    Lemma 4. Let p be an odd prime with p1mod4. Then for any integer k4 and n with (n,p)=1, we have the fourth-order linear recurrence formula

    Gk(n)=(4p+2)Gk2(n)+8(p2α2)Gk3(n)+[(4α22p)2(2p1)2]Gk4(n),

    where

    α=α(p)=12p1a=1(a3+ap)=p12a=1(a+ˉap),

    (p)=χ2 denotes the Legendre's symbol.

    Proof. For p1mod4, any integer n with (n,p)=1, and fourth-order character χ4 modulo p, we have the identity

    χ44(n)=¯χ44(n)=χ0(n),  χ24(n)=χ2(n),

    where χ0 denotes the principal character modulo p.

    According to Lemma 3,

    p1a=1(a2+nˉa2p)=1χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)),
    G(n)=1+p1a=1(a2+nˉa2p).  

    We have

    G(n)=χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)), (8)
    G2(n)=[χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))]2=12χ2(n)1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))+1p(χ2(n)τ4(¯χ4)+χ2(n)τ4(χ4)+2p2)=12χ2(n)1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))+1p(χ2(n)(τ4(¯χ4)+τ4(χ4))+2p2).

    According to Lemma 1, we have

    (τ2(χ4)+τ2(¯χ4))2=τ4(¯χ4)+τ4(χ4)+2p2=4pα2.

    Therefore, we may immediately deduce

    G2(n)=12(χ2(n)(G(n)+χ2(n))+1p(χ2(n)(τ4(¯χ4)+τ4(χ4))+2p2)=12χ2(n)(G(n)+χ2(n)) (9)
    +1p[χ2(n)((τ2(¯χ4)+τ2(χ4))22p2)+2p2]=2p12χ2(n)G(n)+(4α22p)χ2(n),
    G3(n)=[χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4))]3=(2p12χ2(n)G(n)+(4α22p)χ2(n))G(n) (10)
    =(4α22p)χ2(n)G(n)+(2p+3)G(n)(4p2)χ2(n)2(4α22p)

    and

    [G2(n)(2p1)]2=[χ2(n)(4α22p)2χ2(n)G(n)]2,

    which implies that

    G4(n)=(4p+2)G2(n)+8(p2α2)G(n)+[(4α22p)2(2p1)2]. (11)

    So for any integer k4, from (8)–(11), we have the fourth-order linear recurrence formula

    Gk(n)=Gk4(n)G4(n)=(4p+2)Gk2(n)+8(p2α2)Gk3(n)+[(4α22p)2(2p1)2]Gk4(n).

    This proves Lemma 4.

    In this section, we will complete the proof of our theorem.

    Let p be any prime with p1mod4, then we have

    K0(p)=1p1p1n=1G0(n)=p1p1=1. (12)
    K1(p)=1p1p1n=1G1(n)=1p1p1n=1(χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))=0, (13)
    K2(p)=1p1p1n=1G2(n)=1p1p1n=1(χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))2=2p+1, (14)
    K3(p)=1p1p1n=1G3(n)=1p1p1n=1(χ2(n)+1p(χ4(n)τ2(¯χ4)+¯χ4(n)τ2(χ4)))3=3(4α22p). (15)

    It is clear that from Lemma 4, if k4, we have

    Kk(p)=1p1p1n=1Gk(n)=(4p+2)Kk2(p)8(2α2p)Kk3(p)+(16α416pα2+4p1)Kk4(p). (16)

    Now Theorem 1 follows (12)–(16). Obviously, using Theorem 1 to all negative integers, and that lead to Corollary 1.

    This completes the proofs of our all results.

    Some notes:

    Note 1: In our theorem, know n is an integer, and (n,p)=1. According to the properties of quadratic residual, χ2(n)=±1, χ4(n)=±1.

    Note 2: In our theorem, we only discussed the case p1mod8. If p3mod4, then the result is trivial. In fact, in this case, for any integer n with (n,p)=1, we have the identity

    G(n)=1+p1a=1(a2+nˉa2p)=1+p1a=1(a4p)(a4+np)=1+p1a=1(ap)(a+np)=1+p1a=1(a2+nap)=1+p1a=1(1+nˉap)=p1a=0(1+nap)=0.

    Thus, for all prime p with p3mod4 and k1, we have Kk(p)=0.

    The main result of this paper is Theorem 1. It gives an interesting computational formula for Kk(p) with p1mod4. That is, for any integer k, we have the identity

    Kk(p)=(4p+2)Kk2(p)8(2α2p)Kk3(p)+(16α416pα2+4p1)Kk4(p).

    Thus, the problems of calculating a linear recurrence formula of one kind special character sums modulo a prime are given.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are grateful to the anonymous referee for very helpful and detailed comments.

    This work is supported by the N.S.F. (11971381, 12371007) of China and Shaanxi Fundamental Science Research Project for Mathematics and Physics (22JSY007).

    The authors declare no conflicts of interest.



    [1] G. Chartrand, P. Zhang, A first course in graph theory, Mineola, New York: Dover Publication, Inc., 2013.
    [2] G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, F. Saba, Irregular networks, Congr. Numer., 64 (1988), 197–210. https://doi.org/10.2307/3146243 doi: 10.2307/3146243
    [3] D. Tanna, Graph labeling techniques, Doctoral dissertation, University of Newcastle, Newcastle, Australia, 2017.
    [4] M. Bača, S. Jendrol', M. Miller, J. Ryan, On irregular total labelings, Discrete Math., 307 (2007), 1378–1388. https://doi.org/10.1016/j.disc.2005.11.075 doi: 10.1016/j.disc.2005.11.075
    [5] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Comb., 2021.
    [6] D. Tanna, J. Ryan, A. Semaničová-Feňovčíková, Edge irregular reflexive labeling of prisms and wheels, Australas. J. Comb., 69 (2017), 394–401. https://doi.org/10.1215/00104124-4260427 doi: 10.1215/00104124-4260427
    [7] M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, D. Tanna, Note on edge irregular reflexive labelings of graphs, AKCE Int. J. Graphs Comb., 16 (2019), 145–157. https://doi.org/10.1016/j.akcej.2018.01.013 doi: 10.1016/j.akcej.2018.01.013
    [8] M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, D. Tanna, On edge irregular reflexive labelings for the generalized friendship graphs, Mathematics, 5 (2017), 67. https://doi.org/10.3390/math5040067 doi: 10.3390/math5040067
    [9] X. Zhang, M. Ibrahim, S. A. H. Bokhary, M. K. Siddiqui, Edge irregular reflexive labeling for the disjoint union of gear graphs and prism graphs, Mathematics, 6 (2018), 142. https://doi.org/10.3390/math6090142 doi: 10.3390/math6090142
    [10] J. L. G. Guirao, S. Ahmad, M. K. Siddiqui, M. Ibrahim, Edge irregular reflexive labeling for the disjoint union of generalized Petersen graph, Mathematics, 6 (2018), 304. https://doi.org/10.3390/math6120304 doi: 10.3390/math6120304
    [11] M. Basher, On the reflexive edge strength of the circulant graphs, AIMS Math., 6 (2021), 9342–9365. https://doi.org/10.3934/math.2021543 doi: 10.3934/math.2021543
    [12] K. K. Yoong, R. Hasni, M. Irfan, I. Taraweh, A. Ahmad, S. M. Lee, On the edge irregular reflexive labeling of corona product of graphs with path, AKCE Int. J. Graphs Comb., 18 (2021), 53–59. https://doi.org/10.1080/09728600.2021.1931555 doi: 10.1080/09728600.2021.1931555
    [13] Y. Ke, M. J. A. Khan, M. Ibrahim, M. K. Siddiqui, On edge irregular reflexive labeling for cartesian product of two graphs, Eur. Phys. J. Plus, 136 (2021), 6. https://doi.org/10.1140/epjp/s13360-020-00960-1 doi: 10.1140/epjp/s13360-020-00960-1
    [14] M. J. A. Khan, M. Ibrahim, A. Ahmad, On edge irregular reflexive labeling of categorical product of two paths, Comput. Syst. Sci. Eng., 36 (2021), 485–492. https://doi.org/10.32604/csse.2021.014810 doi: 10.32604/csse.2021.014810
    [15] I. H. Agustin, Dafik, M. I. Utoyo, Slamin, M. Venkatachalam, The reflexive edge strength on some almost regular graphs, Heliyon, 7 (2021), e06991. https://doi.org/10.1016/j.heliyon.2021.e06991 doi: 10.1016/j.heliyon.2021.e06991
    [16] M. Bača, Labelings of two classes of convex polytopes, Utilitas Math., 34 (1988), 24–31. https://doi.org/10.1002/bit.260310105 doi: 10.1002/bit.260310105
    [17] M. Bača, On magic labelings of convex polytopes, Ann. Discrete Math., 51 (1992), 13–16. https://doi.org/10.1016/S0167-5060(08)70599-5 doi: 10.1016/S0167-5060(08)70599-5
    [18] I. Tarawneh, R. Hasni, A. Ahmad, G. C. Lau, S. M. Lee, On the edge irregularity strength of corona product of graphs with cycle, Discret. Math. Algorithms Appl., 12 (2020), 2050083. https://doi.org/10.1142/S1793830920500834 doi: 10.1142/S1793830920500834
    [19] H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185. https://doi.org/10.1016/j.amc.2018.07.010 doi: 10.1016/j.amc.2018.07.010
    [20] H. Raza, S. Hayat, M. Imran, X. F. Pan, Fault-tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 78. https://doi.org/10.3390/math7010078 doi: 10.3390/math7010078
    [21] S. Hayat, M. Y. H. Malik, A. Ahmad, S. Khan, F. Yousafzai, R. Hasni, On Hamilton-connectivity and detour index of certain families of convex polytopes, Math. Probl. Eng., 2021 (2021), 5553216. https://doi.org/10.1155/2021/5553216 doi: 10.1155/2021/5553216
    [22] S. Hayat, A. Khan, S. Khan, J. B. Liu, Hamilton connectivity of convex polytopes with applications to their detour index, Complexity, 2021 (2021), 6684784. https://doi.org/10.1155/2021/6684784 doi: 10.1155/2021/6684784
    [23] S. Khan, S. Hayat, A. Khan, M. Y. H. Malik, J. Cao, Hamilton-connectedness and Hamilton-laceability of planar geometric graphs with applications, AIMS Math., 6 (2021), 3947–3973. https://doi.org/10.3934/math.2021235 doi: 10.3934/math.2021235
    [24] Y. Zhang, S. Gao, On the edge metric dimension of convex polytopes and its related graphs, J. Comb. Optim., 39 (2020), 334–350. https://doi.org/10.1007/s10878-019-00472-4 doi: 10.1007/s10878-019-00472-4
  • This article has been cited by:

    1. Mounia Mouy, Hamid Boulares, Saleh Alshammari, Mohammad Alshammari, Yamina Laskri, Wael W. Mohammed, On Averaging Principle for Caputo–Hadamard Fractional Stochastic Differential Pantograph Equation, 2022, 7, 2504-3110, 31, 10.3390/fractalfract7010031
    2. Sabbavarapu Nageswara Rao, Manoj Singh, Ahmed Hussein Msmali, Abdullah Ali H. Ahmadini, Existence of Positive Solutions for a Coupled System of p-Laplacian Semipositone Hadmard Fractional BVP, 2023, 7, 2504-3110, 499, 10.3390/fractalfract7070499
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2239) PDF downloads(88) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog