Research article Special Issues

Results on controllability for Sobolev type fractional differential equations of order 1<r<2 with finite delay

  • Received: 13 November 2021 Revised: 13 March 2022 Accepted: 15 March 2022 Published: 22 March 2022
  • MSC : 34A08, 26A33, 93B05, 46E36, 47D09

  • In this article, exact controllability results for Sobolev fractional delay differential system of 1<r<2 are investigated. Fractional analysis, cosine and sine function operators, and Schauder's fixed point theorem are applied to verify the main results of this study. To begin, we use sufficient conditions to explore the controllability for fractional evolution differential system with finite delay. Lastly, an example is provided to illustrate the obtained theoretical results.

    Citation: Yong-Ki Ma, Marimuthu Mohan Raja, Kottakkaran Sooppy Nisar, Anurag Shukla, Velusamy Vijayakumar. Results on controllability for Sobolev type fractional differential equations of order 1<r<2 with finite delay[J]. AIMS Mathematics, 2022, 7(6): 10215-10233. doi: 10.3934/math.2022568

    Related Papers:

    [1] Kelly Pagidas . 2024 Annual Report. AIMS Medical Science, 2025, 12(1): 63-68. doi: 10.3934/medsci.2025005
    [2] Ragini C Bhake, Stafford L Lightman . A Simple Complex Case: Restoration of Circadian Cortisol Activity. AIMS Medical Science, 2015, 2(3): 182-185. doi: 10.3934/medsci.2015.3.182
    [3] Mpumelelo Nyathi, Autherlia Dimpho Rinkie Mosiame . Evaluating radiation exposure risks from patient urine in a PET-CT center: should concerns arise?. AIMS Medical Science, 2025, 12(2): 238-246. doi: 10.3934/medsci.2025016
    [4] Piero Pavone, Ottavia Avola, Claudia Oliva, Alessandra Di Nora, Tiziana Timpanaro, Chiara Nannola, Filippo Greco, Raffaele Falsaperla, Agata Polizzi . Genetic epilepsy and role of mutation variants in 27 epileptic children: results from a “single tertiary centre” and literature review. AIMS Medical Science, 2024, 11(3): 330-347. doi: 10.3934/medsci.2024023
    [5] Muhammad Bilal . Leukemoid reaction in paraplegic male with pressure injuries: A case report. AIMS Medical Science, 2024, 11(2): 72-76. doi: 10.3934/medsci.2024006
    [6] Niccolò Stomeo, Giacomo Simeone, Leonardo Ciavarella, Giulia Lionetti, Arosh S. Perera Molligoda Arachchige, Francesco Cama . Fluid overload during operative hysteroscopy for metroplasty: A case report. AIMS Medical Science, 2023, 10(4): 310-317. doi: 10.3934/medsci.2023024
    [7] Ryan T. Borne, Arash Aghel, Amit C. Patel, Robert K. Rogers . Innominate Steal Syndrome: A Two Patient Case Report and Review. AIMS Medical Science, 2015, 2(4): 360-370. doi: 10.3934/medsci.2015.4.360
    [8] Rosario Megna . Evolution of the COVID-19 pandemic in Italy at the national and regional levels from February 2020 to March 2022. AIMS Medical Science, 2023, 10(3): 237-258. doi: 10.3934/medsci.2023019
    [9] Juliet A Harvey, Sebastien FM Chastin, Dawn A Skelton . What happened to my legs when I broke my arm?. AIMS Medical Science, 2018, 5(3): 252-258. doi: 10.3934/medsci.2018.3.252
    [10] Jamie L. Flexon, Lisa Stolzenberg, Stewart J. D'Alessio . The effect of cannabis legislation on opioid and benzodiazepine use among aging Americans. AIMS Medical Science, 2024, 11(4): 361-377. doi: 10.3934/medsci.2024025
  • In this article, exact controllability results for Sobolev fractional delay differential system of 1<r<2 are investigated. Fractional analysis, cosine and sine function operators, and Schauder's fixed point theorem are applied to verify the main results of this study. To begin, we use sufficient conditions to explore the controllability for fractional evolution differential system with finite delay. Lastly, an example is provided to illustrate the obtained theoretical results.



    It is with admiration that we share with you our publication data for the 2022 calendar year for the AIMS Medical Science Journal. It was another successful year with the highest number of publication submissions to date over the past three years. Our depth and breadth of publications spanned multiple basic and clinical science disciplines that originated from talented authors across the globe. We look forward to an exciting year ahead and welcome the opportunity to review original manuscripts for consideration for publication in the journal. Our goals are to provide a forum of high-quality manuscripts that can positively impact the expansion of scientific knowledge and advance the health of our population.

    Below is a graphic depiction of the manuscript submission and publication data for the journal for the past three years (Figure 1). There are slightly more submissions that were received in 2022 than in 2021, and the number of accepted and published manuscripts remain stable for the past three years. Our hope is increasing the footprint of quality manuscripts submitted to the journal that will translate into an increased number of high-quality publications for the upcoming year.

    Figure 1.  Manuscript statistics from 2020 to 2022.

    2022 manuscripts status:

    Publications: 28

    Reject rate: 71%

    Publication time (from submission to online): 109 days

    The geographic distribution of the corresponding authors of the published manuscripts are depicted below (Figure 2). We are honored to attract authors from around the world who chose to submit their research to the journal for publication (USA, Canada, Nigeria, Japan, etc.). Of note the majority of publications originate from authors based in the United States representing 39% of the publications followed by Canada and Nigeria standing at 11% each.

    Table 1 depicts the type of manuscripts published. A total of 28 articles were published in 2022, of which, the majority were research based, 12 (43%) followed by reviews, 10 (36%).

    Table 1.  Published articles type.
    Article type Number Percent
    Research article 12 43%
    Review 10 36%
    Others 6 21%
    Total 28

     | Show Table
    DownLoad: CSV
    Figure 2.  Corresponding authors distribution.

    Table 2 depicts the top 10 articles with the highest views, published in 2022. A focus of these top 10 articles was: Fall Risks, Monoclonal Antibody development and COVID-19.

    Table 2.  The top 10 articles with the highest views, published in 2022.
    Title Corresponding author Views
    1 Knowledge, attitudes on falls and awareness of hospitalized patient's fall risk factors among the nurses working in Tertiary Care Hospitals Surapaneni Krishna Mohan 1861
    2 Clinical pharmacology to support monoclonal antibody drug development Sharon Lu 1861
    3 Telehealth during COVID-19 pandemic era: a systematic review Jonathan Kissi 1787
    4 Understanding the psychological impact of the COVID-19 pandemic on university students Belgüzar Kara 1786
    5 Soluble Fas ligand, soluble Fas receptor, and decoy receptor 3 as disease biomarkers for clinical applications: A review Michiro Muraki 1697
    6 Non-small cell lung cancer: epidemiology, screening, diagnosis, and treatment Anuj A. Shukla 1613
    7 Recurrence after treatment of arteriovenous malformations of the head and neck Nguyen Minh Duc 1583
    8 Staphylococcus aureus antimicrobial efflux pumps and their inhibitors: recent developments Manuel Varela 1467
    9 The mental health of the health care professionals in India during the COVID-19 pandemic: a cross-sectional study B Shivananda Nayak 1268
    10 Recognition, treatment, and prevention of perioperative anaphylaxis: a narrative review Julena Foglia 1210

     | Show Table
    DownLoad: CSV

    AIMS Medical Science Journal has 94 members, representing 26 countries. Thirty three percent of the members are from the United States, and other members represent Italy, France, and several other countries (Figure 3). We want to particularly acknowledge our editors: Kelly Pagidas (Editor-in-Chief), Belgüzar Kara, Gulshan Sunavala-Dossabhoy, Gwendolyn Quinn, Panayota Mitrou, Kimberly Udlis (retired), Mai Alzamel, Yi-Jang Lee, Sreekumar Othumpangat, Ji Hyun Kim, Athanasios Alexiou, Robert Striker, Andrei Kelarev, Casey Peiris, Patrick Legembre, Ramin Ataee, Louis Ragolia, Bogdan Borz, Robert Kratzke, Maria Fiorillo, Lars Malmström, Giuliana Banche, Jean-Marie Exbrayat and Elias El-Habr. Importantly, a special thank you to all the Editorial Board members, reviewers and in-house editors, and staff for their dedication, commitment, and unrelenting hard work throughout the year. We hope to attract additional scholars that will be able to join our team for the upcoming year.

    Figure 3.  Editorial board members distribution.


    [1] R. P. Agarwal, M. Belmekki, M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Differ. Equ., 2009 (2009), 1–47. https://doi.org/10.1155/2009/981728 doi: 10.1155/2009/981728
    [2] W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, 2 Eds., Birkhauser Verlag, 2011.
    [3] P. Balasubramaniam, P. Tamilalagan, Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi's function, Appl. Math. Comput., 256 (2015), 232–246. https://doi.org/10.1016/j.amc.2015.01.035 doi: 10.1016/j.amc.2015.01.035
    [4] M. Bohner, O. Tunç, C. Tunç, Qualitative analysis of caputo fractional integro-differential equations with constant delays, Comp. Appl. Math., 40 (2021), 40. https://doi.org/10.1007/s40314-021-01595-3 doi: 10.1007/s40314-021-01595-3
    [5] Y. K. Chang, Controllability of impulsive functional differential systems with infinite delay in Banach spaces, Chaos Soliton Fract., 33 (2007), 1601–1609. https://doi.org/10.1016/j.chaos.2006.03.006 doi: 10.1016/j.chaos.2006.03.006
    [6] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1<r<2, Math. Comput. Simulat., 190 (2021), 1003–1026. https://doi.org/10.1016/j.matcom.2021.06.026 doi: 10.1016/j.matcom.2021.06.026
    [7] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, A. Shukla, K. S. Nisar, A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r(1,2) with delay, Chaos Soliton Fract., 153 (2021), 111565. https://doi.org/10.1016/j.chaos.2021.111565 doi: 10.1016/j.chaos.2021.111565
    [8] H. O. Fattorini, Second order linear differential equations in Banach spaces, North-Holland Mathematics Studies, Elsevier Science, 1985.
    [9] M. Fečkan, J. Wang, Y. Zhou, Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators, J. Optim. Theory Appl., 156 (2013), 79–95. https://doi.org/10.1007/s10957-012-0174-7 doi: 10.1007/s10957-012-0174-7
    [10] J. W. Hanneken, D. M. Vaught, B. N. Narahari Achar, Enumeration of the real zeros of the Mittag-Leffler function Eα(z), 1<α<2, In: J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in Fractional Calculus, Dordrecht: Springer, 2007, 15–26. https://doi.org/10.1007/978-1-4020-6042-7_2
    [11] A. Haq, N. Sukavanam, Existence and approximate controllability of Riemann-Liouville fractional integrodifferential systems with damping, Chaos Soliton Fract., 139 (2020), 110043. https://doi.org/10.1016/j.chaos.2020.110043 doi: 10.1016/j.chaos.2020.110043
    [12] A. Haq, Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives, Chaos Soliton Fract., 157 (2022), 111923. https://doi.org/10.1016/j.chaos.2022.111923 doi: 10.1016/j.chaos.2022.111923
    [13] A. Haq, N. Sukavanam, Partial approximate controllability of fractional systems with Riemann-Liouville derivatives and nonlocal conditions, Rend. Circ. Mat. Palermo, Ser. 2, 70 (2021), 1099–1114. https://doi.org/10.1007/s12215-020-00548-9 doi: 10.1007/s12215-020-00548-9
    [14] A. Haq, N. Sukavanam, Controllability of second-order nonlocal retarded semilinear systems with delay in control, Appl. Anal., 99 (2020), 2741–2754. https://doi.org/10.1080/00036811.2019.1582031 doi: 10.1080/00036811.2019.1582031
    [15] A. Haq, N. Sukavanam, Mild solution and approximate controllability of retarded semilinear systems with control delays and nonlocal conditions, Numer. Funct. Anal. Optim., 42 (2021), 721–737. https://doi.org/10.1080/01630563.2021.1928697 doi: 10.1080/01630563.2021.1928697
    [16] J. W. He, Y. Liang, B. Ahmad, Y. Zhou, Nonlocal fractional evolution inclusions of order α(1,2), Mathematics, 209 (2019), 209. https://doi.org/10.3390/math7020209 doi: 10.3390/math7020209
    [17] K. Kavitha, V. Vijayakumar, R. Udhayakumar, C. Ravichandran, Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness, Asian J. Control, 2021. https://doi.org/10.1002/asjc.2549
    [18] K. Kavitha, V. Vijayakumar, A. Shukla, K. S. Nisar, R. Udhayakumar, Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type, Chaos Soliton Fract., 151 (2021), 111264. https://doi.org/10.1016/j.chaos.2021.111264 doi: 10.1016/j.chaos.2021.111264
    [19] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [20] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.
    [21] J. H. Lightbourne, S. Rankin, A partial functional differential equation of Sobolev type, J. Math. Anal. Appl., 93 (1983), 328–337. https://doi.org/10.1016/0022-247X(83)90178-6 doi: 10.1016/0022-247X(83)90178-6
    [22] Z. Liu, X. Li, On the exact controllability of impulsive fractional semilinear functional differential inclusions Asian J. Control, 17 (2015), 1857–1865. https://doi.org/10.1002/asjc.1071 doi: 10.1002/asjc.1071
    [23] M. Mohan Raja, V. Vijayakumar, R. Udhayakumar, Results on the existence and controllability of fractional integro-differential system of order 1<r<2 via measure of noncompactness, Chaos Soliton Fract., 139 (2020), 110299. https://doi.org/10.1016/j.chaos.2020.110299 doi: 10.1016/j.chaos.2020.110299
    [24] M. Mohan Raja, V. Vijayakumar, R. Udhayakumar, Y. Zhou, A new approach on the approximate controllability of fractional differential evolution equations of order 1<r<2 in Hilbert spaces, Chaos Soliton Fract., 141 (2020), 110310. https://doi.org/10.1016/j.chaos.2020.110310 doi: 10.1016/j.chaos.2020.110310
    [25] M. Mohan Raja, V. Vijayakumar, R. Udhayakumar, A new approach on approximate controllability of fractional evolution inclusions of order 1<r<2 with infinite delay, Chaos Soliton Fract., 141 (2020), 110343. https://doi.org/10.1016/j.chaos.2020.110343 doi: 10.1016/j.chaos.2020.110343
    [26] M. Mohan Raja, V. Vijayakumar, New results concerning to approximate controllability of fractional integro-differential evolution equations of order 1<r<2, Numer. Methods Partial Differ. Equ., 2020. https://doi.org/10.1002/num.22653 doi: 10.1002/num.22653
    [27] M. Mohan Raja, V. Vijayakumar, R. Udhayakumar, K. S. Nisar, Results on existence and controllability results for fractional evolution inclusions of order 1<r<2 with Clarke's subdifferential type, Numer. Methods Partial Differ. Equ., 2020. https://doi.org/10.1002/num.22691 doi: 10.1002/num.22691
    [28] M. Mohan Raja, V. Vijayakumar, L. N. Huynh, R. Udhayakumar, K. S. Nisar, New discussion on nonlocal controllability for fractional evolution system of order 1<r<2, Adv. Differ. Equ., 2021 (2021), 237. https://doi.org/10.1186/s13662-021-03373-1 doi: 10.1186/s13662-021-03373-1
    [29] M. Mohan Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, S. Rezapour, New discussion on nonlocal controllability for fractional evolution system of order 1<r<2, Adv. Differ. Equ., 2021 (2021), 481. https://doi.org/10.1186/s13662-021-03630-3 doi: 10.1186/s13662-021-03630-3
    [30] M. Mohan Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, N. Sakthivel, K. Kaliraj, Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r(1,2), Optim. Contr. Appl. Methods, 2022. https://doi.org/10.1002/oca.2867 doi: 10.1002/oca.2867
    [31] K. S. Nisar, V. Vijayakumar, Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system, Math. Methods. Appl. Sci., 44 (2021), 13615–13632. https://doi.org/ 10.1002/mma.7647 doi: 10.1002/mma.7647
    [32] R. Patel, A. Shukla, S. S. Jadon, Existence and optimal control problem for semilinear fractional order (1, 2] control system, Math. Methods. Appl. Sci., 2020. https://doi.org/10.1002/mma.6662 doi: 10.1002/mma.6662
    [33] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to method of their solution and some of their applications, San Diego: Academic Press, 1999.
    [34] G. Rahman, K. S. Nisar, S. Khan, D. Baleanu, V. Vijayakumar, On the weighted fractional integral inequalities for Chebyshev functionals, Adv. Differ. Equ., 2021 (2021), 1–19. https://doi.org/10.1186/s13662-020-03183-x doi: 10.1186/s13662-020-03183-x
    [35] R. Sakthivel, R. Ganesh, Y. Ren, S. M. Anthoni, Approximate controllability of nonlinear fractional dynamical systems, Commun. Nonlinear Sci., 18 (2013), 3498–3508. https://doi.org/10.1016/j.cnsns.2013.05.015 doi: 10.1016/j.cnsns.2013.05.015
    [36] R. Sakthivel, N. I. Mahmudov, J. J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334–10340. https://doi.org/10.1016/j.amc.2012.03.093 doi: 10.1016/j.amc.2012.03.093
    [37] T. Sathiyaraj, P. Balasubramaniam, The controllability of fractional damped stochastic integrodifferential systems, Asian J. Control, 19 (2017), 1455–1464. https://doi.org/10.1002/asjc.1453 doi: 10.1002/asjc.1453
    [38] A. Shukla, N. Sukavanam, D. N. Pandey, Controllability of semilinear stochastic control system with finite delay, IMA J. Math. Control Inf., 35 (2018), 427–449. https://doi.org/10.1093/imamci/dnw059 doi: 10.1093/imamci/dnw059
    [39] A. Shukla, N. Sukavanam, Complete controllability of semi-linear stochastic system with delay, Rend. Circ. Mat. Palermo, 64 (2015), 209–220. https://doi.org/10.1007/s12215-015-0191-0 doi: 10.1007/s12215-015-0191-0
    [40] A. Shukla, N. Sukavanam, D. N. Pandey, Approximate controllability of fractional semilinear stochastic system of order α(1,2], J. Dyn. Control Syst., 23 (2017), 679–691. https://doi.org/10.1007/s10883-016-9350-7 doi: 10.1007/s10883-016-9350-7
    [41] A. Shukla, N. Sukavanam, D. N. Pandey, Approximate controllability of semilinear fractional stochastic control system, Asian-Eur. J. Math., 11 (2018), 1850088. https://doi.org/10.1142/S1793557118500882 doi: 10.1142/S1793557118500882
    [42] A. Shukla, N. Sukavanam, D. N. Pandey, Controllability of semilinear stochastic system with multiple delays in control, IFAC Proc. Vol., 47 (2014), 306–312. https://doi.org/10.3182/20140313-3-IN-3024.00107 doi: 10.3182/20140313-3-IN-3024.00107
    [43] A. Shukla, R. Patel, Existence and optimal control results for second-order semilinear system in Hilbert spaces, Circuits Syst. Signal Proccess., 40 (2021), 4246–4258. https://doi.org/10.1007/s00034-021-01680-2 doi: 10.1007/s00034-021-01680-2
    [44] A. Shukla, R. Patel, Controllability results for fractional semilinear delay control systems, J. Appl. Math. Comput., 65 (2021), 861–875. https://doi.org/10.1007/s12190-020-01418-4 doi: 10.1007/s12190-020-01418-4
    [45] A. Shukla, N. Sukavanam, D. N. Pandey, Approximate controllability of semilinear fractional control systems of order α(1,2), Proc. Conf. Control Appl., Soc. Ind. Appl. Math., 2015,175–180. https://doi.org/10.1137/1.9781611974072.25 doi: 10.1137/1.9781611974072.25
    [46] A. Singh, A. Shukla, V. Vijayakumar, R. Udhayakumar, Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces, Chaos Soliton Fract., 150 (2021), 111095. https://doi.org/10.1016/j.chaos.2021.111095 doi: 10.1016/j.chaos.2021.111095
    [47] C. C. Travis, G. F. Webb, Cosine families and abstract nonlinear second order differential equations, Acta Math. Sci., 32 (1978), 75–96. https://doi.org/10.1007/BF01902205 doi: 10.1007/BF01902205
    [48] C. Tunc, A. K. Golmankhaneh, On stability of a class of second alpha-order fractal differential equations, AIMS Math., 5 (2020), 2126–2142. https://doi.org/10.3934/math.2020141 doi: 10.3934/math.2020141
    [49] O. Tunc, Ö. Atan, C. Tunc, J. C. Yao, Qualitative analyses of integro-fractional differential equations with Caputo derivatives and retardations via the Lyapunov-Razumikhin method, Axioms, 10 (2021), 58. https://doi.org/10.3390/axioms10020058 doi: 10.3390/axioms10020058
    [50] V. Vijayakumar, C. Ravichandran, K. S. Nisar, K. D. Kucche, New discussion on approximate controllability results for fractional Sobolev type Volterra-Fredholm integro-differential systems of order 1<r<2, Numer. Methods Partial Differ. Equ., 2021. https://doi.org/10.1002/num.22772 doi: 10.1002/num.22772
    [51] V. Vijayakumar, S. K. Panda, K. S. Nisar, H. M. Baskonus, Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay, Numer. Methods Partial Differ. Equ., 37 (2021), 1200–1221. https://doi.org/10.1002/num.22573 doi: 10.1002/num.22573
    [52] V. Vijayakumar, R. Udhayakumar, C. Dineshkumar, Approximate controllability of second order nonlocal neutral differential evolution inclusions, IMA J. Math. Control Inf., 38 (2021), 192–210. https://doi.org/10.1093/imamci/dnaa001 doi: 10.1093/imamci/dnaa001
    [53] J. R. Wang, Z. Fan, Y. Zhou, Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces, J. Optim. Theory Appl., 154 (2012), 292–302. https://doi.org/10.1007/s10957-012-9999-3 doi: 10.1007/s10957-012-9999-3
    [54] W. K. Williams, V. Vijayakumar, R. Udhayakumar, K. S. Nisar, A new study on existence and uniqueness of nonlocal fractional delay differential systems of order 1<r<2 in Banach spaces, Numer. Methods Partial Differ. Equ., 37 (2021), 949–961. https://doi.org/10.1002/num.22560 doi: 10.1002/num.22560
    [55] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/9069
    [56] Y. Zhou, Fractional evolution equations and inclusions: Analysis and control, Elsevier, 2016. https://doi.org/10.1016/C2015-0-00813-9
    [57] Y. Zhou, J. W. He, New results on controllability of fractional evolution systems with order α(1,2), Evol. Equ. Control The., 10 (2021), 491–509. https://doi.org/10.3934/eect.2020077 doi: 10.3934/eect.2020077
    [58] Y. Zhou, L. Zhang, X. H. Shen, Existence of mild solutions for fractional evolution equations, J. Int. Equ. Appl., 25 (2013), 557–585. https://doi.org/10.1216/JIE-2013-25-4-557 doi: 10.1216/JIE-2013-25-4-557
    [59] Z. F. Zhang, B. Liu, Controllability results for fractional functional differential equations with nondense domain, Numer. Funct. Anal. Optim., 35 (2014), 443–460. https://doi.org/10.1080/01630563.2013.813536 doi: 10.1080/01630563.2013.813536
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2135) PDF downloads(148) Cited by(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog