The main objective of this paper is to derive some new variants of trapezium like inequalities involving k-fractional integrals with exponential kernel essentially using the definition of preinvex functions. Fractional bounds associated with some new fractional integral identities are also obtained. In order to show the significance of our main results, we also discuss applications to means and q-digamma functions. We discuss special cases which show that our results are quite unifying.
Citation: Miguel Vivas-Cortez, Muhammad Uzair Awan, Sadia Talib, Guoju Ye, Muhammad Aslam Noor. Fractional identities involving exponential kernel and associated fractional trapezium like inequalities[J]. AIMS Mathematics, 2022, 7(6): 10195-10214. doi: 10.3934/math.2022567
[1] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Artion Kashuri, Muhammad Aslam Noor . Fractional integral estimations pertaining to generalized $ {\gamma} $-convex functions involving Raina's function and applications. AIMS Mathematics, 2022, 7(8): 13633-13663. doi: 10.3934/math.2022752 |
[2] | Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri . Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283 |
[3] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201 |
[4] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially $ (\alpha, h-m) $-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[5] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[6] | Shuhong Yu, Tingsong Du . Certain inequalities in frame of the left-sided fractional integral operators having exponential kernels. AIMS Mathematics, 2022, 7(3): 4094-4114. doi: 10.3934/math.2022226 |
[7] | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu . Some unified bounds for exponentially $tgs$-convex functions governed by conformable fractional operators. AIMS Mathematics, 2020, 5(6): 6108-6123. doi: 10.3934/math.2020392 |
[8] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Artion Kashuri, Hüseyin Budak . Generalizations of fractional Hermite-Hadamard-Mercer like inequalities for convex functions. AIMS Mathematics, 2021, 6(9): 9397-9421. doi: 10.3934/math.2021546 |
[9] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[10] | Artion Kashuri, Rozana Liko, Silvestru Sever Dragomir . New generalized integral inequalities with applications. AIMS Mathematics, 2019, 4(3): 984-996. doi: 10.3934/math.2019.3.984 |
The main objective of this paper is to derive some new variants of trapezium like inequalities involving k-fractional integrals with exponential kernel essentially using the definition of preinvex functions. Fractional bounds associated with some new fractional integral identities are also obtained. In order to show the significance of our main results, we also discuss applications to means and q-digamma functions. We discuss special cases which show that our results are quite unifying.
Fractional calculus has emerged as one of the most important interdisciplinary subjects. In recent past it experienced rapid development and consequently several new generalizations of classical concepts of fractional calculus have been obtained in the literature, for example, see [9].
The classical Riemann-Liouville fractional integrals are defined as:
Definition 1.1 ([9]). Let F∈L1[a,b]. Then the Riemann-Liouville integrals Jαa+F and Jαb−F of order α>0 with a≥0 are defined by
Jαa+F(x)=1Γ(α)x∫a(x−v)α−1F(v)dv,x>a, |
and
Jαb−F(x)=1Γ(α)b∫x(v−x)α−1F(v)dv,x<b, |
where
Γ(x)=∫∞0e−vvx−1dv, |
is the well known Gamma function.
Diaz et al. [8] introduced the notion of generalized k-gamma function. The integral form of Γk is given by:
Γk(x)=∞∫0vx−1e−vkkdv,ℜ(x)>0. |
Note that
Γk(x)=kxk−1Γ(xk). |
k-Beta function is defined as:
βk(x,y)=1k1∫0vxk−1(1−v)xk−1dv. |
Obviously
βk(x,y)=1kβ(xk,yk). |
Sarikaya et al. [18] extended the notion of Riemann-Liouville fractional integrals to k-Riemann-Liouville fractional integrals and discussed some of its interesting properties.
To be more precise let F be piecewise continuous on I∗=(0,∞) and integrable on any finite subinterval of I=[0,∞]. Then for v>0, we consider k-Riemann-Liouville fractional integral of F of order α
kJαaF(x)=1kΓk(α)x∫a(x−v)αk−1F(v)dv,x>a,k>0. |
It has been observed that k-fractional integrals are significant generalizations of classical fractional integrals. For more details, see [18].
Ahmad et al. [1] defined fractional integral operators with an exponential kernel and obtained corresponding inequalities.
Definition 1.2. Let F∈[a,b]. The fractional left side integral kIαa+F and right side integral kIαb−F of order α∈(0,1) are defined as follows:
Iαa+F(x)=1αx∫ae−1−αα(x−v)F(v)dv, x>a, |
and
Iαb−F(x)=1αb∫xe−1−αα(v−x)F(v)dv, x<b. |
Using the ideas of [1,18], we now introduce the notion of k-fractional integral operators with an exponential kernel.
Definition 1.3. Let F∈L[a,b]. The k-fractional left side integral kIαa+F and right side integral kIαb−F of order α∈(0,1) for k>0 are defined as follows
kIαa+F(x)=kαx∫ae−k−αα(x−v)F(v)dv, x>a, |
and
kIαb−F(x)=kαb∫xe−k−αα(v−x)F(v)dv, x<b. |
It is to be noted that by taking k→1 in Definition 1.3, we recapture Definition 1.2. Fractional analogues of integral inequalities have a great many applications in numerical quadrature, transform theory, probability, statistical problems etc. Therefore, a significant and rapid development in this field has been noticed, for details, see [2,3,20,24,25]. Sarikaya et al. [19] utilized the concepts of fractional integrals and obtained new fractional refinements of trapezium like inequalities. This article motivated many researchers and as a result several new fractional extensions of classical inequalities have been obtained in the literature, for example, see [1,4,6,7,11,14,15,16,17,18,19,22,23]. Recently Ahmad et al. [1] used fractional integral operators with an exponential kernel and obtained corresponding inequalities. Wu et al. [23] derived some new identities and bounds pertaining to fractional integrals with the exponential kernel.
The main motivation of this paper is to derive some new fractional refinements of trapezium like inequalities essentially using the new fractional integral operators with an exponential kernel to k-fractional integral operators with an exponential kernel and the preinvexity property of the functions. In order to establish the significance of our main results, we offer some applications of our main results to means and q-digamma functions. We hope that the ideas and techniques of this paper will inspire interested readers working in the field of inequalities.
Before we proceed further, we now recall some previously known concepts from convex analysis. We first, start with the definition of invex sets.
Definition 1.4 ([10]). A set K is said to be invex with respect to bifunction θ(.,.), if
x+vθ(y,x)∈K,∀x,y∈K,v∈[0,1]. |
The preinvexity of the functions is defined as:
Definition 1.5 ([21]). A function F:K→R is said to be preinvex with respect to bifunction θ(.,.), if
F(x+vθ(y,x))≤(1−v)F(x)+vf(y),∀x,y∈K,v∈[0,1]. |
In order to obtain some of the main results of the paper, we need the famous condition C, which was introduced by Mohan and Neogy [13]. This condition played a vital role in the development of several results involving preinvex functions.
Condition C. Let θ:K×K→Rn. We say that the bifunction θ(.,.) satisfies the condition C, if for any x,y∈Rn
1. θ(x,x+vθ(y,x))=−vθ(y,x),
2. θ(y,x+vθ(y,x))=(1−v)θ(y,x),
for all v∈[0,1].
Note that for any x,y∈Rn and v1,v2∈[0,1] and from the condition C, we have, see [12]
θ(x+v2θ(y,x),x+v1θ(y,x))=(v2−v1)θ(y,x). |
In this section, we derive some new fractional trapezium type inequalities involving the functions having preinvexity property. For the sake of simplicity, we set ρ=k−ααθ(b,a) and ρ1=1−ααθ(b,a).
Theorem 2.1. Let F:[a,a+θ(b,a)]⊆R→R be a positive function with θ(b,a)>0 and F∈L[a,a+θ(b,a)]. Suppose F is a preinvex function and θ(.,.) satisfies condition C, then
F(2a+θ(b,a)2)≤k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]≤F(a)+F(b)2. | (2.1) |
Proof. By preinvexity of F, we have for every x,y∈[a,a+θ(b,a)] with λ=12
2F(x+θ(y,x)2)≤[F(x)+F(y)], |
with x=a+vθ(b,a),y=a+(1−v)θ(b,a) and using the condition C, we have
2F(a+vθ(b,a)+θ(a+(1−v)θ(b,a),a+vθ(b,a))2)=2F(a+vθ(b,a)+(1−2v)θ(b,a)2)=2F(2a+θ(b,a)2)≤F(a+vθ(b,a))+F(a+(1−v)θ(b,a)). | (2.2) |
Multiplying both sides of above inequality by e−ρv and integrating with respect to v over [0,1], we have
2(1−e−ρ)ρF(2a+θ(b,a)2)≤1∫0e−ρvf(a+vθ(b,a))dv+1∫0e−ρvF(a+(1−v)θ(b,a))dv=1θ(b,a)[a+θ(b,a)∫ae−ρ(s−aθ(b,a))F(s)ds+a+θ(b,a)∫ae−ρ(a+θ(b,a)−sθ(b,a))F(s)ds]=αkθ(b,a)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]. |
As a result, we get
F(2a+θ(b,a)2)≤k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]. | (2.3) |
For the proof of second inequality, we note that F is a preinvex function, so we have
F(a+vθ(b,a))+F(a+(1−v)θ(b,a))≤F(a)+F(b). | (2.4) |
Multiplying both sides by e−ρv and integrating with respect to v over [0,1], we have
αkθ(b,a)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]≤1−e−ρρ[F(a)+F(b)], | (2.5) |
Combining (2.3) and (2.5) completes the proof.
Theorem 2.2. Let F:[a,a+θ(b,a)]⊆R→R be a positive and preinvex function with θ(b,a)>0 and F∈L[a,a+θ(b,a)]. Let W be a non-negative, integrable and symmetric with respect to 2a+θ(b,a)2, then using the condition C, we have
F(2a+θ(b,a)2)[kIα(a)+W(a+θ(b,a))+kIα(a+θ(b,a))−W(a)]≤kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)≤F(a)+F(b)2[kIα(a)+W(a+θ(b,a))+kIα(a+θ(b,a))−W(a)]. | (2.6) |
Proof. Since F is preinvex function on L[a,a+θ(b,a)], so multiplying inequality (2.2) by
e−ρvW(a+vθ(b,a)), | (2.7) |
and then integrating with respect to v over [0,1], we get
2F(2a+θ(b,a)2)1∫0e−ρvW(a+vθ(b,a))dv≤1∫0e−ρvW(a+vθ(b,a))F(a+vθ(b,a))dv+1∫0e−ρvW(a+vθ(b,a))F(a+(1−v)θ(b,a))dv=1∫0e−ρvW(a+vθ(b,a))F(a+vθ(b,a))dv+1∫0e−ρvW(a+(1−v)θ(b,a))F(a+(1−v)θ(b,a))dv=1θ(b,a)[a+θ(b,a)∫ae−ρ(s−aθ(b,a))F(s)W(s)ds+a+θ(b,a)∫ae−ρ(a+θ(b,a)−sθ(b,a))F(s)W(s)ds]=αkθ(b,a)[kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)]. |
Thus
2F(2a+θ(b,a)2)1∫0e−ρvW(a+vθ(b,a))dv≤αkθ(b,a)[kIα(a)+FW(a+θ(b,a))+kIα(a+θ(b,a))−FW(a)]. |
Since W is symmetric with respect to 2a+θ(b,a)2, we have
kIα(a)+W(a+θ(b,a))=kIα(a+θ(b,a))−W(a)=12[kIα(a)+W(a+θ(b,a))+kIα(a+θ(b,a))−W(a)]. |
Thus we get the left side of inequality (2.6).
For the proof of right side of inequality (2.6), we multiply (2.7) and (2.4) and then integrating the resulting inequality with respect to v over [0,1], we get the required result.
Theorem 2.3. Let F,W:[a,a+θ(b,a)]⊆R→R be nonnegative and preinvex function on L[a,a+θ(b,a)] with θ(b,a)>0. If θ(.,.) satisfies condition C, then the following inequalities for the k-fractional integrals with exponential kernel holds:
α2kθ(b,a)[kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)]≤M(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ3+N(a,b)ρ−2+e−ρ(ρ+2)ρ3, | (2.8) |
and
2F(2a+θ(b,a)2)W(2a+θ(b,a)2)≤k−α2k(1−e−ρ)[kIα(a)+FW(a+θ(b,a))+kIα(a+θ(b,a))−FW(a)]≤M(a,b)ρ−2+e−ρ(ρ+2)ρ2(1−e−ρ)+N(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ2(1−e−ρ), | (2.9) |
where
M(a,b)=F(a)W(a)+F(b)W(b), |
and
N(a,b)=F(a)W(b)+F(b)W(a). |
Proof. Since F,W are preinvex functions on [a,a+θ(b,a)], then we have
F(a+vθ(b,a))W(a+vθ(b,a))≤(1−v)2F(a)W(a)+v2F(b)W(b)+v(1−v)N(a,b), |
and
F(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))≤v2F(a)W(a)+(1−v)2F(b)W(b)+v(1−v)N(a,b). |
Adding above inequalities, we have
F(a+vθ(b,a))W(a+vθ(b,a))+F(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))≤(2v2−2v+1)M(a,b)+2v(1−v)N(a,b). |
Multiplying both sides of above inequality by e−ρv and integrating with respect to v over [0,1], we have
1∫0e−ρvF(a+vθ(b,a))W(a+vθ(b,a))dv+1∫0e−ρvF(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))dv≤M(a,b)1∫0e−ρv(2v2−2v+1)dv+M(a,b)1∫0e−ρv2v(1−v)dv=M(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ3+N(a,b)ρ−2+e−ρ(ρ+2)ρ3. |
So,
α2kθ(b,a)[kIα(a)+(FW)(a+θ(b,a))+kIα(a+θ(b,a))−(FW)(a)]≤M(a,b)ρ2−2ρ+4−e−ρ(ρ2+2ρ+4)2ρ3+N(a,b)ρ−2+e−ρ(ρ+2)ρ3. |
For the proof of inequality (2.9), using the preinvexity of F,W and condition C, we have
F(2a+θ(b,a)2)W(2a+θ(b,a)2)=F(a+(1−v)θ(b,a)+12θ(a+vθ(b,a),a+(1−v)θ(b,a))×W(a+(1−v)θ(b,a)+12θ(a+vθ(b,a),a+(1−v)θ(b,a))≤(F(a+vθ(b,a))+F(a+(1−v)θ(b,a))2)(W(a+vθ(b,a))+W(a+(1−v)θ(b,a))2)≤F(a+vθ(b,a))W(a+vθ(b,a))4+F(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))4+v(1−v)2M(a,b)+2v2−2v+14N(a,b). | (2.10) |
Multiplying both sides of inequality (2.10) by e−ρv and integrating with respect to v over [0,1], we get
1−e−ρρF(2a+θ(b,a)2)W(2a+θ(b,a)2)≤1∫0e−ρvF(a+vθ(b,a))W(a+vθ(b,a))4dv+1∫0e−ρvF(a+(1−v)θ(b,a))W(a+(1−v)θ(b,a))4dv+M(a,b)1∫0e−ρvv(1−v)2dv+N(a,b)1∫0e−ρv2v2−2v+14dv, |
which completes the proof.
Lemma 3.1. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)]. Then the following equality for the k-fractional integrals with exponential kernel holds:
Rab=θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv−θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv], | (3.1) |
where
Rab=k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]−F(2a+θ(b,a)2), |
and
u={1, for0≤v≤12,−1,for12≤v≤1. |
Proof. By simple calculations, we have
1∫0e−ρvF′(a+(1−v)θ(b,a))dv=−1θ(b,a)[e−ρvF(a+(1−v)θ(b,a))|10+ρ1∫0e−ρvF(a+(1−v)θ(b,a))dv]=−1θ(b,a)[F(a+θ(b,a))−e−ρF(a)+ρ1∫0e−ρvF(a+(1−v)θ(b,a))dv]=1θ(b,a)[F(a+θ(b,a))−e−ρF(a)−ρθ(b,a)a+θ(b,a)∫ae−ρa+θ(b,a)−sθ(b,a)F(s)ds]=1θ(b,a)[F(a+θ(b,a))−e−ρF(a)−k−ααa+θ(b,a)∫ae−(k−α)α(a+θ(b,a)−s)F(s)ds]=1θ(b,a)[F(a+θ(b,a))−e−ρF(a)−k−αkkIα(a)+F(a+θ(b,a))], | (3.2) |
similarly
1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv=−1θ(b,a)[e−ρ(1−v)F(a+(1−v)θ(b,a))|10−ρ1∫0e−ρ(1−v)F(a+(1−v)θ(b,a))dv]=−1θ(b,a)[F(a)−e−ρF(a+θ(b,a))−ρ1∫0e−ρvF(a+(1−v)θ(b,a))dv]=1θ(b,a)[e−ρF(a+θ(b,a))−F(a)+ρθ(b,a)a+θ(b,a)∫ae−ρs−aθ(b,a)F(s)ds]=1θ(b,a)[e−ρF(a+θ(b,a))−F(a)+k−ααa+θ(b,a)∫ae−(k−α)α(s−a)F(s)ds]=1θ(b,a)[e−ρF(a+θ(b,a))−F(a)+k−αkkIα(a+θ(b,a))−F(a)]. | (3.3) |
Also note that
θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv=θ(b,a)2[12∫0F′(a+(1−v)θ(b,a))dv−1∫12F′(a+(1−v)θ(b,a))dv]=−12[F(a+(1−v)θ(b,a))|120−F(a+(1−v)θ(b,a))|112]=F(a)−F(2a+θ(b,a)2)2−F(2a+θ(b,a)2)−F(a+θ(b,a))2. | (3.4) |
Substituting (3.2), (3.3) and (3.4) in (3.1) completes the proof.
Theorem 3.1. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)] and |F′| is preinvex on [a,a+θ(b,a)]. Then the following inequality for the k-fractional integrals with exponential kernel holds:
|Rab|≤θ(b,a)2(12−tanh(ρ4)ρ)(|F′(a)|+|F′(b)|). |
Proof. Using Lemma 3.1, preinvexity of |F′| and increasing property of exponential function, we have
|Rab|=|θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv−θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv]|≤θ(b,a)2(1−e−ρ)[12∫0(1−e−ρ−e−ρv+e−ρ(1−v))|F′(a+(1−v)θ(b,a))|dv−1∫12(1−e−ρ−e−ρ(1−v)+e−ρv)|F′(a+(1−v)θ(b,a))|dv]≤θ(b,a)2(1−e−ρ)[12∫0(1−e−ρ−e−ρv+e−ρ(1−v))(v|F′(a)|+(1−v)|F′(b)|)dv−1∫12(1−e−ρ−e−ρ(1−v)+e−ρv)(v|F′(a)|+(1−v)|F′(b)|)dv]=θ(b,a)2(1−e−ρ)[12∫0(1−e−ρ−e−ρv+e−ρ(1−v))(v|F′(a)|+(1−v)|F′(b)|)dv−12∫0(1−e−ρ−e−ρv+e−ρ(1−v))((1−v)|F′(a)|+v|F′(b)|)dv]=θ(b,a)2(1−e−ρ)12∫0(1−e−ρ−e−ρv+e−ρ(1−v))(|F′(a)|+|F′(b)|)dv=θ(b,a)2(1−e−ρ)[1−e−ρ2−1ρ(1−e−ρ2)2](|F′(a)|+|F′(b)|)=θ(b,a)2(12−tanh(ρ4)ρ)(|F′(a)|+|F′(b)|), |
which completes the proof.
Lemma 3.2. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)]. Then the following equality for the fractional integrals with exponential kernel holds:
Lab=θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv], | (3.5) |
where
Lab=F(a)+F(a+θ(b,a)2−k−α2k(1−e−ρ)[kIα(a)+F(a+θ(b,a))+kIα(a+θ(b,a))−F(a)]. |
Proof. Using 3.2 and 3.3, we get the required result.
Theorem 3.2. Assume that F:[a,a+θ(b,a)]⊆R→R is a differentiable function and F′∈L[a,a+θ(b,a)]. If |F′| is preinvex function on [a,a+θ(b,a)], then the following inequality for the k-fractional integrals with exponential kernel holds:
|Lab|≤θ(b,a)2ρtanh(ρ4)(|F′(a)|+|F′(b)|). |
Proof. Using Lemma 3.2, preinvexity of |F′| and increasing property of exponential function, we have
|Lab|≤θ(b,a)21∫0|e−ρv−e−ρ(1−v)|1−e−ρ|F′(a+vθ(b,a))|dv≤θ(b,a)2[1∫0|e−ρv−e−ρ(1−v)|1−e−ρv|F′(a)|dv+1∫0|e−ρv−e−ρ(1−v)|1−e−ρ(1−v)|F′(b)|dv]=θ(b,a)2|F′(a)|[12∫0e−ρv−e−ρ(1−v)1−e−ρvdv+1∫12e−ρ(1−v)−e−ρv1−e−ρvdv]+θ(b,a)2|F′(b)|[12∫0e−ρv−e−ρ(1−v)1−e−ρ(1−v)dv+1∫12e−ρ(1−v)−e−ρv1−e−ρ(1−v)dv]=θ(b,a)2ρtanh(ρ4)(|F′(a)|+|F′(b)|), |
which completes the proof.
Lemma 3.3. Assume that F:[a,a+θ(b,a)]⊆R→R is twice differentiable function and F′′∈L[a,a+θ(b,a)]. Then the following equality for the k-fractional integrals with exponential kernel holds:
Lab=θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv. | (3.6) |
Proof. Using (3.5) and integration by parts, we have
1∫0e−ρvF′(a+(1−v)θ(b,a))dv=−1ρ[e−ρvF′(a+(1−v)θ(b,a))|10+θ(b,a)1∫0e−ρvF′′(a+(1−v)θ(b,a))dv]=−1ρ[e−ρF′(a)−F′(a+θ(b,a))+θ(b,a)1∫0e−ρvF′′(a+(1−v)θ(b,a))dv], | (3.7) |
similarly
1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv=1ρ[e−ρ(1−v)F′(a+(1−v)θ(b,a))|10+θ(b,a)1∫0e−ρ(1−v)F′′(a+(1−v)θ(b,a))dv]=1ρ[F′(a)−e−ρF′(a+θ(b,a))+θ(b,a)1∫0e−ρ(1−v)F′′(a+(1−v)θ(b,a))dv]. | (3.8) |
Substituting (3.7) and (3.8) in (3.5), we have
Lab=θ(b,a)2ρ(1−e−ρ)[(1+e−ρ)(F′(a+θ(b,a))−F′(a))−θ(b,a)1∫0(e−ρv+e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv]=θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv, |
which completes the proof.
Theorem 3.3. Assume that F:[a,a+θ(b,a)]⊆R→R is twice differentiable function. If F′′∈L[a,a+θ(b,a)] and |F′′| is preinvex on [a,a+θ(b,a)], then the following inequality for the k-fractional integrals with exponential kernel holds:
|Lab|≤θ2(b,a)2ρ(1−e−ρ)(1+e−ρ2−1−e−ρρ)(|F′′(a)|+|F′′(b)|). |
Proof. It is to be noted that
1∫0(1+e−ρ−e−ρv−e−ρ(1−v))vdv=1+e−ρ2−1−e−ρρ, | (3.9) |
and
1∫0(1+e−ρ−e−ρv−e−ρ(1−v))(1−v)dv=1+e−ρ2−1−e−ρρ. | (3.10) |
Using (3.6), (3.9), (3.10) and the preinvexity of |F′′|, we have
Lab=|θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))F′′(a+(1−v)θ(b,a))dv|≤θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))|F′′(a+(1−v)θ(b,a))|dv≤θ2(b,a)2ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))(v|F′′(a)|+(1−v)|F′′(b)|)dv=θ2(b,a)2ρ(1−e−ρ)(1+e−ρ2−1−e−ρρ)(|F′′(a)|+|F′′(b)|), |
the proof is complete.
Lemma 3.4. Assume that F:[a,a+θ(b,a)]⊆R→R is twice differentiable function and F′′∈L[a,a+θ(b,a)]. Then the following equality for the k-fractional integrals with exponential kernel holds:
Rab=θ2(b,a)21∫0h(v)F′′(a+(1−v)θ(b,a))dv, | (3.11) |
where
h(v)={v−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ), for0≤v≤12,(1−v)−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ),for12≤v≤1. |
Proof. Using (3.1), we have
Rab=θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv−θ(b,a)2(1−e−ρ)[1∫0e−ρvF′(a+(1−v)θ(b,a))dv−1∫0e−ρ(1−v)F′(a+(1−v)θ(b,a))dv], |
Thus
θ(b,a)21∫0uF′(a+(1−v)θ(b,a))dv=θ(b,a)2[12∫0F′(a+(1−v)θ(b,a))dv−1∫12F′(a+(1−v)θ(b,a))dv]=θ(b,a)2[vF′(a+(1−v)θ(b,a))|120+θ(b,a)12∫0vF′′(a+(1−v)θ(b,a))dv]−θ(b,a)2[vF′(a+(1−v)θ(b,a))|112+θ(b,a)1∫12vF′′(a+(1−v)θ(b,a))dv]=θ(b,a)2[12F′(2a+θ(b,a)2)+θ(b,a)12∫0vF′′(a+(1−v)θ(b,a))dv]−θ(b,a)2[F′(a)−12F′(2a+θ(b,a)2)+θ(b,a)1∫12vF′′(a+(1−v)θ(b,a))dv]=θ(b,a)2[F′(2a+θ(b,a)2)−F′(a)]+θ2(b,a)212∫0vF′′(a+(1−v)θ(b,a))dv−θ2(b,a)21∫12vF′′(a+(1−v)θ(b,a))dv=θ2(b,a)21∫12F′′(a+(1−v)θ(b,a))dv+θ2(b,a)212∫0vF′′(a+(1−v)θ(b,a))dv−θ2(b,a)21∫12vF′′(a+(1−v)θ(b,a))dv=θ2(b,a)212∫0vF′′(a+(1−v)θ(b,a))dv+θ2(b,a)21∫12(1−v)F′′(a+(1−v)θ(b,a))dv. | (3.12) |
Substituting (3.7), (3.8) and (3.12) in (3.1), we get the required result.
Theorem 3.4. Assume that F:[a,a+θ(b,a)]⊆R→R is a twice differentiable function. If F′′∈L[a,a+θ(b,a)] and |F′′| is preinvex on [a,a+θ(b,a)], then the following inequality for the k-fractional integrals with exponential kernel holds:
|Rab|≤θ2(b,a)2(18+1+e−ρ2ρ(1−e−ρ)−1ρ2)(|F′′(a)|+|F′′(b)|). |
Proof. Using (3.11) and preinvexity of |F′′|, we have
|Rab|=|θ2(b,a)21∫0h(v)F′′(a+(1−v)θ(b,a))dv|≤θ2(b,a)21∫0h(v)|F′′(a+(1−v)θ(b,a))|dv≤θ2(b,a)212∫0(v−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ))(v|F′′(a)|+(1−v)|F′′(b)|)dv+θ2(b,a)21∫12(1−v−1+e−ρ−e−ρv−e−ρ(1−v)ρ(1−e−ρ))(v|F′′(a)|+(1−v)|F′′(b)|)dv=θ2(b,a)2[12∫0(v2|F′′(a)|+v(1−v)|F′′(b)|)dv+1∫12(v(1−v)|F′′(a)|+(1−v)2|F′′(b)|)dv]+1ρ(1−e−ρ)1∫0(1+e−ρ−e−ρv−e−ρ(1−v))(v|F′′(a)|+(1−v)|F′′(b)|)dv=θ2(b,a)2(18+1+e−ρ2ρ(1−e−ρ)−1ρ2)(|F′′(a)|+|F′′(b)|). |
The proof is complete.
Remark 3.1. We would like to remark here that by taking k→1, new results can be obtained from our results.
Applications
We now discuss some applications of the results obtained in previous section. Before we proceed further let us recall the definition of arithmetic mean.
The arithmetic mean is defined as
A(a,b):=a+b2,a≠b. |
Proposition 3.1. Suppose all the assumptions of Theorem 3.1 are satisfied, then
|αA(a2,b2)+α2(1−α)2[(a−b)(1−α)+2α]−A2(a,b)|≤(b−a)A(a,b)(12−tanh(ρ14)ρ1). |
Proof. The proof directly follows from Theorem 3.1 by setting θ(b,a)=b−a,k=1 and F(x)=x2.
Proposition 3.2. Suppose all the assumptions of Theorem 3.2 are satisfied, then
|(1−α)A(a2,b2)−α2(1−α)2[(a−b)(1−α)+2α]|≤(b−a)A(a,b)tanh(ρ14). |
Proof. The proof directly follows from Theorem 3.2 by setting θ(b,a)=b−a,k=1 and F(x)=x2.
Proposition 3.3. Suppose all the assumptions of Theorem 3.3 are satisfied, then
|(1−α)A(a2,b2)−α2(1−α)2[(a−b)(1−α)+2α]|≤2(b−a)2A(a,b)ρ1(1−e−ρ1)(1+e−ρ12−1−e−ρ1ρ1). |
Proof. The proof directly follows from Theorem 3.3 by setting θ(b,a)=b−a,k=1 and F(x)=x2.
Proposition 3.4. Suppose all the assumptions of Theorem 3.4 are satisfied, then
|αA(a2,b2)+α2(1−α)2[(a−b)(1−α)+2α]−A2(a,b)|≤2(b−a)2A(a,b)(18+1+e−ρ12ρ1(1−e−ρ1)−1ρ21). |
Proof. The proof directly follows from Theorem 3.4 by setting θ(b,a)=b−a,k=1 and F(x)=x2. We now discuss applications to q-digamma functions, which is defined as:
Suppose 0<q<1, the q-digamma function χq(u) is given as
χq(u)=−ln(1−q)+ln(q)∞∑i=0qi+u1−qi+u.=−ln(1−q)+ln(q)∞∑i=0qiu1−qiu. |
For q>1,t>0, then q-digamma function χq can be given as
χq(u)=−ln(q−1)+ln(q)[u−12−∞∑i=0q−(i+u)1−q−(i+u)].=−ln(q−1)+ln(q)[u−12−∞∑i=0q−iu1−q−iu]. |
From the above definition, it is clear that χ′q is completely monotone on (0,∞) for q>0. This implies that χ′q is convex. For more details, see [5].
Proposition 3.5. Under the assumption of Theorem 2.1, the following inequality holds:
χq(a+b2)≤1−α2(1−e−ρ1)[∫bae−1−αα(b−v)χq(v)dv+∫bae−1−αα(v−a)χq(v)dv]≤χq(a)+χq(b)2. |
Proof. The proof is direct consequence of Theorem 2.1, by choosing θ(b,a)=b−a,k=1 and F(v)→χq(v).
Proposition 3.6. Under the assumption of Theorem 3.1, the following inequality holds:
|1−α2(1−e−ρ1)[∫bae−1−αα(b−v)χq(v)dv+∫bae−1−αα(v−a)χq(v)dv]−χq(a+b2)|≤b−a2(12−tanh(ρ14)ρ1)(|χ′q(a)|+|χ′q(b)|). |
Proof. The proof is direct consequence of Theorem 3.1, by choosing θ(b,a)=b−a,k=1 and F(v)→χq(v).
Proposition 3.7. Under the assumption of Theorem 3.1, the following inequality holds:
|χq(a)+χq(b)2−1−α2(1−e−ρ1)[∫bae−1−αα(b−v)χq(v)dv+∫bae−1−αα(v−a)χq(v)dv]|≤b−a2tanh(ρ14)(|χ′q(a)|+|χ′q(b)|). |
Proof. The proof is direct consequence of Theorem 3.1, by choosing θ(b,a)=b−a,k=1 and F(v)→χq(v).
In the article, we have extended the fractional integral operators with an exponential kernel to k-fractional integral operators with an exponential kernel and derived several new trapezium type integral inequalities involving the new fractional integral operator essentially using the functions having preinvexity property. We have also discussed some interesting applications of our obtained results, which show the significance of our main results. It is also worth mentioning here that our obtained results are the generalizations of some previously known results and our ideas may lead to a lot of follow-up research.
The authors are thankful to the editor and anonymous reviewers for their valuable comments and suggestions. This research was funded by Dirección de Investigación from Pontificia Universidad Católica del Ecuador in the research project entitled, "Some integrals inequalities and generalized convexity" (Algunas desigualdades integrales para funciones con algún tipo de convexidad generalizada y aplicaciones).
[1] | B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, J. Comput. Appl. Math., 353 (2019), 120–129. |
[2] |
D. Baleanu, S. D. Purohit, J. C. Prajapati, Integral inequalities involving generalized Erdelyi-Kober fractional integral operators, Open Math., 14 (2016), 89–99. https://doi.org/10.1515/math-2016-0007 doi: 10.1515/math-2016-0007
![]() |
[3] | H. Budak, M. Z. Sarikaya, F. Usta, H. Yildirim, Some Hermite-Hadamard and Ostrowski type inequalities for fractional integral operators with exponential kernel, Acta Et Comment. Uni. Tartuensis De Math., 23 (2019). |
[4] |
H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446, (2017), 1274–1291. https://doi.org/10.1016/j.jmaa.2016.09.018 doi: 10.1016/j.jmaa.2016.09.018
![]() |
[5] | G. N Watson, A treatise on theory of Bessel functions, Cambridge university press, 1995. |
[6] | G. Cristescu, M. A. Noor, M. U. Awan, Bounds of the second degree cumulative frontier gaps of functions with generalized convexity, Carpath. J. Math., 31, (2015), 173–180. |
[7] |
G. Cristescu, M. A. Noor, M. U. Awan, Some inequalities for functions having an s-convex derivative of superior order, Math. Inequal. Appl., 19 (2016), 893–907. dx.doi.org/10.7153/mia-19-65 doi: 10.7153/mia-19-65
![]() |
[8] | R. Diaz, E. Pariguan, On hypergeometric functions and k-pochhammer symbol, Divulg. Mat., 15 (2007), 179–192. |
[9] | A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B.V., Amsterdam, Netherlands, 2006. |
[10] |
A. Ben-Israel, B. Mond, What is invexity? J. Aust. Math. Soc. Ser., 28 (1986), 1–9. https://doi.org/10.1017/S0334270000005142 doi: 10.1017/S0334270000005142
![]() |
[11] |
H. Lei, G. Hu, Z. J. Cao, T. S. Du, Hadamard k-fractional inequalities of Fejer type for GA-s-convex mappings and applications, J. Inequal. Appl., 2019 (2019), 264. https://doi.org/10.1186/s13660-019-2216-2 doi: 10.1186/s13660-019-2216-2
![]() |
[12] |
J. Liao, S. Wu, T. Du, The Sugeno integral with respect to α-preinvex functions, Fuzzy Sets Syst., 379 (2020), 102–114. https://doi.org/10.1016/j.fss.2018.11.008 doi: 10.1016/j.fss.2018.11.008
![]() |
[13] | S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. |
[14] |
J. Nie, J. Liu, J. F. Zhang, T. S. Du, Estimation-type results on the k-fractional Simpson-type integral inequalities and applications, J. Taibah Uni. Sci., 13 (2019), 932–940. https://doi.org/10.1080/16583655.2019.1663574 doi: 10.1080/16583655.2019.1663574
![]() |
[15] |
M. A. Noor, G. Cristescu, M. U. Awan, Generalized fractional Hermite-Hadamard inequalities for twice differentiable s-convex functions, Filomat, 29 (2015), 807–815. https://doi.org/10.2298/FIL1504807N doi: 10.2298/FIL1504807N
![]() |
[16] |
M. A. Noor, K. I. Noor, M. U. Awan, S. Khan, Fractional Hermite-Hadamard inequalities for some new classes of Godunova-Levin functions, Appl. Math. Inform. Sci., 8 (2014), 2865–2872. https://doi.org/10.12785/amis/080623 doi: 10.12785/amis/080623
![]() |
[17] |
M. A. Noor, K. I. Noor, M. U. Awan, J. Li, On Hermite-Hadamard inequalities for h-preinvex functions, Filomat, 28 (2014), 1463–1474. https://doi.org/10.2298/FIL1407463N doi: 10.2298/FIL1407463N
![]() |
[18] | M. Z. Sarikaya, A. Karaca, On the k-Riemann-Liouville fractional integral and applications, Int. J. Stat. Math., 1 (2014), 033–043. |
[19] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
![]() |
[20] |
M. Tariq, H. Ahmad, S. K. Sahoo, The Hermite-Hadamard type inequality and itsestimations via generalized convex functions of Raina type, Math. Model. Numer. Sim. App., 1 (2021), 32–43. https://doi.org/10.53391/mmnsa.2021.01.004 doi: 10.53391/mmnsa.2021.01.004
![]() |
[21] |
T. Weir, B. Mond, Preinvex functions in multiobjective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 doi: 10.1016/0022-247X(88)90113-8
![]() |
[22] |
S. H. Wu, M. U. Awan, M. V. Mihai, M. A. Noor, S. Talib, Estimates of upper bound for a kth order differentiable functions involving Riemann-Liouville integrals via higher order strongly h-preinvex functions, J. Inequal. Appl., 2019 (2019), 227. https://doi.org/10.1186/s13660-019-2146-z doi: 10.1186/s13660-019-2146-z
![]() |
[23] |
X. Wu, J. R. Wang, J. L. Zhang, Hermite-Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel, Mathematics, 7 (2019), 845. https://doi.org/10.3390/math7090845 doi: 10.3390/math7090845
![]() |
[24] |
M. Yavuz, N. Özdemir, Analysis of an epidemic spreading model with exponential decay law, Math. Sci. Appl. E-Notes, 8 (2020), 142–154. https://doi.org/10.36753/mathenot.691638 doi: 10.36753/mathenot.691638
![]() |
[25] |
M. Yavuz, N. Özdemir, Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel, Discrete Cont. Dyn-S., 13 (2020), 995–1006. doi: 10.3934/dcdss.2020058 doi: 10.3934/dcdss.2020058
![]() |