Let {Sn} be the Apéry-like sequence given by Sn=∑nk=0(nk)(2kk)(2n−2kn−k). We show that for any odd prime p, ∑p−1n=1nSn8n≡(1−(−1)p−12)p2 ( mod p3). Let {Qn} be the Apéry-like sequence given by Qn=∑nk=0(nk)(−8)n−k∑kr=0(kr)3. We establish many congruences concerning Qn. For an odd prime p, we also deduce congruences for ∑p−1k=0(2kk)3164k ( mod p3), ∑p−1k=0(2kk)3164k(k+1)2 ( mod p2) and ∑p−1k=0(2kk)3164k(2k−1) ( mod p), and pose lots of conjectures on congruences involving binomial coefficients and Apéry-like numbers.
Citation: Zhi-Hong Sun. Supercongruences involving Apéry-like numbers and binomial coefficients[J]. AIMS Mathematics, 2022, 7(2): 2729-2781. doi: 10.3934/math.2022153
[1] | Kwang-Wu Chen, Fu-Yao Yang . Infinite series involving harmonic numbers and reciprocal of binomial coefficients. AIMS Mathematics, 2024, 9(7): 16885-16900. doi: 10.3934/math.2024820 |
[2] | Chunli Li, Wenchang Chu . Remarkable series concerning (3nn) and harmonic numbers in numerators. AIMS Mathematics, 2024, 9(7): 17234-17258. doi: 10.3934/math.2024837 |
[3] | Jizhen Yang, Yunpeng Wang . Congruences involving generalized Catalan numbers and Bernoulli numbers. AIMS Mathematics, 2023, 8(10): 24331-24344. doi: 10.3934/math.20231240 |
[4] | Aleksa Srdanov . Invariants in partition classes. AIMS Mathematics, 2020, 5(6): 6233-6243. doi: 10.3934/math.2020401 |
[5] | Jing Huang, Qian Wang, Rui Zhang . On a binary Diophantine inequality involving prime numbers. AIMS Mathematics, 2024, 9(4): 8371-8385. doi: 10.3934/math.2024407 |
[6] | Takao Komatsu, Huilin Zhu . Hypergeometric Euler numbers. AIMS Mathematics, 2020, 5(2): 1284-1303. doi: 10.3934/math.2020088 |
[7] | Junyong Zhao . On the number of unit solutions of cubic congruence modulo n. AIMS Mathematics, 2021, 6(12): 13515-13524. doi: 10.3934/math.2021784 |
[8] | Hye Kyung Kim . Note on r-central Lah numbers and r-central Lah-Bell numbers. AIMS Mathematics, 2022, 7(2): 2929-2939. doi: 10.3934/math.2022161 |
[9] | Daud Mohamad, Nur Hazwani Aqilah Abdul Wahid, Nurfatin Nabilah Md Fauzi . Some properties of a new subclass of tilted star-like functions with respect to symmetric conjugate points. AIMS Mathematics, 2023, 8(1): 1889-1900. doi: 10.3934/math.2023097 |
[10] | Takao Komatsu, Ram Krishna Pandey . On hypergeometric Cauchy numbers of higher grade. AIMS Mathematics, 2021, 6(7): 6630-6646. doi: 10.3934/math.2021390 |
Let {Sn} be the Apéry-like sequence given by Sn=∑nk=0(nk)(2kk)(2n−2kn−k). We show that for any odd prime p, ∑p−1n=1nSn8n≡(1−(−1)p−12)p2 ( mod p3). Let {Qn} be the Apéry-like sequence given by Qn=∑nk=0(nk)(−8)n−k∑kr=0(kr)3. We establish many congruences concerning Qn. For an odd prime p, we also deduce congruences for ∑p−1k=0(2kk)3164k ( mod p3), ∑p−1k=0(2kk)3164k(k+1)2 ( mod p2) and ∑p−1k=0(2kk)3164k(2k−1) ( mod p), and pose lots of conjectures on congruences involving binomial coefficients and Apéry-like numbers.
Let Z be the set of integers. In 2009, Zagier [36] studied the Apéry-like numbers {un} satisfying
u0=1, u1=band(n+1)2un+1=(an(n+1)+b)un−cn2un−1 (n≥1), |
where a,b,c∈Z, c≠0 and un∈Z for n≥1. Let
A′n=n∑k=0(nk)2(n+kk),fn=n∑k=0(nk)3=n∑k=0(nk)2(2kn),Sn=[n/2]∑k=0(2kk)2(n2k)4n−2k=n∑k=0(nk)(2kk)(2n−2kn−k),an=n∑k=0(nk)2(2kk),Qn=n∑k=0(nk)(−8)n−kfk,Wn=[n/3]∑k=0(2kk)(3kk)(n3k)(−3)n−3k, | (1.1) |
where [x] is the greatest integer not exceeding x. According to [2,36], {A′n}, {fn}, {Sn}, {an}, {Qn} and {Wn} are Apéry-like sequences with (a,b,c)=(11,3,−1),(7,2,−8), (12,4,32),(10,3,9),(−17, −6,72),(−9,−3,27), respectively. The sequence {fn} is called Franel numbers. In [22,23,24,25], the author systematically investigated congruences for sums involving Sn, fn and Wn. For {A′n}, {fn}, {Sn}, {an}, {Qn} and {Wn} see A005258, A000172, A081085, A002893, A093388 and A291898 in Sloane's database "The On-Line Encyclopedia of Integer Sequences".
Let p be an odd prime. In [29], Z. W. Sun posed many congruences modulo p2 involving Apéry-like numbers. In [24,25], the author conjectured many congruences modulo p3 involving Apéry-like numbers. In Section 2, we show that for any odd prime p,
p−1∑n=1nSn8n≡(1−(−1)p−12)p2 ( mod p3), | (1.2) |
and obtain a congruence for ∑p−1n=0(2nn)A′n4n ( mod p). In Section 3, we establish some transformation formulas for congruences involving Apéry-like numbers and obtain some congruences involving an and Qn. For example, for any prime p>3 we have
p−1∑n=0Qn(−8)n≡1 ( mod p2)andp−1∑n=0Qn(−9)n≡(p3) ( mod p2), | (1.3) |
where (ap) is the Legendre symbol. We also pose some conjectures on congruences involving Qn and an.
For positive integers a,b and n, if n=ax2+by2 for some integers x and y, we briefly write that n=ax2+by2. Let p>3 be a prime. In 1987, Beukers [4] conjectured a congruence equivalent to
p−1∑k=0(2kk)364k≡{0 ( mod p2)if p≡3 ( mod 4), 4x2−2p ( mod p2)if p≡1 ( mod 4) and so p=x2+4y2. | (1.4) |
This congruence was proved by several authors including Ishikawa [8] (p≡1 ( mod 4)), Van Hamme [7] (p≡3 ( mod 4)) and Ahlgren [1]. Actually, (1.4) follows immediately from the following identity due to Bell (see [5, (6.35)], [17]):
n∑k=0(2kk)2(n+k2k)1(−4)k={0if n is odd, 122n(nn/2)2if n is even. | (1.5) |
In 2003, Rodriguez-Villegas [14] posed 22 conjectures on supercongruences modulo p2. In particular, the following congruences are equivalent to conjectures due to Rodriguez-Villegas:
p−1∑k=0(2kk)2(3kk)108k≡{4x2−2p ( mod p2)if p=x2+3y2≡1 ( mod 3), 0 ( mod p2)if p≡2 ( mod 3), p−1∑k=0(2kk)2(4k2k)256k≡{4x2−2p ( mod p2)if p=x2+2y2≡1,3 ( mod 8), 0 ( mod p2)if p≡5,7 ( mod 8), (p3)p−1∑k=0(2kk)(3kk)(6k3k)123k≡{4x2−2p ( mod p2)if p=x2+4y2≡1 ( mod 4), 0 ( mod p2)if p≡3 ( mod 4). | (1.6) |
These conjectures have been solved by Mortenson [13] and Zhi-Wei Sun [28]. Since (2kk)k+1=(2kk)−(2kk+1), from (1.4), (1.6) and [28], one may deduce that
p−1∑k=0(2kk)364k(k+1)≡{4x2−2p ( mod p2) if p=x2+4y2≡1 ( mod 4), −(2p+2−2p−1)((p−1)/2(p+1)/4)2 ( mod p2)if p≡3 ( mod 4), p−1∑k=0(2kk)3(−8)k(k+1)≡6x2−4p ( mod p2)forp=x2+4y2≡1 ( mod 4),p−1∑k=0(2kk)2(3kk)108k(k+1)≡4x2−2p ( mod p2)forp=x2+3y2≡1 ( mod 3),p−1∑k=0(2kk)2(4k2k)256k(k+1)≡4x2−2p ( mod p2)forp=x2+2y2≡1,3 ( mod 8),(p3)p−1∑k=0(2kk)(3kk)(6k3k)123k(k+1)≡4x2−2p ( mod p2)forp=x2+4y2≡1 ( mod 4). | (1.7) |
Let p be an odd prime, and let m be an integer such that p∤m. In [27,29], Z. W. Sun posed many conjectures for congruences modulo p2 involving the sums
p−1∑k=0(2kk)3mk,p−1∑k=0(2kk)2(3kk)mk,p−1∑k=0(2kk)2(4k2k)mk,p−1∑k=0(2kk)(3kk)(6k3k)mk. |
For 13 similar conjectures see [16]. Most of these congruences modulo p were proved by the author in [17,18,19]. In [25,26], the author conjectured many congruences modulo p3 involving the above sums. For instance, for any prime p≠2,7,
p−1∑k=0(2kk)3≡{4x2−2p−p24x2 ( mod p3)if p≡1,2,4 ( mod 7) and so p=x2+7y2, −114p2(3[p/7][p/7])−2≡−11p2([3p/7][p/7])−2 ( mod p3) if 7∣p−3, −9964p2(3[p/7][p/7])−2≡−1116p2([3p/7][p/7])−2 ( mod p3) if 7∣p−5, −25176p2(3[p/7][p/7])−2≡−114p2([3p/7][p/7])−2 ( mod p3)if 7∣p−6. |
Let p be an odd prime. In Section 4, we deduce congruences for
p−1∑k=0(2kk)364k ( mod p3),p−1∑k=0(2kk)364k(k+1)2 ( mod p2)andp−1∑k=0(2kk)364k(2k−1) ( mod p). |
In Section 5, based on calculations by Maple, we pose lots of challenging conjectures on congruences modulo p3 for the sums
p−1∑k=0(2kk)3mk(k+1),p−1∑k=0(2kk)3mk(2k−1),p−1∑k=0(2kk)3mk(2k−1)2,p−1∑k=0(2kk)3mk(2k−1)3,p−1∑k=0(2kk)2(3kk)mk(k+1),p−1∑k=0(2kk)2(3kk)mk(2k−1),p−1∑k=0(2kk)2(4k2k)mk(k+1),p−1∑k=0(2kk)2(4k2k)mk(2k−1),p−1∑k=0(2kk)(3kk)(6k3k)mk(k+1),p−1∑k=0(2kk)(3kk)(6k3k)mk(2k−1), |
and congruences modulo p2 for the sums
p−1∑k=0(2kk)2mk(k+1)2,p−1∑k=0(2kk)2mk(2k−1)2,p−1∑k=0(2kk)3mk(k+1)2,p−1∑k=0(2kk)2(3kk)mk(k+1)2,p−1∑k=0(2kk)2(4k2k)mk(k+1)2,p−1∑k=0(2kk)(3kk)(6k3k)mk(k+1)2, |
where m is an integer not divisible by p. As two typical conjectures, if p is an odd prime with p≡1,2,4 ( mod 7) and so p=x2+7y2, then
(p−1)/2∑k=01k+1(2kk)3≡−44y2+2p ( mod p3); |
if p≡1,3,4,5,9 ( mod 11) and so 4p=x2+11y2, then
(−2p)(p2+p−1∑k=0(2kk)(3kk)(6k3k)(−32)3k(k+1))≡−26y2+2p ( mod p3). |
In Section 6, we pose many conjectures on ∑p−1k=0(2kk)ukmk(2k−1) modulo p2, where un∈{A′n,fn,Sn,an, Qn,Wn}.
In addition to the above notation, throughout this paper we use the following notations. For a prime p, let Zp be the set of rational numbers whose denominator is not divisible by p. For a∈Zp, let qp(a)=(ap−1−1)/p and ⟨a⟩p be determined by ⟨a⟩p∈{0,1,…,p−1} and a≡⟨a⟩p ( mod p). Let H0=0, Hn=1+12+⋯+1n (n≥1) and let {En} be the Euler numbers given by
E2n−1=0,E0=1,E2n=−n∑k=1(2n2k)E2n−2k (n=1,2,3,…). |
Let {Sn} be the Apéry-like sequence given by (1.1). In this section, we prove the congruence (1.2). Z. W. Sun stated the identity
Sn=n∑k=0(2kk)2(kn−k)(−4)n−k(n=0,1,2,…), | (2.1) |
which can be easily proved by using WZ method, see [34]. Using this identity we see that for any positive integer p and a give sequence {cn},
p−1∑n=0cnSn8n=p−1∑n=0cn8nn∑k=0(2kk)2(kn−k)(−4)n−k=p−1∑k=0(2kk)2(−4)kp−1∑n=kcn(−2)n(kn−k)=p−1∑k=0(2kk)2(−4)kp−1−k∑r=0ck+r(−2)k+r(kr)=p−1∑k=0(2kk)28kp−1−k∑r=0(kr)ck+r(−2)r. |
Thus, for p∈{1,3,5,…},
p−1∑n=0cnSn8n=(p−1)/2∑k=0(2kk)28kk∑r=0(kr)ck+r(−2)r+p−1∑k=(p+1)/2(2kk)28kp−1−k∑r=0(kr)ck+r(−2)r. | (2.2) |
Theorem 2.1. Let p be an odd prime, then
p−1∑n=1nSn8n≡(1−(−1)p−12)p2 ( mod p3). |
Proof. Clearly,
k∑r=0(kr)k+r(−2)r=kk∑r=0(kr)(−12)r−k2k∑r=1(k−1r−1)(−12)r−1=k2k−k2⋅12k−1=0. |
Thus, taking cn=n in (2.2) and then applying the above gives
p−1∑n=1nSn8n=p−1∑k=(p+1)/2(2kk)28kp−1−k∑r=0(kr)k+r(−2)r=(p−1)/2∑s=1(2(p−s)p−s)28p−ss−1∑r=0(p−sr)p−s+r(−2)r. |
Observe that p∣(2kk) for p2<k<p. By [27, Lemma 2.1],
(2(p−s)p−s)p≡−2s(2ss) ( mod p)fors=1,2,…,p−12. |
Now, from the above we deduce that
p−1∑n=1nSn8n≡p2(p−1)/2∑s=14⋅8s−1s2(2ss)2s−1∑r=0(−sr)r−s(−2)r ( mod p3). | (2.3) |
By [5, (1.79)], ∑nk=0(n+kk)/2k=2n. Since (−xr)=(−1)r(x−1+rr), we see that for s≥1,
s−1∑r=0(−sr)1(−2)r=s−1∑r=0(s−1+rr)12r=2s−1 |
and
s−1∑r=0(−sr)r(−2)r=s−1∑r=1−sr(−s−1r−1)r(−2)r=ss−1∑r=1(s+r−1r−1)12r=s2s−2∑t=0(s+tt)12t=s2(s∑t=0(s+tt)12t−(2ss)12s−(2s−1s−1)12s−1)=s2(2s−(2ss)22s)=s(2s−1−(2ss)12s). |
It then follows that
s−1∑r=0(−sr)r−s(−2)r=s(2s−1−(2ss)12s)−s⋅2s−1=−s(2ss)12s. |
Substituting into (2.3) yields
p−1∑n=1nSn8n≡p2(p−1)/2∑s=14⋅8s−1s2(2ss)2⋅(−s)(2ss)12s=−p22(p−1)/2∑s=14ss(2ss) ( mod p3). |
By [12, (25)],
2n∑s=14s−1s(2ss)=4n(2nn)−1. |
Thus,
(p−1)/2∑s=14ss(2ss)=2(4p−12(p−1p−12)−1)≡2((−1)p−12−1) ( mod p) |
and so
p−1∑n=1nSn8n≡−p22(p−1)/2∑s=14ss(2ss)≡(1−(−1)p−12)p2 ( mod p3), |
which completes the proof.
Theorem 2.2. Let p be a prime with p≠2,11, then
p−1∑n=0(2nn)A′n4n≡{x2 ( mod p)if (p11)=1 and so 4p=x2+11y2, 0 ( mod p)if (p11)=−1. |
Proof. For nonnegative integers k,m and n with k≤n≤m, it is known that (mn)(nk)=(mk)(m−kn−k). Thus, applying Vandermonde's identity we see that
m∑n=0(mn)(−1)m−nn∑k=0(nk)2(n+kk)=m∑n=0n∑k=0(mk)(m−kn−k)(2kk)(n+k2k)(−1)m−n=m∑k=0(mk)(2kk)(−1)m−km∑n=k(m−kn−k)(n+k2k)(−1)n−k=m∑k=0(mk)(2kk)(−1)m−km−k∑r=0(m−kr)(2k+rr)(−1)r=m∑k=0(mk)(2kk)(−1)m−km−k∑r=0(m−km−k−r)(−2k−1r)=m∑k=0(mk)(2kk)(−1)m−k(m−3k−1m−k)=m∑k=0(mk)(2kk)(2km−k)=m∑k=0(mk)(2(m−k)m−k)(2m−2kk). |
Note that p∣(2kk) for p2<k<p and (p−12k)≡(−12k)=(2kk)(−4)k ( mod p) for k<p2. Taking m=p−12 in the above, we deduce that
p−1∑n=0(2nn)A′n4n≡(−1)p−12(p−1)/2∑n=0(p−12n)(−1)p−12−nA′n=(−1)p−12(p−1)/2∑k=0(p−12k)(2(p−12−k)p−12−k)(p−1−2kk)≡(−1)p−12(p−1)/2∑k=0(p−12k)(p−12p−12−k)(−4)p−12−k(−2k−1k)=(p−1)/2∑k=0(p−12k)24p−12−k(3kk)≡(p−1)/2∑k=0(2kk)2(3kk)64k≡p−1∑k=0(2kk)2(3kk)64k ( mod p). |
Now applying [18, Theorem 4.4], we deduce the result.
Remark 2.1. In [29], Z. W. Sun conjectured that for any odd prime p,
p−1∑k=0(2kk)A′k4k≡{x2−2p ( mod p2)if (p11)=1 and so 4p=x2+11y2, 0 ( mod p2)if (p11)=−1. |
In this section, we establish some transformation formulas for congruences involving Apéry-like numbers, obtain some congruences involving an and Qn, and pose ten conjectures on related congruences.
Lemma 3.1. Let n be a nonnegative integer, then
fn=n∑k=0(nk)(−1)n−kak=n∑k=0(nk)8n−kQk,Qn=n∑k=0(nk)(−9)n−kak,an=n∑k=0(nk)fk=n∑k=0(nk)9n−kQk. |
Proof. By [15, (38)], an=∑nk=0(nk)fk. Applying the binomial inversion formula gives fn=∑nk=0(nk)(−1)n−kak. Since Qn(−8)n=∑nk=0(nk)(−1)kfk8k, applying the binomial inversion formula gives fn8n=∑nk=0(nk)Qk8k. Also,
n∑k=0(nk)(−9)n−kak=n∑k=0(nk)(−1)n−kakn−k∑r=0(n−kr)8r=n∑r=0(nr)(−8)rn−r∑k=0(n−rk)(−1)n−r−kak=n∑r=0(nr)(−8)rfn−r=Qn. |
Applying the binomial inversion formula yields an=∑nk=0(nk)9n−kQk, which completes the proof.
Theorem 3.1. Let p>3 be a prime, then
p−1∑n=0Qn(−8)n≡1 ( mod p2)andp−1∑n=0Qn(−9)n≡(p3) ( mod p2). |
Proof. It is well known that ∑p−1n=k(nk)=(pk+1) and (p−1k)≡(−1)k ( mod p) for 0≤k≤p−1. Since Qn=∑nk=0(nk)(−8)n−kfk, we see that
p−1∑n=0Qn(−8)n=p−1∑n=0n∑k=0(nk)fk(−8)k=p−1∑k=0fk(−8)kp−1∑n=k(nk)=p−1∑k=0fk(−8)k(pk+1)=fp−1(−8)p−1+p−2∑k=0fk(−8)k⋅pk+1(p−1k)≡fp−18p−1+pp−2∑k=0fk(k+1)8k=fp−18p−1+pp−1∑k=1fp−1−k(p−k)8p−1−k≡fp−18p−1−pp−1∑k=18kfp−1−kk ( mod p2). |
By [11], fk≡(−8)kfp−1−k ( mod p). Thus,
p−1∑n=0Qn(−8)n≡fp−18p−1−pp−1∑k=1(−1)kfkk ( mod p2). |
By [30, Theorem 1.1 and Lemma 2.5],
fp−1≡1+3pqp(2) ( mod p2)andp−1∑k=1(−1)kfkk≡0 ( mod p2). |
Thus,
p−1∑n=0Qn(−8)n≡fp−18p−1≡1+3pqp(2)(1+pqp(2))3≡1 ( mod p2). |
Using Lemma 3.1,
p−1∑n=0Qn(−9)n=p−1∑n=0n∑k=0(nk)ak(−9)k=p−1∑k=0ak(−9)kp−1∑n=k(nk)=p−1∑k=0ak(−9)k(pk+1)=p−1∑k=0ak(−9)k⋅pk+1(p−1k)≡ap−1(−9)p−1+p−2∑k=0ak9k⋅pk+1=ap−19p−1+p−1∑r=1ap−1−r9p−1−r⋅pp−r≡ap−19p−1−pp−1∑r=19rap−1−rr ( mod p2). |
By [11] or [25, Theorem 3.1], ar≡(p3)9rap−1−r ( mod p). By [32, Lemma 3.2], ap−1≡(p3)(1+2pqp(3))≡(p3)9p−1 ( mod p2). Taking x=1 in [32, (3.6)] gives ∑p−1r=1arr≡0 ( mod p). Now, from the above we deduce that
p−1∑n=0Qn(−9)n≡ap−19p−1−pp−1∑r=19rap−1−rr≡(p3)−p(p3)p−1∑r=1arr≡(p3) ( mod p2). |
This completes the proof.
Lemma 3.2. Let p be an odd prime and m∈Zp with m≢0,1 ( mod p). Suppose that u0,u1,…,up−1∈Zp and vn=∑nk=0(nk)uk (n≥0). Then
p−1∑k=0vkmk≡p−1∑k=0uk(m−1)k ( mod p). |
Proof. It is clear that
p−1∑k=0vkmk=p−1∑k=01mkk∑s=0(ks)us=p−1∑s=0p−1∑k=s1mk(−1−sk−s)(−1)k−sus=p−1∑s=0usmsp−1∑k=s(−1−sk−s)1(−m)k−s=p−1∑s=0usmsp−1−s∑r=0(−1−sr)(−1m)r≡p−1∑s=0usmsp−1−s∑r=0(p−1−sr)(−1m)r=p−1∑s=0usms(1−1m)p−1−s≡p−1∑s=0us(m−1)s ( mod p). |
This proves the lemma.
Theorem 3.2. Suppose that p is an odd prime, m∈Zp and m≢0,1 ( mod p), then
p−1∑k=0akmk≡{∑p−1k=0(2kk)(3kk)((m−3)3/(m−1))k ( mod p)if m≢3 ( mod p), ∑p−1k=0(2kk)(3kk)((m+3)3/(m−1)2)k ( mod p)if m≢−3 ( mod p) |
and
p−1∑k=0Qk(−8m)k≡{∑p−1k=0(2kk)(3kk)((4m−3)3/(m−1))k ( mod p)if m≢34 ( mod p), ∑p−1k=0(2kk)(3kk)(−(2m−3)3/(m−1)2)k ( mod p)if m≢32 ( mod p). |
Proof. By Lemma 3.1, a_n = \sum_{k = 0}^n \binom nkf_k . From Lemma 3.2, \sum_{k = 0}^{p-1} \frac {a_k}{m^k} \equiv\sum_{k = 0}^{p-1} \frac {f_k}{(m-1)^k} \ (\text{ mod}\ p) . Now applying [23, Theorem 2.12 and Lemma 2.4 (with z = \frac 1{m-1} )] yields the first result. Since \frac {Q_n}{(-8)^n} = \sum_{k = 0}^n \binom nk \frac {f_k}{(-8)^k} , applying Lemma 3.2 gives \sum_{k = 0}^{p-1} \frac {Q_k}{(-8m)^k} \equiv {\sum_{k = 0}^{p-1}} \frac {f_k}{(-8(m-1))^k}\ (\text{ mod}\ p) . From [23, Theorem 2.12 and Lemma 2.4 (with z = \frac 1{-8(m-1)} )] we deduce the remaining part.
Theorem 3.3. Suppose that p is a prime with p > 3 , then
\sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-6)^n} \equiv \sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-12)^n} \equiv\begin{cases} 2x\ (\text{ mod}\ p)& \hbox{if $3\mid p-1$, $p = x^2+3y^2$ and $3\mid x-1$, } \\0\ (\text{ mod}\ p)& \hbox{if $p \equiv 2\ (\text{ mod}\ 3)$.} \end{cases} |
Proof. Putting m = \frac 34, \frac 32 in Theorem 3.2 yields
\sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-6)^n} \equiv \sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-12)^n} \equiv \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k}{54^k}\ (\text{ mod}\ p). |
Now applying [20, Theorem 3.4] yields the result.
Lemma 3.3. [31, Theorem 2.2] Let p be an odd prime, u_0, u_1, \ldots, u_{p-1}\in\Bbb Z_p and v_n = \sum_{k = 0}^n \binom nk(-1)^ku_k for n\ge 0 . For m\in\Bbb Z_p with m\not\equiv 0, 4\ (\text{ mod}\ p) ,
\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {v_k}{m^k} \equiv\Big( \frac {{m(m-4)}}{p}\Big)\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {u_k}{(4-m)^k}\ (\text{ mod}\ p). |
Theorem 3.4. Let p be an odd prime, m\in\Bbb Z_p and m\not\equiv \pm 2\ (\text{ mod}\ p) , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {a_k}{(m+2)^k} \equiv\Big( \frac {{(m+2)(m-2)}}{p}\Big)\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{(m-2)^k}\ (\text{ mod}\ p), \end{align*} | (3.1) |
\begin{align*} &\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {Q_k}{(-8(m+2))^k} \equiv\Big( \frac {{(m+2)(m-2)}}{p}\Big)\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{(-8(m-2))^k}\ (\text{ mod}\ p), \end{align*} | (3.2) |
\begin{align*} &\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {Q_k}{(-9(m+2))^k} \equiv\Big( \frac {{(m+2)(m-2)}}{p}\Big)\sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {a_k}{(-9(m-2))^k}\ (\text{ mod}\ p), \end{align*} | (3.3) |
and for 9m-14\not\equiv 0\ (\text{ mod}\ p) ,
\begin{align} \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {Q_k}{(-9(m+2))^k} \equiv\Big( \frac {{(m+2)(9m-14)}}{p}\Big) \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{(-9m+14)^k}\ (\text{ mod}\ p). \end{align} | (3.4) |
Proof. We first note that p\mid \binom{2k}k for \frac {p+1}2\le k\le p-1 . By Lemma 3.1, taking u_k = (-1)^kf_k and v_k = a_k in Lemma 3.3 gives (3.1). Since \frac {Q_n}{(-8)^n} = \sum_{k = 0}^n \binom nk \frac {f_k}{(-8)^k} , taking u_k = \frac {f_k}{8^k} and v_k = \frac {Q_k}{(-8)^k} in Lemma 3.3 gives (3.2). By Lemma 3.1, taking u_k = \frac {a_k}{9^k} and v_k = \frac {Q_k}{(-9)^k} in Lemma 3.3 yields (3.3). Combining (3.3) with (3.1) yields (3.4).
Theorem 3.5. Suppose that p is a prime with p > 5 , then
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{54^n}& \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{18^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-36)^n} \\& \equiv\begin{cases} 4x^2\ (\text{ mod}\ p)& \hbox{if $p \equiv 1\ (\text{ mod}\ 3)$ and so $p = x^2+3y^2$, } \\0\ (\text{ mod}\ p)& \hbox{if $p \equiv 2\ (\text{ mod}\ 3)$.}\end{cases} \end{align*} |
Proof. Taking m = 52 in (3.1) and then applying [23, Theorem 2.2], we obtain
\begin{align*} \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{54^n}& \equiv \Big( \frac {3}{p}\Big) \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{50^k}\\& \equiv \begin{cases} (-1)^{ \frac {p-1}2}4x^2\ (\text{ mod}\ p)& \hbox{if $3\mid p-1$ and so $p = x^2+3y^2$, } \\0\ (\text{ mod}\ p)& \hbox{if $p \equiv 2\ (\text{ mod}\ 3)$.}\end{cases}\end{align*} |
Taking m = -4 in (3.3) gives \sum_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{18^n} \equiv \big(\frac {3}{p}\big)\sum_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{54^n}\ (\text{ mod}\ p). Taking m = 2 in (3.4) and applying the congruence for \sum_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{(-4)^k}\ (\text{ mod}\ p) (see [23, p.124]) yields
\begin{align*} \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-36)^n} \equiv \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{(-4)^k} \equiv \begin{cases} 4x^2\ (\text{ mod}\ p)& \hbox{if $3\mid p-1$ and so $p = x^2+3y^2$, } \\0\ (\text{ mod}\ p)& \hbox{if $p \equiv 2\ (\text{ mod}\ 3)$.}\end{cases} \end{align*} |
Now combining the above proves the theorem.
Theorem 3.6. Suppose that p is a prime such that p \equiv 1, 19\ (\text{ mod}\ {30}) and so p = x^2+15y^2 , then
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{9^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{(-45)^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-27)^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-81)^n} \equiv 4x^2\ (\text{ mod}\ p). |
Proof. Taking m = 7 in (3.1) and then applying [23, Theorem 2.5] gives
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{9^n} \equiv \Big( \frac {5}{p}\Big) \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{5^k} \equiv 4x^2\ (\text{ mod}\ p). |
Putting m = -47 in (3.1) and then applying [23, Theorem 2.4] gives
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{(-45)^n} \equiv \Big( \frac {5}{p}\Big) \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {f_k}{(-49)^k} \equiv 4x^2\ (\text{ mod}\ p). |
Taking m = 1, 7 in (3.3) gives
\begin{align*} &\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-27)^n} \equiv \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {a_k}{9^k}\ (\text{ mod}\ p), \\& \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-81)^n} \equiv \sum\limits_{k = 0}^{p-1} \binom{2k}k \frac {a_k}{(-45)^k}\ (\text{ mod}\ p). \end{align*} |
Now combining the above proves the theorem.
Theorem 3.7. Suppose that p is a prime with p > 3 , then
\begin{align*} &\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-32)^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{64^n} \equiv \begin{cases} 4x^2\ (\text{ mod}\ p)& \hbox{if $p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8)$, }\\0\ (\text{ mod}\ p)& \hbox{if $p \equiv 5, 7\ (\text{ mod}\ 8)$, } \end{cases} \\&\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{20^n} \equiv\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-16)^n} \equiv 4x^2\ (\text{ mod}\ p){\quad} \hbox{for}{\quad} p = x^2+5y^2 \equiv 1, 9\ (\text{ mod}\ {20}), \\&\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-48)^n} \equiv \begin{cases} 4x^2\ (\text{ mod}\ p)& \hbox{if $p = x^2+9y^2 \equiv 1\ (\text{ mod}\ {12})$, } \\0\ (\text{ mod}\ p)& \hbox{if $p \equiv 11\ (\text{ mod}\ {12})$.} \end{cases} \end{align*} |
Proof. Taking m = \frac {14}9, - \frac {82}9 in (3.3) yields
\begin{align*} &\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-32)^n} \equiv\Big( \frac {{-2}}{p}\Big) \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{4^n}\ (\text{ mod}\ p), \\& \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{64^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{100^n}\ (\text{ mod}\ p). \end{align*} |
Now applying [23, Theorem 2.14] and [21, Theorem 5.6] yields the first congruence. Taking m = 0 in (3.2), m = 18 in (3.1) and then applying [23, Theorem 2.10] yields the second congruence. Taking m = \frac {10}3 in (3.3) and then applying [21, Theorem 4.3] gives the third congruence.
Based on calculations by Maple, we pose the following conjectures.
Conjecture 3.1. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{n = 0}^{p-1} \frac {(n+3)Q_n}{(-8)^n} \equiv \begin{cases} 3p^2\ (\text{ mod}\ {p^3})& \hbox{if $p \equiv 1\ (\text{ mod}\ 3)$, } \\-15p^2\ (\text{ mod}\ {p^3})& \hbox{if $p \equiv 2\ (\text{ mod}\ 3)$, }\end{cases} \\& \sum\limits_{n = 0}^{p-1} \frac {(n-2)Q_n}{(-9)^n} \equiv \begin{cases} -2p^2\ (\text{ mod}\ {p^3})& \hbox{if $p \equiv 1\ (\text{ mod}\ 3)$, } \\14p^2\ (\text{ mod}\ {p^3})& \hbox{if $p \equiv 2\ (\text{ mod}\ 3)$.}\end{cases} \end{align*} |
Conjecture 3.2. Let p be a prime with p > 3 .
(ⅰ) If p \equiv 1\ (\text{ mod}\ 3) and so p = x^2+3y^2 with 3\mid x-1 , then
\sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-6)^n} \equiv \sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-12)^n} \equiv 2x- \frac p{2x}\ (\text{ mod}\ {p^2}). |
(ⅱ) If p \equiv 2\ (\text{ mod}\ 3) , then
\sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-6)^n} \equiv -2\sum\limits_{n = 0}^{p-1} \frac {Q_n}{(-12)^n} \equiv- \frac p{ \binom{(p-1)/2}{(p-5)/6}}\ (\text{ mod}\ {p^2}). |
Conjecture 3.3. Let p be a prime with p > 3 .
(ⅰ) If p \equiv 1\ (\text{ mod}\ 3) and so p = x^2+3y^2 , then
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{18^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-36)^n} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}). |
(ⅱ) If p \equiv 2\ (\text{ mod}\ 3) , then
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{18^n} \equiv -2\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-36)^n} \equiv \frac {p^2}{ \binom{(p-1)/2}{(p-5)/6}^2}\ (\text{ mod}\ {p^3}). |
Conjecture 3.4. Let p > 5 be a prime, then
\begin{align*} \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-27)^n} \equiv \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-81)^n} \equiv \Big( \frac {p}{3}\Big)\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{(-45)^n} \equiv\Big( \frac {p}{3}\Big) \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{9^n} \ (\text{ mod}\ {p^2}). \end{align*} |
(ⅰ) If p \equiv 1, 17, 19, 23\ (\text{ mod}\ {30}) , then
\begin{align*} \Big( \frac {p}{3}\Big)\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{9^n} \equiv\begin{cases} 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if\; p \equiv 1,19\ (\text{ mod}\ {30}) \;and\; so\; p = x^2+15y^2,} \\2p-12x^2+ \frac {p^2}{12x^2}\ (\text{ mod}\ {p^3})& {if\; p \equiv 17,23\ (\text{ mod}\ {30})\; and\; so\; p = 3x^2+5y^2.} \end{cases} \end{align*} |
(ⅱ) If p \equiv 7, 11, 13, 29\ (\text{ mod}\ {30}) , then
\Big( \frac {p}{3}\Big)\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{9^n} \equiv\begin{cases} \frac {31}{16}p^2\cdot 5^{[p/3]} \binom{[p/3]}{[p/15]}^{-2}\ (\text{ mod}\ {p^3})& {if \; p \equiv 7\ (\text{ mod}\ {30}) ,} \\ \frac {31}4p^2\cdot 5^{[p/3]} \binom{[p/3]}{[p/15]}^{-2}\ (\text{ mod}\ {p^3})& {if \; p \equiv 11\ (\text{ mod}\ {30}) ,} \\ \frac {31}{256}p^2\cdot 5^{[p/3]} \binom{[p/3]}{[p/15]}^{-2}\ (\text{ mod}\ {p^3})& {if \; p \equiv 13\ (\text{ mod}\ {30}) ,} \\ \frac {31}{64}p^2\cdot 5^{[p/3]} \binom{[p/3]}{[p/15]}^{-2}\ (\text{ mod}\ {p^3})& {if \; p \equiv 29\ (\text{ mod}\ {30}) .} \end{cases} |
Conjecture 3.5. Let p > 3 be a prime, then
(-1)^{ \frac {p-1}2}\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{54^n} \equiv \begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& {if \; p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3) }, \\0\ (\text{ mod}\ {p^2})& {if \; p \equiv 2\ (\text{ mod}\ 3) .} \end{cases} |
Conjecture 3.6. Let p be an odd prime, then
\begin{align*} \sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-32)^n} \equiv\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{64^n} \equiv\begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8)}, \\0\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8).} \end{cases} \end{align*} |
Conjecture 3.7 Let p be a prime with p\not = 2, 5 , then
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{20^n} & \equiv (-1)^{ \frac {p-1}2}\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-16)^n} \\& \equiv \begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and \;so \;p = x^2+5y^2, }\\2x^2-2p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;2p = x^2+5y^2, } \\0\ (\text{ mod}\ {p^2})& {if \;p \equiv 11, 13, 17, 19\ (\text{ mod}\ {20}).}\end{cases} \end{align*} |
Conjecture 3.8. Let p > 3 be a prime, then
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(-48)^n} \equiv \begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& {if \; 12\mid p-1 \; and \;so \; p = x^2+9y^2 , } \\2p-2x^2\ (\text{ mod}\ {p^2})& {if \; 12\mid p-5 \; and\; so \; 2p = x^2+9y^2 , } \\0\ (\text{ mod}\ {p^2})& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} |
Conjecture 3.9. Let p be a prime with p > 3 . If m\in\{-7, -25, -169, -1519, -70225, 20, 56,650, 2450\} and p\nmid m(m-2) , then
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {Q_n}{(16(m-2))^n} \equiv \Big( \frac {{m(m-2)}}{p}\Big)\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {f_n}{(16m)^n}\ (\text{ mod}\ {p^2}). |
Conjecture 3.10. Let p be a prime with p > 3 . If m\in\{-112, -400, -2704, -24304, -1123600\} and p\nmid m(m+4) , then
\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {a_n}{(m+4)^n} \equiv \Big( \frac {{m(m+4)}}{p}\Big)\sum\limits_{n = 0}^{p-1} \binom{2n}n \frac {f_n}{m^n}\ (\text{ mod}\ {p^2}). |
For an odd prime p and x\in\Bbb Z_p , the p -adic Gamma function \Gamma_p(x) is defined by
\Gamma_p(0) = 1, {\quad} \Gamma_p(n) = (-1)^n\prod\limits_{k\in\{1, 2, \ldots, n-1\}, p\nmid k}k{\quad}\hbox {for} {\quad}n = 1, 2, 3, \ldots and \Gamma_p(x) = \lim\limits_{n\in\{0, 1, \ldots\}, |x-n|_p\rightarrow 0} \Gamma_p(n). |
Theorem 4.1. [25, Conjecture 4.10] Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k} \equiv\begin{cases} 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}) & {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) , } \\- \frac {p^2}4 \binom{(p-3)/2}{(p-3)/4}^{-2}\ (\text{ mod}\ {p^3}) & {if \; p \equiv 3\ (\text{ mod}\ 4) } \end{cases} |
and
(-1)^{ \frac {p-1}4}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-512)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}){\quad} {for\; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) }. |
Proof. From [10, Theorems 3 and 29],
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k} \equiv\begin{cases} -\Gamma_p\big( \frac {1}{4}\big)^4\ (\text{ mod}\ {p^3})& \hbox{if $ p \equiv 1\ (\text{ mod}\ 4) $, } \\- \frac {p^2}{16}\Gamma_p\big( \frac {1}{4}\big)^4\ (\text{ mod}\ {p^3})& \hbox{if $ p \equiv 3\ (\text{ mod}\ 4) $} \end{cases} |
and
(-1)^{ \frac {p-1}4}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-512)^k} \equiv -\Gamma_p\big( \frac {1}{4}\big)^4\ (\text{ mod}\ {p^3}){\quad} \hbox{for $ p \equiv 1\ (\text{ mod}\ 4) $}. |
By [35, (9)],
\begin{align} \Gamma_p\Big( \frac {1}{4}\Big)^4 \equiv \begin{cases} - \frac 1{2^{p-1}} \binom{ \frac {p-1}2}{ \frac {p-1}4}^2\Big(1- \frac {p^2}2E_{p-3}\Big) \ (\text{ mod}\ {p^3})& \hbox{if $4\mid p-1$, } \\2^{p-3}(16+32p+(48-8E_{p-3})p^2) \binom{ \frac {p-3}2}{ \frac {p-3}4}^{-2} \ (\text{ mod}\ {p^3})& \hbox{if $4\mid p-3$.} \end{cases} \end{align} | (4.1) |
By [24, Theorem 2.8], for p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) ,
\begin{align} \frac 1{2^{p-1}} \binom{ \frac {p-1}2}{ \frac {p-1}4}^2\Big(1- \frac {p^2}2E_{p-3}\Big) \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}). \end{align} | (4.2) |
Combining (4.1) with (4.2) gives
\begin{align} -\Gamma_p\big( \frac {1}{4}\big)^4 \equiv 4x^2-2p- \frac {p^2}{4x^2} \ (\text{ mod}\ {p^3}) {\quad} \hbox{for $p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4)$}. \end{align} | (4.3) |
Now combining all the above proves the theorem.
Theorem 4.2. Suppose that p is an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(k+1)^2} \equiv\begin{cases} 8x^2-5p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\-6R_1(p)-p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(k+1)^3} \equiv\begin{cases} 1+6(2^{p-1}-p)+ \frac {6p^2}{x^2}\ (\text{ mod}\ {p^3}) & {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\1+6(2^{p-1}-p)-24R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \end{align*} |
where R_1(p) = (2p+2-2^{p-1}) \binom{(p-1)/2}{(p-3)/4}^2 .
Proof. By [35], for any positive integer n ,
\begin{align} \sum\limits_{k = 0}^n \frac { \binom{2k}k^2 \binom{n+k}{2k}}{(-4)^k(k+1)^2} = \begin{cases} 2 \binom{2[ \frac n2]}{[ \frac n2]}^2\cdot 16^{-[ \frac n2]}& \hbox{if $2\mid n$, } \\ \frac {2n^2+2n-1}{(n+1)^2} \binom{2[ \frac n2]}{[ \frac n2]}^2\cdot 16^{-[ \frac n2]} & \hbox{if $2\nmid n$.} \end{cases} \end{align} | (4.4) |
From [16],
\begin{align} \binom{ \frac {p-1}2+k}{2k} \equiv \frac { \binom{2k}k}{(-16)^k}\ (\text{ mod}\ {p^2}){\quad}\hbox {for} {\quad}k = 0, 1, \ldots, \frac {p-1}2. \end{align} | (4.5) |
Now, taking n = \frac {p-1}2 in (4.4) and then applying (4.5) gives
\begin{align*} \sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)^2} & \equiv\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^2 \binom{ \frac {p-1}2+k}{2k}}{(-4)^k(k+1)^2} \\& \equiv\begin{cases} 2 \binom{(p-1)/2}{(p-1)/4}^216^{- \frac {p-1}4}\ (\text{ mod}\ {p^2}) & \hbox{if $4\mid p-1$, } \\ \frac { \frac {p^2-1}2-1}{( \frac {{p+1}}{2})^2} \binom{(p-3)/2}{(p-3)/4}^216^{- \frac {p-3}4} = \frac {2p^2-6}{2^{p-1}(p-1)^2} \binom{(p-1)/2}{(p-3)/4}^2 \ (\text{ mod}\ {p^2}) & \hbox{if $4\mid p-3$.} \end{cases} \end{align*} |
For p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) , from [17, Lemma 3.4],
\begin{align} 4x^2-2p \equiv \frac 1{2^{p-1}} \binom{ \frac {p-1}2}{ \frac {p-1}4}^2\ (\text{ mod}\ {p^2}). \end{align} | (4.6) |
Thus,
\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)^2} \equiv \frac 2{2^{p-1}} \binom{ \frac {p-1}2}{ \frac {p-1}4}^2 \equiv 8x^2-4p\ (\text{ mod}\ {p^2}). |
For p \equiv 3\ (\text{ mod}\ 4) , we see that
\frac {2p^2-6}{2^{p-1}(p-1)^2} \equiv \frac {-6}{(1+2^{p-1}-1)(1-2p)} \equiv \frac {-6}{1+(2^{p-1}-1-2p)} \equiv -6(2p+2-2^{p-1})\ (\text{ mod}\ {p^2}) |
and so
\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)^2} \equiv -6(2p+2-2^{p-1}) \binom{ \frac {p-1}2}{ \frac {p-3}4}^2\ (\text{ mod}\ {p^2}). |
Note that p\mid \binom{2k}k for \frac p2 < k < p and
\frac 1{p^2} \binom{2(p-1)}{p-1}^3 = p\Big( \frac {{(2p-2)(2p-3)\cdots(p+1)}}{{(p-1)!}}\Big)^3 \equiv -p\ (\text{ mod}\ {p^2}). |
Then we get
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(k+1)^2} \equiv \frac { \binom{2p-2}{p-1}^3}{64^{p-1}\cdot p^2}+ \sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)^2} \equiv -p+\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)^2}\ (\text{ mod}\ {p^2}). |
Now, combining all the above proves the congruence for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(k+1)^2}\ (\text{ mod}\ {p^2}) . By [35],
\sum\limits_{k = 0}^{ \frac {p-1}2} \frac { \binom{2k}k^3}{64^k(k+1)^3} \equiv\begin{cases} 8- \frac {24p^2}{\Gamma_p( \frac {1}{4})^4}\ (\text{ mod}\ {p^3}){\quad} \hbox{if $ p \equiv 1\ (\text{ mod}\ 4) $, } \\8- \frac {384}{\Gamma_p( \frac {1}{4})^4}\ (\text{ mod}\ {p^3}){\quad} \hbox{if $ p \equiv 3\ (\text{ mod}\ 4) $.} \end{cases} |
This together with (4.1) and (4.3) yields
\sum\limits_{k = 0}^{ \frac {p-1}2} \frac { \binom{2k}k^3}{64^k(k+1)^3} \equiv\begin{cases} 8+ \frac {6p^2}{x^2}\ (\text{ mod}\ {p^3}) & \hbox{if $ p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) $, } \\ 8- \frac {96}{2^{p-1}(1+2p)} \binom{ \frac {p-3}2}{ \frac {p-3}4}^2 \ (\text{ mod}\ {p^2})& \hbox{if $ p \equiv 3\ (\text{ mod}\ 4) $.} \end{cases} |
For p \equiv 3\ (\text{ mod}\ 4) we see that \binom{(p-1)/2}{(p-3)/4} = \frac {2(p-1)}{p+1} \binom{(p-3)/2}{(p-3)/4} and so
\binom{ \frac {p-3}2}{ \frac {p-3}4}^2 \equiv \Big( \frac {{p+1}}{{2(p-1)}}\Big)^2 \binom{ \frac {p-1}2}{ \frac {p-3}4}^2 \equiv \frac {(p+1)^4}4 \binom{ \frac {p-1}2}{ \frac {p-3}4}^2 \equiv \frac {4p+1}4 \binom{ \frac {p-1}2}{ \frac {p-3}4}^2\ (\text{ mod}\ {p^2}). |
Thus,
\begin{align*}& \sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)^3} \equiv 8- \frac {96}{(1+(2^{p-1}-1))(1+2p)} \binom{ \frac {p-3}2}{ \frac {p-3}4}^2\\& \equiv 8- \frac {96}{1+2^{p-1}-1+2p}\cdot \frac {4p+1}4 \binom{ \frac {p-1}2}{ \frac {p-3}4}^2 \\& \equiv 8-24(1-(2^{p-1}-1+2p))(4p+1) \binom{(p-1)/2}{(p-3)/4}^2 \\&\equiv 8-24R_1(p) \ (\text{ mod}\ {p^2}). \end{align*} |
It is well known that \binom{2p-1}{p-1} \equiv 1\ (\text{ mod}\ {p^2}) . Hence,
\begin{align*} \frac { \binom{2(p-1)}{p-1}^3}{64^{p-1}p^3}& = \frac { \binom{2p-1}{p-1}^3}{(1+2^{p-1}-1)^6(2p-1)^3} \equiv - \frac 1{(1+6(2^{p-1}-1))(1-6p)}\\& \equiv -(1-6(2^{p-1}-1))(1+6p) \equiv -(1-6(2^{p-1}-1)+6p) \\& = 3\cdot 2^p-6p-7\ (\text{ mod}\ {p^2}). \end{align*} |
Since p\mid \binom{2k}k for \frac p2 < k < p ,
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(k+1)^3} \equiv \sum\limits_{k = 0}^{ \frac {p-1}2} \frac { \binom{2k}k^3}{64^k(k+1)^3} + \frac { \binom{2(p-1)}{p-1}^3}{64^{p-1}p^3} \equiv \sum\limits_{k = 0}^{ \frac {p-1}2} \frac { \binom{2k}k^3}{64^k(k+1)^3}+3\cdot 2^p-6p-7\ (\text{ mod}\ {p^2}). |
Now combining all the above proves the theorem.
Theorem 4.3. Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(2k-1)} \equiv \Big( \frac p2- \frac 1{2^p}\Big) \binom{ \frac {p-1}2}{[ \frac p4]}^2-p\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(2k-1)^2} \ (\text{ mod}\ {p^2}) |
and so
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(2k-1)} \equiv - \frac 12 \binom{ \frac {p-1}2}{[ \frac p4]}^2\ (\text{ mod}\ p). |
Proof. Using (4.5),
\begin{align*} \binom{ \frac {p-1}2+1+k}{2k}& = \frac { \frac {p-1}2+1+k}{ \frac {p-1}2+1-k} \binom{ \frac {p-1}2+k}{2k} = \Big( \frac {2(p+1)}{p-(2k-1)}-1\Big) \binom{ \frac {p-1}2+k}{2k} \\& \equiv \Big( \frac {2(p+1)(p+2k-1)}{-(2k-1)^2}-1\Big) \frac { \binom{2k}k}{(-16)^k} \equiv \Big(-2 \frac {2k-1+(2k-1)p+p}{(2k-1)^2}-1\Big) \frac { \binom{2k}k}{(-16)^k} \\& = -\Big(1+ \frac 2{2k-1}+ \frac {2p}{2k-1}+ \frac {2p}{(2k-1)^2}\Big) \frac { \binom{2k}k}{(-16)^k} \ (\text{ mod}\ {p^2}). \end{align*} |
Thus,
\sum\limits_{k = 0}^{ \frac {p-1}2} \binom{2k}k^2 \binom{ \frac {p-1}2+1+k}{2k} \frac 1{(-4)^k} \equiv -\sum\limits_{k = 0}^{ \frac {p-1}2} \frac { \binom{2k}k^3}{64^k}\Big(1+ \frac 2{2k-1}+ \frac {2p}{2k-1}+ \frac {2p}{(2k-1)^2}\Big)\ (\text{ mod}\ {p^2}) |
and so
\begin{align*} &-2\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k}\Big( \frac 1{2k-1}+ \frac {p}{2k-1}+ \frac {p}{(2k-1)^2}\Big) \\ \equiv& \sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k}+\sum\limits_{k = 0}^{(p-1)/2} \binom{2k}k^2 \binom{ \frac {p-1}2+1+k}{2k} \frac 1{(-4)^k}\ (\text{ mod}\ {p^2}). \end{align*} |
By (1.5),
\begin{align*} &\sum\limits_{k = 0}^{(p-1)/2} \binom{2k}k^2 \binom{ \frac {p-1}2+1+k}{2k} \frac 1{(-4)^k} \\ = &\sum\limits_{k = 0}^{(p+1)/2} \binom{2k}k^2 \binom{ \frac {p+1}2+k}{2k} \frac 1{(-4)^k}- \binom{p+1}{ \frac {p+1}2}^2 \frac 1{(-4)^{ \frac {p+1}2}} \\ \equiv&\begin{cases} 0\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 1\ (\text{ mod}\ 4)$, } \\ \frac 1{2^{p+1}} \binom{(p+1)/2}{(p+1)/4}^2 = \frac 1{2^{p-1}} \binom{(p-1)/2}{(p-3)/4}^2\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 3\ (\text{ mod}\ 4)$.} \end{cases} \end{align*} |
From the above, (1.4) and (4.6),
\begin{align*} &\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k}\Big( \frac 1{2k-1}+ \frac {p}{2k-1}+ \frac {p}{(2k-1)^2}\Big) \\ \equiv &\begin{cases} - \frac 12(4x^2-2p) \equiv - \frac 12\cdot \frac 1{2^{p-1}} \binom{(p-1)/2}{(p-1)/4}^2\ (\text{ mod}\ {p^2})& \hbox{if $p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4)$, } \\- \frac 12\cdot \frac 1{2^{p-1}} \binom{(p-1)/2}{(p-3)/4}^2\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 3\ (\text{ mod}\ 4)$.} \end{cases} \end{align*} |
Hence,
\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(2k-1)} \equiv - \frac 12 \binom{ \frac {p-1}2}{[ \frac p4]}^2\ (\text{ mod}\ p) |
and so
\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(2k-1)} - \frac p2 \binom{ \frac {p-1}2}{[ \frac p4]}^2+p\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(2k-1)^2} \equiv - \frac 1{2^p} \binom{ \frac {p-1}2}{[ \frac p4]}^2 \ (\text{ mod}\ {p^2}). |
To see the result, we recall that p\mid \binom{2k}k for \frac p2 < k < p .
For k = 1, 2, 3, \ldots , it is clear that
\frac 1{2k-1} \binom{2k}k = 2\Big( \binom{2k-2}{k-1}- \binom{2k-2}k\Big) = \frac 2k \binom{2k-2}{k-1} = 2C_{k-1}\in\Bbb Z, |
where C_k = \frac 1{k+1} \binom{2k}k is the k -th Catalan number. For an odd prime p , let
\begin{align*} &R_1(p) = (2p+2-2^{p-1}) \binom{(p-1)/2}{[p/4]}^2, \end{align*} | (5.1) |
\begin{align*} &R_2(p) = (5-4(-1)^{ \frac {p-1}2})\Big(1+(4+2(-1)^{ \frac {p-1}2})p-4(2^{p-1}-1)- \frac p2\sum\limits_{k = 1}^{[p/8]} \frac 1k\Big) \binom{ \frac {p-1}2}{[ \frac p8]}^2, \end{align*} | (5.2) |
\begin{align*} &R_3(p) = \Big(1+2p+ \frac 43(2^{p-1}-1)- \frac 32(3^{p-1}-1)\Big) \binom{(p-1)/2}{[p/6]}^2. \end{align*} | (5.3) |
Calculations with Maple suggest the following challenging conjectures.
Conjecture 5.1. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-192)^k(k+1)} \equiv\begin{cases} \frac 32x^2-4p-p^2\ (\text{ mod}\ {p^3})& {if \;3\mid p-1\; and \;so \;4p = x^2+27y^2, } \\2(2p+1) \binom{[2p/3]}{[p/3]}^2+p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-192)^k(k+1)^2} \equiv\begin{cases} \frac 14{x^2}-3p\ (\text{ mod}\ {p^2})& {if \;3\mid p-1\; and \;so \;4p = x^2+27y^2, } \\13(2p+1) \binom{[2p/3]}{[p/3]}^2+ \frac p2\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{(-192)^k(2k-1)} \equiv\begin{cases} - \frac 34x^2+ \frac {9p}8+ \frac {3p^2}{8x^2}\ (\text{ mod}\ {p^3})& {if \;3\mid p-1\; and \;so \;4p = x^2+27y^2, } \\- \frac 12(2p+1) \binom{[2p/3]}{[p/3]}^2+ \frac 38p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ {3}).} \end{cases} \end{align*} |
Conjecture 5.2. Let p > 5 be a prime, then
\begin{align*} &\Big( \frac {{10}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-12288000)^k(k+1)} \\ \equiv&\begin{cases} - \frac {26082}5y^2+2p-\big( \frac {{10}}{p}\big)p^2\ (\text{ mod}\ {p^3})& {if \;3\mid p-1\; and \;so \;4p = x^2+27y^2, } \\1280(2p+1) \binom{[2p/3]}{[p/3]}^2+ \frac {1922}5p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\Big( \frac {{10}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-12288000)^k(k+1)^2} \\ \equiv&\begin{cases} - \frac {112604}{25}x^2+\big( \frac {293656}{25}-\big( \frac {{10}}{p}\big)\big)p \ (\text{ mod}\ {p^2}){\quad} {if \;3\mid p-1\; and \;so \;4p = x^2+27y^2, } \\11776(2p+1) \binom{[2p/3]}{[p/3]}^2-\big( \frac {68448}{25} +\big( \frac {{10}}{p}\big)\big)p\ (\text{ mod}\ {p^2}){\quad} {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\Big( \frac {{10}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-12288000)^k(2k-1)} \\ \equiv&\begin{cases} - \frac {177}{200}x^2+ \frac {53199}{32000}p+ \frac {56157}{64000x^2}p^2\ (\text{ mod}\ {p^3}) & {if \;3\mid p-1\; and \;so \;4p = x^2+27y^2, } \\- \frac 1{20}(2p+1) \binom{[2p/3]}{[p/3]}^2+ \frac {3441}{32000}p \ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ {3}).} \end{cases} \end{align*} |
Remark 5.1. Let p be a prime with p > 5 . In [25], the author conjectured that if p \equiv 1\ (\text{ mod}\ 3) and so 4p = x^2+27y^2 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-192)^k} \equiv \Big( \frac {{10}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-12288000)^k} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}); |
if p \equiv 2\ (\text{ mod}\ 3) , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-192)^k} \equiv \frac {800}{161}\Big( \frac {{10}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-12288000)^k} \equiv \frac 34p^2 \binom{[2p/3]}{[p/3]}^{-2}\ (\text{ mod}\ {p^3}). |
The congruence for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-192)^k}\ (\text{ mod}\ {p^2}) was conjectured by Z. W. Sun [27] earlier.
Let p > 3 be a prime. In [27,29], Z. W. Sun conjectured congruences for \sum_{k = 0}^{p-1} \binom{2k}k^3/m^k \ (\text{ mod}\ {p^2}) with m = 1, -8, 16, -64,256, -512, 4096 . Such conjectures were proved by the author in [17]. In [25], the author conjectured congruences for \sum_{k = 0}^{p-1} \binom{2k}k^3/m^k \ (\text{ mod}\ {p^3}) in the cases m = 1, -8, 16, -64,256, -512, 4096 .
Conjecture 5.3. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{(-8)^k(k+1)} \equiv \begin{cases} -24y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ \frac 12R_1(p)+p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-8)^k(k+1)^2} \equiv\begin{cases} -32y^2\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\3R_1(p)+2p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-8)^k(2k-1)} \equiv \begin{cases} -4x^2- \frac {5}{4x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\2p-2R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-8)^k(2k-1)^2} \equiv \begin{cases} -4x^2+2p+ \frac {19}{4x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\6R_1(p) \ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), }\end{cases} \\ &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-8)^k(2k-1)^3} \equiv \begin{cases} 48y^2+ \frac {33}{16y^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\-6p-12R_1(p) \ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4).} \end{cases} \end{align*} |
Conjecture 5.4. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{64^k(k+1)} \equiv -16y^2+2p\ (\text{ mod}\ {p^3}){\quad}\; {for} {\quad} p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(2k-1)} \equiv \begin{cases} -2x^2+p+ \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac 12R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(2k-1)^2} \equiv \begin{cases} 2x^2-p- \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ \frac 32R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{64^k(2k-1)^3} \equiv \begin{cases} \frac {3}{4x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\-3R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4).} \end{cases} \end{align*} |
Conjecture 5.5. Let p be an odd prime, then
\begin{align*} &(-1)^{[ \frac p4]}\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{(-512)^k(k+1)} \equiv\begin{cases} -32y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\-4R_1(p)-2p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&(-1)^{[ \frac p4]}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-512)^k(k+1)^2} \equiv\begin{cases} -16x^2+(8-(-1)^{[ \frac p4]})p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\-24R_1(p)-(-1)^{[ \frac p4]}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&(-1)^{[ \frac p4]}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-512)^k(2k-1)} \equiv \begin{cases} -3x^2+ \frac 54p+ \frac 5{32x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac p4+ \frac {1}4R_1(p)\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&(-1)^{[ \frac p4]}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-512)^k(2k-1)^2} \equiv \begin{cases} 2x^2- \frac 58p- \frac {p^2}{32x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac 34R_1(p)+ \frac 38p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&(-1)^{[ \frac p4]}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-512)^k(2k-1)^3} \equiv \begin{cases} - \frac 32x^2+ \frac 38p- \frac 3{32x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ \frac 32R_1(p)- \frac 38p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3\ (\text{ mod}\ 4).} \end{cases} \end{align*} |
Conjecture 5.6. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{648^k(k+1)} \equiv\begin{cases} - \frac {40}3y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac 32R_1(p)- \frac p3\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{648^k(k+1)^2} \equiv\begin{cases} \frac {112}9x^2- \frac {64}9p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\-11R_1(p)- \frac {10}9 p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{648^k(2k-1)} \equiv \begin{cases} - \frac {76}{27}x^2+ \frac {104}{81}p+ \frac {67}{324x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac 29R_1(p)+ \frac {10}{81}p \ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4).} \end{cases} \end{align*} |
Conjecture 5.7. Let p > 3 be a prime, then
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{12^{3k}(k+1)} \equiv\begin{cases} -16y^2+2p-\big( \frac {p}{3}\big)p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ \frac 35R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), }\end{cases} \\&\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{12^{3k}(k+1)^2} \equiv\begin{cases} 8x^2-(4+( \frac {p}{3}))p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ \frac {138}{25}R_1(p)-( \frac {p}{3})p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}}{12^{3k}(2k-1)} \equiv \begin{cases} - \frac {26}{9}x^2+ \frac {13}{9}p+ \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ \frac 16R_1(p)\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3\ (\text{ mod}\ 4).} \end{cases} \end{align*} |
Conjecture 5.8. Let p be a prime with p\not = 2, 3, 11 , then
\begin{align*} &\Big( \frac {{33}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{66^{3k}(k+1)} \equiv\begin{cases} 104y^2+2p-\big( \frac {{33}}{p}\big)p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac {363}{10}R_1(p)-15p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\Big( \frac {{33}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{66^{3k}(k+1)^2} \equiv\begin{cases} 488x^2-\big(295+( \frac {{33}}{p})\big)p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac {8349}{25}R_1(p)+\big(51-( \frac {{33}}{p})\big)p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3\ (\text{ mod}\ 4), } \end{cases} \\&\Big( \frac {{33}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}}{66^{3k}(2k-1)} \equiv \begin{cases} - \frac {3716}{1089}x^2+ \frac {18848}{11979}p+ \frac {1121}{5324x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\- \frac 2{33}R_1(p) + \frac {530}{3993}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4)$}. \end{cases} \end{align*} |
Conjecture 5.9. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{16^k(k+1)} \equiv\begin{cases} -16y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac 43R_3(p)- \frac 23p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{16^k(k+1)^2} \equiv\begin{cases} -24y^2+p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-8R_3(p)-3p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases}\\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{16^k(2k-1)} \equiv \begin{cases} 4y^2- \frac {p^2}{4y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac {8}3R_3(p)+ \frac 23p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\ &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{16^k(2k-1)^2} \equiv \begin{cases} -12y^2+2p+ \frac {3p^2}{4y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ 8R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{16^k(2k-1)^3} \equiv \begin{cases} -12y^2 - \frac 5{4y^2}p^2\ (\text{ mod}\ {p^3}) & {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-16R_3(p)-2p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 2\ (\text{ mod}\ 3).} \end{cases} \end{align*} |
Conjecture 5.10. Let p > 3 be a prime, then
\begin{align*} &(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{256^k(k+1)} \equiv\begin{cases} -8y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ \frac {16}3R_3(p)+ \frac 23p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{256^k(k+1)^2} \equiv\begin{cases} 16x^2-(8+(-1)^{ \frac {p-1}2})p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\32R_3(p)-(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{256^k(2k-1)} \equiv \begin{cases} 8y^2- \frac 32p- \frac {p^2}{16y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ \frac {2}3R_3(p)- \frac p6\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{256^k(2k-1)^2} \equiv\begin{cases} 2x^2- \frac 34p- \frac 3{16x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-2R_3(p)+ \frac p4\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{256^k(2k-1)^3} \equiv\begin{cases} -x^2+ \frac p4+ \frac {3}{16x^2}p^2 \ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\4R_3(p)- \frac p4\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3).} \end{cases} \end{align*} |
Moreover,
(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{256^k(2k-1)} \equiv - \frac 14\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{16^k(2k-1)}\ (\text{ mod}\ {p^3}){\quad} {for} {\quad}p \equiv 2\ (\text{ mod}\ 3). |
Conjecture 5.11. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{108^k(k+1)} \equiv\begin{cases} -12y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-2R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3)}, \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{108^k(k+1)^2} \equiv\begin{cases} 8x^2-5p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-13R_3(p)-p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^2 \binom{3k}{k}}{108^k(k+1)^3} \equiv\begin{cases} 9-2x^2+p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\9-\frac{115}2R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{108^k(2k-1)} \equiv\begin{cases} - \frac 59(4x^2-2p)+ \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac 89R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3).} \end{cases} \end{align*} |
Conjecture 5.12. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-144)^k(k+1)} \equiv\begin{cases} -16y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ \frac 43R_3(p)+ \frac 23p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-144)^k(k+1)^2} \equiv\begin{cases} - \frac {40}3y^2- \frac {p}3\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ \frac {88}9R_3(p)+ \frac 59p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-144)^k(2k-1)} \equiv\begin{cases} - \frac {28}9x^2+ \frac 89p- \frac {p^2}{36x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac 89R_3(p)+ \frac 23p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3).} \end{cases} \end{align*} |
Conjecture 5.13. Let p > 5 be a prime, then
\begin{align*} &\Big( \frac {p}{5}\Big) \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}}{54000^k(k+1)} \equiv\begin{cases} \frac {48}5y^2+2p-\big( \frac {p}{5}\big)p^2\ (\text{ mod}\ {p^3}) & {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-20R_3(p)- \frac {18}5p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\Big( \frac {p}{5}\Big) \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}}{54000^k(k+1)^2} \equiv\begin{cases} \frac {2504}{25}x^2-\big( \frac {1414}{25}+\big( \frac {p}{5}\big)\big)p\ (\text{ mod}\ {p^2}) & {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-184R_3(p)+\big( \frac {162}{25}-\big( \frac {p}{5}\big)\big)p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases}\\&\Big( \frac {p}{5}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}}{54000^k(2k-1)} \equiv\begin{cases} - \frac {748}{225}x^2+ \frac {1708}{1125}p+ \frac {103}{500x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac 8{45}R_3(p)+ \frac {18}{125}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3).} \end{cases} \end{align*} |
Conjecture 5.14. Let p > 3 be a prime, then
\begin{align*} & \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{1458^k(k+1)} \equiv\begin{cases} 2(-1)^{ \frac {p-1}2}p-p^2\ (\text{ mod}\ {p^3})& {if \;p \equiv 1\ (\text{ mod}\ 3), } \\-12R_3(p)+2(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{1458^k(k+1)^2} \equiv\begin{cases} 42x^2-(22+2(-1)^{ \frac {p-1}2})p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-78R_3(p)-(1+2(-1)^{ \frac {p-1}2})p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{1458^k(2k-1)} \equiv\begin{cases} - \frac {61}{81}\big(4x^2-2p- \frac {p^2}{4x^2}\big)- \frac {44}{243}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^3})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac {32}{81}R_3(p)- \frac {44}{243}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 2\ (\text{ mod}\ 3).} \end{cases} \end{align*} |
Conjecture 5.15. Let p be an odd prime, then
\begin{align*} &(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{(-64)^k(k+1)} \equiv\begin{cases} -12y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {1}2R_2(p)-p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-64)^k(k+1)^2} \equiv \begin{cases} 4x^2-5p\ (\text{ mod}\ {p^2}){\qquad} {if \;p = x^2+2y^2 \equiv 1\ (\text{ mod}\ 8), } \\4x^2-3p\ (\text{ mod}\ {p^2}){\qquad} {if \;p = x^2+2y^2 \equiv 3\ (\text{ mod}\ 8), } \\-3R_2(p)-(2+(-1)^{ \frac {p-1}2})p\ (\text{ mod}\ {p^2}){\quad} {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-64)^k(2k-1)} \equiv \begin{cases} p-3x^2\ (\text{ mod}\ {p^3}){\qquad}\ {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {1}4R_2(p)- \frac p2\ (\text{ mod}\ {p^2}){\quad} {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\ &(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-64)^k(2k-1)^2} \equiv\begin{cases} x^2+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac 34R_2(p)+ \frac p2 \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(-64)^k(2k-1)^3} \equiv\begin{cases} -2x^2+p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac 32R_2(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8).} \end{cases} \end{align*} |
Conjecture 5.16. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{256^k(k+1)} \equiv \begin{cases} -8y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ - \frac 13R_2(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{256^k(k+1)^2} \equiv \begin{cases} -16y^2+3p\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ - \frac {22}9R_2(p)-p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{256^k(2k-1)} \equiv\begin{cases} 5y^2- \frac 54p- \frac {p^2}{8y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {1}8R_2(p) \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8).} \end{cases} \end{align*} |
Conjecture 5.17. Let p be a prime with p\not = 2, 7 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{28^{4k}(k+1)} \equiv\begin{cases} -284x^2+\big(142+144( \frac {p}{3})\big)p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\-147R_2(p)+144( \frac {p}{3})p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{28^{4k}(k+1)^2} \equiv\begin{cases} 5576x^2-\big(2789+864( \frac {p}{3})\big)p\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\-1078R_2(p)-\big(1+864( \frac {p}{3})\big)p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{28^{4k}(2k-1)} \equiv\begin{cases} - \frac {2363}{686}x^2+ \frac {16541-1224( \frac {p}{3})}{9604}p+ \frac {2041p^2}{9604x^2} \ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {9}{392}R_2(p)- \frac {306}{2401}\big( \frac {p}{3}\big)p \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8).} \end{cases} \end{align*} |
Conjecture 5.18. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{8^k(k+1)} \equiv\begin{cases} -11y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {1}8R_2(p)- \frac 34p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{8^k(k+1)^2} \equiv\begin{cases} - \frac {31}2y^2+ \frac p2\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {13}{16}R_2(p)- \frac {27}8p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{8^k(2k-1)} \equiv \begin{cases} 2y^2+ \frac 52p- \frac {17}{16y^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac 34R_2(p)+3p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8).} \end{cases} \end{align*} |
Conjecture 5.19. Let p be a prime with p\not = 2, 5 , then
\begin{align*} &\Big( \frac {{-5}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{20^{3k}(k+1)} \equiv\begin{cases} - \frac {28}5y^2+2p-\big( \frac {{-5}}{p}\big)p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac 56R_2(p)+ \frac 35p\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\Big( \frac {{-5}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{20^{3k}(k+1)^2} \equiv\begin{cases} \frac {484}{25}x^2-\big( \frac {244}{25}+( \frac {{-5}}{p})\big)p\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {23}3R_2(p)-\big( \frac {2}{25}+( \frac {{-5}}{p})\big)p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\Big( \frac {{-5}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{20^{3k}(2k-1)} \equiv\begin{cases} - \frac {79}{25}x^2+ \frac {181}{125}p+ \frac {26}{125x^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {1}{20}R_2(p) - \frac {33}{250}p \ (\text{ mod}\ {p^2}) & {if \;p \equiv 5, 7\ (\text{ mod}\ 8).} \end{cases} \end{align*} |
Remark 5.2. Let p be a prime with p > 7 and p\not = 71 . In [25], the author conjectured congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{256^k} , \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{28^{4k}} and \sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{20^{3k}} modulo p^3 . The congruence for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{28^{4k}} \ (\text{ mod}\ {p^2}) was conjectured by Z. W. Sun [27].
For any odd prime p , let
R_7(p) = \sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{k+1}. |
Conjecture 5.20. Let p be a prime with p\not = 2, 7 , then
\begin{align*} &R_7(p) = \sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{k+1} \equiv \begin{cases} -44y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac {1}7 \binom{[3p/7]}{[p/7]}^2\ (\text{ mod}\ p)& {if \;p \equiv 3\ (\text{ mod}\ 7), } \\- \frac {16}7 \binom{[3p/7]}{[p/7]}^2\ (\text{ mod}\ p)& {if \;p \equiv 5\ (\text{ mod}\ 7), } \\- \frac {4}7 \binom{[3p/7]}{[p/7]}^2\ (\text{ mod}\ p)& {if \;p \equiv 6\ (\text{ mod}\ 7), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(k+1)^2} \equiv \begin{cases} -68y^2\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\6R_7(p)+2p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{2k-1} \equiv \begin{cases} -36y^2+14p- \frac 7{4y^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\32R_7(p)+48p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\ &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(2k-1)^2} \equiv \begin{cases} -284y^2+34p+ \frac {23}{4y^2}p^2 \ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ -96R_7(p)-96p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), }\end{cases} \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{(2k-1)^3} \equiv \begin{cases} -804y^2-18p- \frac {39}{4y^2}p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ 192R_7(p)+144p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7).}\end{cases} \end{align*} |
Conjecture 5.21. Let p be a prime with p\not = 2, 7 , then
\begin{align*} &(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{4096^k(k+1)} \\ \equiv &\begin{cases} 72y^2+2p\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\-64R_7(p)-66p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{4096^k(k+1)^2} \\ \equiv & \begin{cases} -1136y^2+(64-(-1)^{ \frac {p-1}2})p\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\-384R_7(p)-(456+(-1)^{ \frac {p-1}2})p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \end{align*} |
\begin{align*} &(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{4096^k(2k-1)} \\ \equiv &\begin{cases} 22y^2- \frac 74p- \frac {7p^2}{256y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac 12R_7(p)- \frac 34p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{4096^k(2k-1)^2} \\ \equiv &\begin{cases} -17y^2+ \frac {97}{64}p+ \frac {5p^2}{256y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac 32R_7(p)+ \frac {129}{64}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\& (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{4096^k(2k-1)^3} \\ \equiv &\begin{cases} \frac {201}{16}y^2- \frac {81}{64}p- \frac {3p^2}{256y^2}\ (\text{ mod}\ {p^3}) & {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\-3R_7(p)- \frac {243}{64}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7)} \end{cases} \end{align*} |
and
(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{4096^k(2k-1)} \equiv - \frac 1{64}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^3}{2k-1}\ (\text{ mod}\ {p^3}){\quad}\; {for} {\quad} p \equiv 3, 5, 6\ (\text{ mod}\ 7). |
Conjecture 5.22. Let p be a prime with p\not = 2, 3, 7 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{81^k(k+1)} \equiv \begin{cases} - \frac {100}{3}y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {3}2R_7(p)+ \frac 43p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{81^k(k+1)^2} \equiv \begin{cases} - \frac {436}{9}y^2+ \frac 43p\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\11R_7(p)+ \frac {94}{9}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{81^k(2k-1)} \equiv \begin{cases} \frac {436}{27}y^2- \frac {50}{81}p- \frac {23p^2}{324y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {16}9R_7(p)+ \frac {208}{81}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7).} \end{cases} \end{align*} |
Conjecture 5.23. Let p be a prime with p\not = 2, 3, 7 , then
\begin{align*} & \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}} {(-3969)^k(k+1)} \equiv \begin{cases} - \frac {196}3y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\-21R_7(p)- \frac {64}{3}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}} {(-3969)^k(k+1)^2} \equiv \begin{cases} - \frac {356}9x^2+ \frac {188}{9}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\-154R_7(p)- \frac {1612}{9}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}} {(-3969)^k(2k-1)} \equiv \begin{cases} \frac {4204}{189}y^2- \frac {7090}{3969}p- \frac {2929p^2}{111132y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {32}{63}R_7(p)+ \frac {3088}{3969}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7).} \end{cases} \end{align*} |
Conjecture 5.24. Let p be a prime with p > 7 , then
\begin{align*} &\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-15)^{3k}(k+1)} \\ \equiv &\begin{cases} - \frac {188}{5}y^2+2p-\big( \frac {{-15}}{p}\big)p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {15}{4}R_7(p)+ \frac {18}{5}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-15)^{3k}(k+1)^2} \\ \equiv & \begin{cases} \frac {172}{25}y^2-\big( \frac 75+\big( \frac {{-15}}{p}\big)\big)p\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {69}{2}R_7(p)+\big( \frac {963}{25}-\big( \frac {{-15}}{p}\big)\big)p \ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-15)^{3k}(2k-1)} \\ \equiv & \begin{cases} \frac {5084}{225}y^2- \frac {2138}{1125}p- \frac {11p^2}{500y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac 8{15}R_7(p)- \frac {112}{125}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7).} \end{cases} \end{align*} |
Conjecture 5.25. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-12288)^k(k+1)} \equiv\begin{cases} -144y^2+2p-p^2\ (\text{ mod}\ {p^3}) & {if \;12\mid p-1\; and \;so \;p = x^2+9y^2, } \\72y^2-2p-p^2\ (\text{ mod}\ {p^3}) & {if \;12\mid p-5\; and \;so \;2p = x^2+9y^2, } \\-24 \binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \;p \equiv 7\ (\text{ mod}\ {12}), } \\48 \binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \;p \equiv 11\ (\text{ mod}\ {12}), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-12288)^k(k+1)^2} \equiv\begin{cases} -128x^2+75p\ (\text{ mod}\ {p^2}) & {if \;12\mid p-1\; and \;so \;p = x^2+9y^2, } \\64x^2-77p\ (\text{ mod}\ {p^2}) & {if \;12\mid p-5\; and \;so \;2p = x^2+9y^2, } \\-176 \binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \;p \equiv 7\ (\text{ mod}\ {12}), } \\352 \binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \;p \equiv 11\ (\text{ mod}\ {12}), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-12288)^k(2k-1)} \equiv\begin{cases} - \frac {13}{4}x^2+ \frac {93}{64}p+ \frac {25p^2}{128x^2}\ (\text{ mod}\ {p^3}) & {if \;12\mid p-1\; and \;so \;p = x^2+9y^2, } \\ \frac {13}8x^2- \frac {93}{64}p- \frac {25p^2}{64x^2}\ (\text{ mod}\ {p^3}) & {if \;12\mid p-5\; and \;so \;2p = x^2+9y^2, } \\ \frac 3{16} \binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \;p \equiv 7\ (\text{ mod}\ {12}), } \\- \frac 3{8} \binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \;p \equiv 11\ (\text{ mod}\ {12}).} \end{cases} \end{align*} |
Conjecture 5.26. Let p be a prime with p\not = 2, 5 , and R_{20}(p) = \binom{ \frac {p-1}2}{[p/20]} \binom{ \frac {p-1}2}{[3p/20]} , then
\begin{align*} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k} \equiv\begin{cases} 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and\; so \;p = x^2+5y^2, } \\2p-2x^2+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;2p = x^2+5y^2, } \\ \frac {2p^2}{R_{20}(p)}\ (\text{ mod}\ {p^3}) & {if \;p \equiv 11\ (\text{ mod}\ {20}), } \\ \frac {2p^2}{9R_{20}(p)}\ (\text{ mod}\ {p^3}) & {if \;p \equiv 13\ (\text{ mod}\ {20}), } \\ \frac {6p^2}{7R_{20}(p)} \ (\text{ mod}\ {p^3})& {if \;p \equiv 17\ (\text{ mod}\ {20}), } \\ \frac {2p^2}{21R_{20}(p)}\ (\text{ mod}\ {p^3}) & {if \;p \equiv 19\ (\text{ mod}\ {20}).} \end{cases} \end{align*} |
Remark 5.3. For any prime p\not = 2, 5 , the congruence for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{4k}{2k}(-1024)^{-k} modulo p^2 was first conjectured by Z. W. Sun in [27]. Let p \equiv 1\ (\text{ mod}\ {20}) be a prime and so p = x^2+5y^2 . In 1840, Cauchy proved that
4x^2 \equiv \binom{(p-1)/2}{(p-1)/20} \binom{(p-1)/2}{3(p-1)/20}\ (\text{ mod}\ p), |
see [3, p.291].
Conjecture 5.27. Let p be a prime with p\not = 2, 5 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(k+1)} \equiv\begin{cases} \frac 85R_{20}(p)\ (\text{ mod}\ p)& {if \; p \equiv 1, 3, 7, 9\ (\text{ mod}\ {20}) , } \\ \frac {4}{5}R_{20}(p)\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {20}) , } \\ \frac {36}{5}R_{20}(p)\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {20}) , } \\ \frac {28}{15}R_{20}(p)\ (\text{ mod}\ p)& {if \; p \equiv 17\ (\text{ mod}\ {20}) , } \\ \frac {84}{5}R_{20}(p)\ (\text{ mod}\ p)& {if \; p \equiv 19\ (\text{ mod}\ {20}) .} \end{cases} |
Moreover, if (\frac {{-5}}{p}) = 1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(k+1)} \equiv\begin{cases} -32y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and \;so \; \\p = x^2+5y^2, } \\ 16y^2-2p-p^2\ (\text{ mod}\ {p^3})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;\\2p = x^2+5y^2, }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(k+1)^2} \equiv\begin{cases} 32y^2-5p\ (\text{ mod}\ {p^2})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and \;so \;p = x^2+5y^2, } \\-16y^2+3p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;2p = x^2+5y^2, }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(2k-1)} \equiv\begin{cases} \frac {31}{2}y^2- \frac {29}{16}p- \frac {p^2}{32y^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and \;so \;\\p = x^2+5y^2, } \\- \frac {31}{4}y^2+ \frac {29}{16}p+ \frac {p^2}{16y^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;\\2p = x^2+5y^2;}\end{cases} \end{align*} |
if (\frac {{-5}}{p}) = -1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(k+1)^2} \equiv \frac {22}3\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(k+1)}+ \big(8(-1)^{ \frac {p-1}2}-1\big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(2k-1)} \equiv - \frac 3{32}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(k+1)}- \frac 38(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2}). \end{align*} |
Conjecture 5.28. Let p > 3 be a prime with (\frac {{-6}}{p}) = -1 and R_{24}(p) = \binom{ \frac {p-1}2}{[\frac p{24}]} \binom{ \frac {p-1}2}{[\frac {5p}{24}]} , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}} \equiv\begin{cases} \frac {p^2}{5R_{24}(p)} \ (\text{ mod}\ {p^3})& {if \; p \equiv 13, 17\ (\text{ mod}\ {24}) , } \\- \frac {p^2}{77R_{24}(p)} \ (\text{ mod}\ {p^3})& {if \; p \equiv 19, 23\ (\text{ mod}\ {24}) } \end{cases} |
and
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k} \equiv\begin{cases} - \frac {7p^2}{5R_{24}(p)} \ (\text{ mod}\ {p^3})& {if \; p \equiv 13\ (\text{ mod}\ {24}) , } \\ \frac {7p^2}{5R_{24}(p)} \ (\text{ mod}\ {p^3})& {if \; p \equiv 17\ (\text{ mod}\ {24}) , } \\ \frac {p^2}{11R_{24}(p)} \ (\text{ mod}\ {p^3})& {if \; p \equiv 19\ (\text{ mod}\ {24}) , } \\- \frac {p^2}{11R_{24}(p)} \ (\text{ mod}\ {p^3})& {if \; p \equiv 23\ (\text{ mod}\ {24}) .} \end{cases} |
Conjecture 5.29. Let p > 3 be a prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)} \equiv\begin{cases} \frac {7}{8}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 1, 11\ (\text{ mod}\ {24}) , } \\- \frac {7}{8}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 5, 7\ (\text{ mod}\ {24}) , } \\ - \frac 5{8}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {24}) , } \\ \frac 5{8}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 17\ (\text{ mod}\ {24}) , } \\ \frac {77}{8}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 19\ (\text{ mod}\ {24}) , } \\- \frac {77}{8}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 23\ (\text{ mod}\ {24}) .} \end{cases} |
Moreover, if (\frac {{-6}}{p}) = 1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)} \equiv\begin{cases} -21y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), }\\7x^2-2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}), }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)^2} \equiv\begin{cases} \frac {43}4x^2- \frac {25}4p\ (\text{ mod}\ {p^2})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), }\\ \frac {43}2x^2- \frac {13}2p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}), }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(2k-1)} \equiv\begin{cases} - \frac {23}9x^2+ \frac 76p+ \frac {5p^2}{24x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), }\\- \frac {46}9x^2+ \frac {25}{18}p+ \frac {5p^2}{48x^2}\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24});}\end{cases} \end{align*} |
if (\frac {{-6}}{p}) = -1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)^2} \equiv \frac {13}2 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}-\Big(1+ \frac 32\Big( \frac {p}{3}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(2k-1)} \equiv \frac 29 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}- \frac 16\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}). \end{align*} |
Conjecture 5.30. Let p > 3 be a prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)} \equiv\begin{cases} \frac {1}{3}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 1, 5\ (\text{ mod}\ {24}) , } \\- \frac {1}{3}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 7, 11\ (\text{ mod}\ {24}) , } \\ \frac 5{3}R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 13, 17\ (\text{ mod}\ {24}) , } \\- \frac {77}3R_{24}(p) \ (\text{ mod}\ p)& {if \; p \equiv 19, 23\ (\text{ mod}\ {24}) .} \end{cases} |
Moreover, if (\frac {{-6}}{p}) = 1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)} \equiv\begin{cases} -8y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), }\\4y^2-2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24})}, \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)^2} \equiv\begin{cases} \frac {280}9x^2- \frac {157}9p\ (\text{ mod}\ {p^2})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), }\\- \frac {560}9x^2+ \frac {139}9p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24})}, \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(2k-1)} \equiv\begin{cases} - \frac {55}{18}x^2+ \frac {49}{36}p+ \frac {7p^2}{36x^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), }\\ \frac {55}9x^2- \frac {49}{36}p- \frac {7p^2}{72x^2}\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24})};\end{cases} \end{align*} |
if (\frac {{-6}}{p}) = -1 , then
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)} \equiv- \frac 83\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{216^k(k+1)} + \frac p3\Big(2\Big( \frac {p}{3}\Big)+4\Big)\ (\text{ mod}\ {p^2}), \\&\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(k+1)^2} \equiv- \frac {176}9\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{216^k(k+1)} + \frac p9\Big(35\Big( \frac {p}{3}\Big)-8\Big)\ (\text{ mod}\ {p^2}), \\&\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}(2k-1)} \equiv- \frac {1}9\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}}{216^k(k+1)} + \frac p{36}\Big(\Big( \frac {p}{3}\Big)-6\Big)\ (\text{ mod}\ {p^2}). \end{align*} |
Remark 5.4. Let p be a prime with p > 3 . In [25, Conjecture 4.24], the author conjectured the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k} and \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}} modulo p^3 in the case (\frac {{-6}}{p}) = 1 . The corresponding congruences modulo p^2 were conjectured by Z. W. Sun in [27]. In 2019, Guo and Zudilin [6] proved Z. W. Sun's conjecture:
\sum_{k = 0}^{p-1}(8k+1) \frac { \binom{2k}k^2 \binom{4k}{2k}}{48^{2k}} \equiv \Big(\frac {p}{3}\Big)p\ (\text{ mod}\ {p^3}). |
Conjecture 5.31. Let p > 5 be a prime.
(ⅰ) If p \equiv 1, 19\ (\text{ mod}\ {30}) and so p = x^2+15y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)} \equiv -84y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)^2} \equiv -96y^2\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(2k-1)} \equiv \frac {148}3y^2- \frac {26}9p+ \frac {p^2}{36y^2}\ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)} \equiv 60y^2+2p-p^2 \ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)^2} \equiv -1320y^2+36p \ (\text{ mod}\ {p^2}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(2k-1)} \equiv \frac {3508}{75}y^2- \frac {1954}{1125}p- \frac {287p^2}{22500y^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If p \equiv 17, 23\ (\text{ mod}\ {30}) and so p = 3x^2+5y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)} \equiv 28y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)^2} \equiv 32y^2-2p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(2k-1)} \equiv - \frac {148}9y^2+ \frac {26}9p- \frac {p^2}{12y^2}\ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)} \equiv -20y^2-2p-p^2 \ (\text{ mod}\ {p^3}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)^2} \equiv 440y^2-38p \ (\text{ mod}\ {p^2}), \\& \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(2k-1)} \equiv - \frac {3508}{225}y^2+ \frac {1954}{1125}p+ \frac {287p^2}{7500y^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-15}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)} \equiv\begin{cases} \frac 25\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {30}) , } \\ \frac 1{10}\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {30}) , } \\ \frac {32}{5}\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {30}) , } \\ \frac {8}{5}\cdot 5^{-[ \frac p3]} \binom{[p/3]}{[p/15]}^2\ (\text{ mod}\ p)& {if \; p \equiv 29\ (\text{ mod}\ {30}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)^2} \equiv \frac {13}2 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}+\Big(3\Big( \frac {p}{3}\Big)-1\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(2k-1)} \equiv- \frac {16}9 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}- \frac 83\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)} \equiv-20 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}-12\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(k+1)^2} \equiv-130 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}-\Big(1+111\Big( \frac {p}{3}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {15^{3k}(2k-1)} \equiv- \frac {64}{225} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {(-27)^k(k+1)}- \frac {152}{375}\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}). \end{align*} |
Conjecture 5.32. Let p be a prime with p > 5 and
R_{40}(p) = \frac { \binom{(p-1)/2}{[7p/40]} \binom{(p-1)/2}{[9p/40]} \binom{[3p/40]}{[p/40]}}{ \binom{[19p/40]}{[p/20]}}. |
(ⅰ) If (\frac {{-10}}{p}) = 1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} \equiv\begin{cases} - \frac {49}{15}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 1,23\ (\text{ mod}\ {40}) ,} \\- \frac {49}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {40}) ,} \\ \frac {7}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 9\ (\text{ mod}\ {40}) ,} \\ \frac {833}{195}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {40}) ,} \\- \frac {833}{285}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {40}) ,} \\- \frac {98}{555}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 19\ (\text{ mod}\ {40}) ,} \\- \frac {98}{55}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 37\ (\text{ mod}\ {40}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} \equiv\begin{cases} \frac {392}{3}y^2+2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = x^2+10y^2 \equiv 1, 9, 11, 19\ (\text{ mod}\ {40}), } \\- \frac {196}{3}y^2-2p-p^2\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+5y^2 \equiv 7, 13, 23, 37\ (\text{ mod}\ {40}), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)^2} \equiv\begin{cases}- \frac {20176}{9}y^2+ \frac {265}{3}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+10y^2 \equiv 1, 9, 11, 19\ (\text{ mod}\ {40}), } \\ \frac {10088}{9}y^2- \frac {271}{3}p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+5y^2 \equiv 7, 13, 23, 37\ (\text{ mod}\ {40}), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(2k-1)} \equiv\begin{cases} \frac {883}{27}y^2- \frac {581}{324}p- \frac {13p^2}{648y^2}\ (\text{ mod}\ {p^3})& {if \;p = x^2+10y^2 \equiv 1, 9, 11, 19\ (\text{ mod}\ {40}), } \\- \frac {883}{54}y^2+ \frac {581}{324}p+ \frac {13p^2}{324y^2}\ (\text{ mod}\ {p^3})& {if \;p = 2x^2+5y^2 \equiv 7, 13, 23, 37\ (\text{ mod}\ {40})}\end{cases} \end{align*} |
and
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}} \equiv\begin{cases} 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 1, 9, 11, 19\ (\text{ mod}\ {40})\; and so \;p = x^2+10y^2, } \\2p-8x^2+ \frac {p^2}{8x^2}\ (\text{ mod}\ {p^3})& {if \;p \equiv 7, 13, 23, 37\ (\text{ mod}\ {40}); and so \;p = 2x^2+5y^2.}\end{cases} \end{align*} |
(ⅱ) If (\frac {{-10}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} \equiv\begin{cases} - \frac {21}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ {40}) ,} \\- \frac {4446}{155}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 17\ (\text{ mod}\ {40}) ,} \\- \frac {189}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 21\ (\text{ mod}\ {40}) ,} \\- \frac {702}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 27\ (\text{ mod}\ {40}) ,} \\ \frac {66}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 29\ (\text{ mod}\ {40}) ,} \\ \frac {1026}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 31\ (\text{ mod}\ {40}) ,} \\- \frac {462}{5}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 33\ (\text{ mod}\ {40}) ,} \\- \frac {858}{85}R_{40}(p)\ (\text{ mod}\ p)& {if \; p \equiv 39\ (\text{ mod}\ {40}). } \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)^2} \equiv \frac {22}3\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} +\Big( \frac {256}3\Big( \frac {p}{5}\Big)-1\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(2k-1)} \equiv \frac 1{216}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)} + \frac {16}{81}\Big( \frac {p}{5}\Big)p\ (\text{ mod}\ {p^2}) \end{align*} |
and
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}(k+1)}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}}\Big) \equiv - \frac {49}{15}p^2\ (\text{ mod}\ {p^3}). |
Remark 5.5. Let p > 3 be a prime. In [27], Z. W. Sun conjectured the congruence for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{12^{4k}}\ (\text{ mod}\ {p^2}) .
Conjecture 5.33. Let p be a prime with p\not = 2, 11 and R_{11}(p) = \binom{[\frac {3p}{11}]}{[\frac p{11}]}^2 \binom{[\frac {6p}{11}]}{[\frac {3p}{11}]}^2/ \binom{[\frac {4p}{11}]}{[\frac {2p}{11}]}^2 .
(ⅰ) If p \equiv 1, 3, 4, 5, 9\ (\text{ mod}\ {11}) and so 4p = x^2+11y^2 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} \equiv\begin{cases} \frac {25}{22}R_{11}(p)\ (\text{ mod}\ p)& {if\; p \equiv 1, 4, 5, 9\ (\text{ mod}\ {11}) , } \\ \frac 2{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ {11}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} \equiv - \frac {25}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)^2} \equiv - \frac {83}4y^2+2p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(2k-1)} \equiv \frac {23}4y^2- \frac 78p- \frac {p^2}{8y^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}(k+1)} \equiv -26y^2+2p-\Big( \frac {{-2}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}(k+1)^2} \equiv 148y^2-\Big(24+\Big( \frac {{-2}}{p}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}(2k-1)} \equiv \frac {73}{8}y^2- \frac {467}{256}p- \frac {37p^2}{512y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If p \equiv 2, 6, 7, 8, 10\ (\text{ mod}\ {11}) , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} \equiv \begin{cases} - \frac {50}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 2\ (\text{ mod}\ {11}) , } \\- \frac {32}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 6\ (\text{ mod}\ {11}) , } \\- \frac {2}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {11}) , } \\- \frac {72}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 8\ (\text{ mod}\ {11}) , } \\- \frac {18}{11}R_{11}(p)\ (\text{ mod}\ p)& {if \; p \equiv 10\ (\text{ mod}\ {11}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)^2} \equiv \frac {13}2 \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(2k-1)} \equiv \frac 34\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}+ \frac 38p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-32)^{3k}(k+1)} \equiv \frac {128}{15}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} - \frac 25p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-32)^{3k}(k+1)^2} \equiv \frac {5888}{75}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)} +\Big( \frac {608}{25}-\Big( \frac {{-2}}{p}\Big)\Big)p\ (\text{ mod}\ {p^2}), \\&\Big( \frac {{-2}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}} {(-32)^{3k}(2k-1)} \equiv - \frac 18\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}- \frac {51}{256}p\ (\text{ mod}\ {p^2}) \end{align*} |
and
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}\Big)\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k}\Big) \equiv \frac {25}{22}p^2\ (\text{ mod}\ {p^3}). |
Remark 5.6. Let p be a prime with p\not = 2, 3, 11 . In [25], the author conjectured the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{64^k} and \sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-32)^{3k}} modulo p^3 . The corresponding congruences modulo p^2 were conjectured by Z. W. Sun [29]. Suppose that p \equiv 1, 3, 4, 5, 9\ (\text{ mod}\ {11}) and so 4p = x^2+11y^2 . In [9], Lee and Hahn proved that
x \equiv \begin{cases} \binom{3n}n \binom{6n}{3n} \binom{4n}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-1 $ and $ 11\mid x-2 $, } \\- \binom{3n+1}n \binom{6n+1}{3n} \binom{4n+1}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-3 $ and $ 11\mid x-10 $, } \\ \binom{3n+1}n \binom{6n+2}{3n+1} \binom{4n+1}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-4 $ and $ 11\mid x-7 $, } \\ \binom{3n+1}n \binom{6n+2}{3n+1} \binom{4n+1}{2n}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-5 $ and $ 11\mid x-8 $, } \\- \binom{3n+2}n \binom{6n+4}{3n+2} \binom{4n+3}{2n+1}^{-1}\ (\text{ mod}\ p)& \hbox{if $ 11\mid p-9 $ and $ 11\mid x-6 $, }\end{cases} |
where n = [p/11] . The case p \equiv 1\ (\text{ mod}\ {11}) is due to Jacobi.
Conjecture 5.34. Let p > 3 be a prime and
R_{19}(p) = \binom{[8p/19]}{[p/19]}^2 \binom{[10p/19]}{[4p/19]}^2 \binom{[5p/19]}{[2p/19]}^{-2}. |
(ⅰ) If (\frac {{p}}{{19}}) = 1 and so 4p = x^2+19y^2 , then
\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)} \equiv\begin{cases} - \frac {1183}{1368}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 1, 7, 11\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{342}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 4, 6\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{2432}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 5\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{18392}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 9\ (\text{ mod}\ {19}) , } \\ - \frac {1183}{27702}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 16\ (\text{ mod}\ {19}) , } \\ - \frac {57967}{12312}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 17\ (\text{ mod}\ {19}) .} \end{cases} |
Moreover,
\begin{align*} &\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)} \equiv \frac {1183}{72}y^2- \frac {4273}{2304}p- \frac {23p^2}{512y^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)} \equiv -394y^2+2p-\Big( \frac {{-6}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)^2} \equiv 6772y^2-\Big(536+\Big( \frac {{-6}}{p}\Big)\Big)p\ (\text{ mod}\ {p^2}) . \end{align*} |
(ⅱ) If (\frac {{p}}{{19}}) = -1 , then
\Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)} \equiv\begin{cases} \frac {49}{228}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 2\ (\text{ mod}\ {19}) , } \\ \frac {1}{228}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ {19}) , } \\ \frac {27}{14896}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 8\ (\text{ mod}\ {19}) , } \\ \frac {3}{19}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 10\ (\text{ mod}\ {19}) , } \\ \frac {121}{57}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 12\ (\text{ mod}\ {19}) , } \\ \frac {4}{57}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 13\ (\text{ mod}\ {19}) , } \\ \frac {121}{228}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 14\ (\text{ mod}\ {19}) , } \\ \frac {27}{76}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 15\ (\text{ mod}\ {19}) , } \\ \frac {49}{57}R_{19}(p)\ (\text{ mod}\ p)& {if \; p \equiv 18\ (\text{ mod}\ {19}) .} \end{cases} |
Moreover,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)} \equiv - \frac {9216}5\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)}-270\Big( \frac {{-6}}{p}\Big)p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)^2} \equiv \frac {46}5\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(k+1)}+\Big(540\Big( \frac {{-6}}{p}\Big)-1\Big)p\ (\text{ mod}\ {p^2}) \end{align*} |
and
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}(2k-1)}\Big)\Big( \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-96)^{3k}}\Big) \equiv - \frac {985}{87552}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.35. Let p > 5 be a prime.
(ⅰ) If (\frac {{p}}{{43}}) = 1 and so 4p = x^2+43y^2 , then
\begin{align*} &\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}(k+1)} \equiv- \frac {1867778}5y^2+2p-\Big( \frac {{-15}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-15}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}(2k-1)} \equiv \frac {140501}{3600}y^2- \frac {4384321}{2304000}p- \frac {10751p^2}{512000y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{p}}{{43}}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}(2k-1)}\Big)\Big( \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-960)^{3k}}\Big) \equiv - \frac {933889}{198144000}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.36. Let p be a prime with p\not = 2, 3, 5, 11 .
(ⅰ) If (\frac {{p}}{{67}}) = 1 and so 4p = x^2+67y^2 , then
\begin{align*} &\Big( \frac {{-330}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-330}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}(k+1)} \equiv- \frac {310714322}5y^2+2p-\Big( \frac {{-330}}{p}\Big)p^2\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-330}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}(2k-1)} \\&{\quad} \equiv \frac 1{217800}\Big(13501789y^2- \frac {736842481}{1760}p- \frac {10552671p^2}{3520y^2}\Big) \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{p}}{{67}}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}(2k-1)}\Big)\Big( \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-5280)^{3k}}\Big) \equiv - \frac {155357161}{51365952000}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.37. Let p be a prime with p\not = 2, 3, 5, 23, 29 . If (\frac {{p}}{{163}}) = 1 and so 4p = x^2+163y^2 , then
\begin{align*} &\Big( \frac {{-10005}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-640320)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\Big( \frac {{-10005}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}{k} \binom{6k}{3k}} {(-640320)^{3k}(k+1)} \equiv- \frac {554179195816658}5y^2+2p-\Big( \frac {{-10005}}{p}\Big)p^2\ (\text{ mod}\ {p^3}). \end{align*} |
Remark 5.7. Suppose that p > 3 is a prime. In [29], Z. W. Sun conjectured the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{m^{3k}} modulo p^2 in the cases m = -32, -96, -960, -5280, -640320 . The corresponding congruences modulo p were proved by the author in [19].
Conjecture 5.38. Let p be a prime with p > 5 .
(ⅰ) If p \equiv 1, 4\ (\text{ mod}\ {15}) and so 4p = x^2+75y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)} \equiv - \frac {825}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)^2} \equiv \frac {14925}4y^2-78p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(2k-1)} \equiv- \frac {29}{36}x^2+ \frac {517}{360}p+ \frac {31p^2}{40x^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If p \equiv 7, 13\ (\text{ mod}\ {15}) and so 4p = 3x^2+25y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}} \equiv-3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)} \equiv \frac {275}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)^2} \equiv - \frac {4975}4y^2+76p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(2k-1)} \equiv \frac {29}{12}x^2- \frac {517}{360}p- \frac {31p^2}{120x^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If p \equiv 2\ (\text{ mod}\ 3) , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-8640)^{k}(k+1)}\Big) \equiv \frac {11}{2}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.39. Let p be a prime with p > 3 .
(ⅰ) If (\frac {p}{3}) = (\frac {p}{{17}}) = 1 and so 4p = x^2+51y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)} \equiv - \frac {249}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)^2} \equiv \frac {1965}4y^2-18p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(2k-1)} \equiv \frac {475}{12}y^2- \frac {127}{72}p- \frac {p^2}{72y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {p}{3}) = (\frac {p}{{17}}) = -1 and so 4p = 3x^2+17y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}} \equiv -3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)} \equiv \frac {83}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)^2} \equiv - \frac {655}4y^2+16p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(2k-1)} \equiv- \frac {475}{36}y^2+ \frac {127}{72}p+ \frac {p^2}{24y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-51}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-12)^{3k}(k+1)}\Big) \equiv \frac {83}{34}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.40. Let p be a prime with p > 3 .
(ⅰ) If (\frac {p}{3}) = (\frac {p}{{41}}) = 1 and so 4p = x^2+123y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)} \equiv - \frac {8673}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)^2} \equiv \frac {280605}4y^2-792p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(2k-1)} \equiv \frac {19903}{192}y^2- \frac {8425}{4608}p- \frac {31p^2}{4608y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {p}{3}) = (\frac {p}{{41}}) = -1 and so 4p = 3x^2+41y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}} \equiv -3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)} \equiv \frac {2891}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)^2} \equiv- \frac {93535}4y^2+790p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(2k-1)} \equiv- \frac {19903}{576}y^2+ \frac {8425}{4608}p+ \frac {31p^2}{1536y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-123}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-48)^{3k}(k+1)}\Big) \equiv \frac {2891}{82}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.41. Let p be a prime with p > 3 .
(ⅰ) If (\frac {p}{3}) = (\frac {p}{{89}}) = 1 and so 4p = x^2+267y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}} \equiv x^2-2p- \frac {p^2}{x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)} \equiv - \frac {2052321}2y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)^2} \equiv \frac {113759157}4y^2-131490p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(2k-1)} \equiv \frac {8910623}{37500}y^2- \frac {2118511}{1125000}p- \frac {3721p^2}{1125000y^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {p}{3}) = (\frac {p}{{89}}) = -1 and so 4p = 3x^2+89y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}} \equiv-3x^2+2p+ \frac {p^2}{3x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)} \equiv \frac {684107}2y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)^2} \equiv- \frac {37919719}4y^2+131488p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(2k-1)} \equiv- \frac {8910623}{112500}y^2+ \frac {2118511}{1125000}p+ \frac {3721p^2}{375000y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-267}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{(-300)^{3k}(k+1)}\Big) \equiv \frac {684107}{178}p^2\ (\text{ mod}\ {p^3}). |
Remark 5.8. Let p > 5 be a prime. In [18], the author proved the congruences modulo p for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{3k}k/m^k in the cases m = -8640, -12^3, -48^3, -300^3 . In [29], Z. W. Sun conjectured the corresponding congruences for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{3k}k/m^k\ (\text{ mod}\ {p^2}) in the cases m = -12^3, -48^3, -300^3 .
Conjecture 5.42. Let p > 3 be a prime.
(ⅰ) If (\frac {{-1}}{p}) = (\frac {{13}}{p}) = 1 and so p = x^2+13y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)} \equiv - \frac {2272}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)^2} \equiv \frac {96032}9y^2- \frac {911}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(2k-1)} \equiv \frac {2357}{54}y^2- \frac {2365}{1296}p- \frac {41p^2}{2592y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{-1}}{p}) = (\frac {{13}}{p}) = -1 and so 2p = x^2+13y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k} \equiv-2x^2+2p+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)} \equiv \frac {1136}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)^2} \equiv- \frac {48016}9y^2+ \frac {905}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(2k-1)} \equiv - \frac {2357}{108}y^2+ \frac {2365}{1296}p+ \frac {41p^2}{1296y^2} \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-13}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-82944)^k(k+1)}\Big) \equiv \frac {568}{39}p^2. |
Conjecture 5.43. Let p be a prime with p\not = 2, 3, 7 .
(ⅰ) If (\frac {{-1}}{p}) = (\frac {{37}}{p}) = 1 and so p = x^2+37y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)} \equiv - \frac {5044960}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)^2} \equiv \frac {467407904}9y^2- \frac {1302671}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(2k-1)} \equiv \frac 1{18522}\Big(2469371y^2- \frac {5897725}{168}p- \frac {37649p^2}{336y^2}\Big) \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{-1}}{p}) = (\frac {{37}}{p}) = -1 and so 2p = x^2+37y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k} \equiv-2x^2+2p+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)} \equiv \frac {2522480}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)^2} \equiv- \frac {233703952}9y^2+ \frac {1302665}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(2k-1)} \equiv \frac 1{37044}\Big(-2469371y^2+ \frac {5897725}{84}p+ \frac {37649p^2}{84y^2}\Big) \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-37}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-199148544)^k(k+1)}\Big) \equiv \frac {1261240}{111}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.44. Let p be a prime with p\not = 2, 3, 11 .
(ⅰ) If \big(\frac {{2}}{p}\big) = (\frac {{-11}}{p}) = 1 and so p = x^2+22y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)} \equiv \frac {63272}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)^2} \equiv - \frac {4221712}9y^2+ \frac {21289}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(2k-1)} \equiv \frac 1{297}\big(22829y^2- \frac {73085}{132}p- \frac {8471p^2}{2904y^2} \big)\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If \big(\frac {{2}}{p}\big) = (\frac {{-11}}{p}) = -1 and so p = 2x^2+11y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}} \equiv-8x^2+2p+ \frac {p^2}{8x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)} \equiv- \frac {31636}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)^2} \equiv \frac {2110856}9y^2- \frac {21295}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(2k-1)} \equiv \frac 1{594}\big(-22829y^2+ \frac {73085}{66}p+ \frac {8471p^2}{726y^2} \big)\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-22}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{1584^{2k}(k+1)}\Big) \equiv - \frac {719}3p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.45. Let p be a prime with p\not = 2, 3, 11 .
(ⅰ) If \big(\frac {{-2}}{p}\big) = (\frac {{29}}{p}) = 1 and so p = x^2+58y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)} \equiv \frac {622903112}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)^2} \equiv - \frac {75716418640}9y^2+ \frac {128477449}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(2k-1)} \equiv \frac 1{323433}\big(69026153y^2- \frac {736357445}{1188}p- \frac {3035509p^2} {2376y^2}\big)\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If (\frac {{-2}}{p}) = (\frac {{29}}{p}) = -1 and so p = 2x^2+29y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}} \equiv-8x^2+2p+ \frac {p^2}{8x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)} \equiv- \frac {311451556}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)^2} \equiv \frac {37858209320}9y^2- \frac {128477455}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(2k-1)} \equiv \frac 1{646866}\big(-69026153y^2+ \frac {736357445}{594}p+ \frac {3035509p^2} {594y^2}\big)\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If (\frac {{-58}}{p}) = -1 , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{396^{4k}(k+1)}\Big) \equiv - \frac {77862889}{87}p^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.46. Let p > 5 be a prime.
(ⅰ) If p \equiv 1, 9\ (\text{ mod}\ {20}) and so p = x^2+25y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k} \equiv 4x^2-2p- \frac {p^2}{4x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)} \equiv - \frac {168400}3y^2+2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)^2} \equiv \frac {12142400}9y^2- \frac {52799}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(2k-1)} \equiv \frac {19025}{216}y^2- \frac {194161}{103680}p- \frac {45239p^2}{5184000y^2}\ (\text{ mod}\ {p^3}). \end{align*} |
(ⅱ) If p \equiv 13, 17\ (\text{ mod}\ {20}) and so 2p = x^2+25y^2 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k} \equiv 2p-2x^2+ \frac {p^2}{2x^2}\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)} \equiv \frac {84200}3y^2-2p-p^2\ (\text{ mod}\ {p^3}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)^2} \equiv- \frac {6071200}9y^2+ \frac {52793}3p\ (\text{ mod}\ {p^2}), \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(2k-1)} \equiv \frac 1{432}\big(-19025y^2+ \frac {194161}{240}p+ \frac {45239p^2}{6000y^2}\big) \ (\text{ mod}\ {p^3}). \end{align*} |
(ⅲ) If p \equiv 3\ (\text{ mod}\ 4) , then
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k}\Big) \Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-6635520)^k(k+1)}\Big) \equiv \frac {1684}3p^2\ (\text{ mod}\ {p^3}). |
Remark 5.9. Let p > 3 be a prime. The congruences for \sum_{k = 0}^{p-1} \binom{2k}k^2 \binom{4k}{2k}/m^k\ (\text{ mod}\ {p^2}) in the cases m = -82944, -199148544, 1584^2,396^4, -6635520 were conjectured by Z. W. Sun earlier, see [27,29] and arXiv:0911.5665v59.
Conjecture 5.47. Let p be an odd prime.
(ⅰ) If p \equiv 1\ (\text{ mod}\ 4) and so p = x^2+4y^2 with 4\mid x-1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{32^k(2k-1)^2} \equiv x- \frac p{4x}\ (\text{ mod}\ {p^2}){\quad}\; {and} {\quad}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{32^k(k+1)^2} \equiv 8x-7\ (\text{ mod}\ p). |
(ⅱ) If p \equiv 3\ (\text{ mod}\ 4) , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{32^k(2k-1)^2} \equiv \frac 12(2p+3-2^{p-1}) \binom{ \frac {p-1}2}{ \frac {p-3}4}\ (\text{ mod}\ {p^2}). |
Conjecture 5.48. Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{(-16)^k(2k-1)^2} \equiv \begin{cases} (-1)^{ \frac {p-1}4} \frac px\ (\text{ mod}\ {p^2}){\quad} {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) \; and \; 4\mid x-1 , } \\(-1)^{ \frac {p+1}4}(2p+3-2^{p-1}) \binom{(p-1)/2}{(p-3)/4} \ (\text{ mod}\ {p^2}){\quad} {if \; p \equiv 3\ (\text{ mod}\ 4) } \end{cases} |
and
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{(-16)^k(k+1)^2} \equiv 5\ (\text{ mod}\ p){\quad} {for} {\quad}p \equiv 1\ (\text{ mod}\ 4). |
Conjecture 5.49. Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2}{8^k(2k-1)^2} \equiv\begin{cases} (-1)^{ \frac {p-1}4}\big(2x- \frac {3p}{2x}\big)\ (\text{ mod}\ {p^2})& {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) \; and\; 4\mid x-1 , } \\2(-1)^{ \frac {p+1}4} \binom{(p-1)/2}{(p-3)/4}\ (\text{ mod}\ p)& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} |
Remark 5.10. Let p be an odd prime. In [33], Z. W. Sun established the congruences for \sum_{k = 0}^{p-1} \frac { \binom{2k}k^2}{m^k(2k-1)}\ (\text{ mod}\ {p^2}) in the cases m = -16, 8, 32 .
Now we present two general conjectures.
Conjecture 5.50. Let a, x\in\Bbb Q and d\in\Bbb Z with adx\not = 0 , where \Bbb Q is the set of rational numbers. Suppose that \sum_{k = 0}^{p-1} \binom ak \binom{-1-a}kx^k \equiv 0\ (\text{ mod}\ p) for all odd primes p satisfying a, x\in\Bbb Z_p and \big(\frac {{d}}{p}\big) = -1 . Then there is a constant c\in\Bbb Q such that for all odd primes p with c\in\Bbb Z_p and \big(\frac {{d}}{p}\big) = -1 ,
\sum\limits_{k = 0}^{p-1} \binom{2k}k \binom ak \binom{-1-a}k(x(1-x))^k \equiv c\Big(\sum\limits_{k = 0}^{p-1} \binom ak \binom{-1-a}kx^k\Big)^2\ (\text{ mod}\ {p^3}). |
Conjecture 5.51. Let a, m\in\Bbb Q and d\in\Bbb Z with adm\not = 0 . Suppose that
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom ak \binom{-1-a}k}{m^k} \equiv 0\ (\text{ mod}\ {p^2}) |
for all odd primes p satisfying a, m\in\Bbb Z_p , p\nmid m and \big(\frac {{d}}{p}\big) = -1 . Then there is a constant c\in\Bbb Q such that for all odd primes p with c, m\in\Bbb Z_p , p\nmid m and \big(\frac {{d}}{p}\big) = -1 ,
\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom ak \binom{-1-a}k}{m^k}\Big)\Big(\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom ak \binom{-1-a}k}{(k+1)m^k}\Big) \equiv cp^2\ (\text{ mod}\ {p^3}). |
For an odd prime p , let R_1(p) – R_3(p) be given by (5.1)–(5.3). With the help of Maple, we discover the following conjectures involving Apéry-like numbers.
Conjecture 6.1. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{16^k(k+1)} \equiv\begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& {if \;p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4), } \\ 0\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4), }\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{16^k(2k-1)} \equiv\begin{cases} 0\ (\text{ mod}\ {p^2})& {if \;p \equiv 1\ (\text{ mod}\ 4), } \\-R_1(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} \end{align*} |
Conjecture 6.2. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{32^k(2k-1)} \equiv\begin{cases} (-1)^{ \frac {p-1}2}( \frac p2-x^2)\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac 14(-1)^{ \frac {p-1}2}R_2(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{800^k(2k-1)} \equiv\begin{cases} - \frac {73}{100}(-1)^{ \frac {p-1}2}( 4x^2-2p)- \frac {24}{125}( \frac {3}{p})p\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \\ \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {9}{100}(-1)^{ \frac {p-1}2}R_2(p)+ \frac {24}{125}( \frac {3}{p})p \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8)\; and \;\\ p\not = 5, } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{(-768)^k(2k-1)} \equiv\begin{cases} - \frac {73}{96}( \frac {3}{p}) ( 4x^2-2p)- \frac {11}{48}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2}) & {if \;p = x^2+2y^2 \\ \equiv 1, 3\ (\text{ mod}\ 8), } \\- \frac {3}{32}( \frac {3}{p})R_2(p)- \frac {11}{48}(-1)^{ \frac {p-1}2} p \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8) .} \end{cases} \end{align*} |
Conjecture 6.3. Let p be an odd prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{7^k(2k-1)} \equiv\begin{cases} \frac {124}{49}x^2- \frac {46}{49}p\ (\text{ mod}\ {p^2}){\qquad}{\qquad} {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {64}7\sum_{k = 0}^{p-1} \frac { \binom{2k}k^3}{k+1}+ \frac {496}{49}p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{25^k(2k-1)} \equiv\begin{cases} - \frac {124}{175}x^2+ \frac {326}{875}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\ \frac {448}{175}\sum_{k = 0}^{p-1} \frac { \binom{2k}k^3}{k+1}+ \frac {2576}{875}p\ (\text{ mod}\ {p^2}) & {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7)\; and \;p\not = 5.} \end{cases} \end{align*} |
Conjecture 6.4. Let p > 3 be a prime, then
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{(-32)^k(2k-1)} \equiv\begin{cases} 22y^2- \frac 52p\ (\text{ mod}\ {p^2})& {if \;p = x^2+6y^2 \equiv 1, 7\ \\(\text{ mod}\ {24}), } \\-11y^2+ \frac 52p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ \\(\text{ mod}\ {24}), } \\ \frac 23\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}+ \frac p2 \ (\text{ mod}\ {p^2})& {if \;p \equiv 13, 19\ (\text{ mod}\ {24}), } \\- \frac 23\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}- \frac 56p \ (\text{ mod}\ {p^2})& {if \;p \equiv 17, 23\ (\text{ mod}\ {24})} \end{cases} \end{align*} |
and
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kS_k}{64^k(2k-1)} \equiv\begin{cases} 11y^2-p\ (\text{ mod}\ {p^2})& {if \;p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}), } \\ \frac {11}2y^2-p\ (\text{ mod}\ {p^2})& {if \;p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}), } \\- \frac 13\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)} \ (\text{ mod}\ {p^2})& {if \;p \equiv 13, 19\ (\text{ mod}\ {24}), } \\- \frac 13\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(k+1)}- \frac p6 \ (\text{ mod}\ {p^2})& {if \;p \equiv 17, 23\ (\text{ mod}\ {24}) .} \end{cases} \end{align*} |
Conjecture 6.5. Let p be a prime with p > 3 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-12)^k(2k-1)} \equiv \begin{cases} 0\ (\text{ mod}\ {p^2})& {if \; p \equiv 1\ (\text{ mod}\ 3) , } \\-2(2p+1) \binom{[2p/3]}{[p/3]}^2\ (\text{ mod}\ {p^2})& {if \; p \equiv 2\ (\text{ mod}\ {3}) }. \end{cases} |
Conjecture 6.6. Let p be a prime with p > 3 , then
\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{54^k(2k-1)} \equiv \begin{cases} - \frac {28}9x^2+ \frac {10}9p\ (\text{ mod}\ {p^2})& {if \; p = x^2+4y^2 \equiv 1\ (\text{ mod}\ 4) , }\\ \frac 23R_1(p)- \frac 49p\ (\text{ mod}\ {p^2})& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} |
Conjecture 6.7. Let p be an odd prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{8^k(2k-1)} \equiv \begin{cases} - \frac {11}2x^2+ \frac 54p\ (\text{ mod}\ {p^2}){\qquad} {if \; p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8) , } \\- \frac {9}8R_2(p)+ \frac 32p\ (\text{ mod}\ {p^2}){\quad} {if \; p \equiv 5, 7\ (\text{ mod}\ {8}) }. \end{cases} |
Conjecture 6.8. Let p be a prime with p\not = 2, 3, 7 , then
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-27)^k(2k-1)} \equiv \begin{cases} - \frac {2}{3}p+ \frac {76}{9}y^2\ (\text{ mod}\ {p^2})\ {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac 83\sum_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{k+1}- \frac {28}9p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7)} \end{cases} \end{align*} |
and
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{243^k(2k-1)} \equiv \begin{cases} \frac {1676}{81}y^2- \frac {142}{81}p\ (\text{ mod}\ {p^2})\ {if \;p = x^2+7y^2 \equiv 1, 2, 4\ (\text{ mod}\ 7), } \\- \frac {32}{27}\sum_{k = 0}^{(p-1)/2} \frac { \binom{2k}k^3}{k+1}- \frac {44}{27}p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 3, 5, 6\ (\text{ mod}\ 7) .} \end{cases} \end{align*} |
Conjecture 6.9. Let p be a prime with p\not = 2, 11 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-44)^k(2k-1)} \\ \equiv &\begin{cases} \frac {52}{11}y^2- \frac {116}{121}p\ (\text{ mod}\ {p^2}){\qquad} {if \;p \equiv 1, 3, 4, 5, 9 \ (\text{ mod}\ {11})\; and \;so \;4p = x^2+11y^2, } \\ \frac 9{11}\sum_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{64^k(k+1)}+ \frac {39}{121} p\ (\text{ mod}\ {p^2}) {\quad} {if \;p \equiv 2, 6, 7, 8, 10\ (\text{ mod}\ {11})}. \end{cases} \end{align*} |
Conjecture 6.10. Let p be a prime with p\not = 2, 3, 19 , then
\begin{align*} &\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kW_k}{(-108)^k(2k-1)} \\ \equiv &\begin{cases} \frac {100}9y^2- \frac 43p\ (\text{ mod}\ {p^2})& {if \;( \frac {p}{{19}}) = 1\; and \;so \;4p = x^2+19y^2, } \\8\big( \frac {{-6}}{p}\big)\sum_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-96)^{3k}(2k-1)} + \frac {241}{288}p\ (\text{ mod}\ {p^2}) & {if \;\big( \frac {p}{{19}}\big) = -1.} \end{cases} \end{align*} |
Conjecture 6.11. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{(-4)^k(2k-1)} \equiv\begin{cases} 2p-4x^2\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\-8R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{50^k(2k-1)} \equiv\begin{cases} - \frac {13}{25}(4x^2-2p) - \frac {12}{125}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac {32}{25}R_3(p)- \frac {12}{125}(-1)^{ \frac {p-1}2}p \ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3)\; and \;p\not = 5.} \end{cases} \end{align*} |
Conjecture 6.12. Let p > 3 be a prime, then
\begin{align*} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{96^k(2k-1)} \equiv\begin{cases} - \frac {29}{48}( \frac {p}{3})(4x^2-2p)- \frac p6\ (\text{ mod}\ {p^2})& {if \;p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8), } \\ \frac {3}{16}( \frac {p}{3})R_2(p)+ \frac p6 \ (\text{ mod}\ {p^2})& {if \;p \equiv 5, 7\ (\text{ mod}\ 8) .}\end{cases} \end{align*} |
Conjecture 6.13. Let p be a prime with p\not = 2, 5 . If (\frac {{-5}}{p}) = 1 , then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{16^k(2k-1)} \equiv\begin{cases} - \frac 75x^2+ \frac {9}{10}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 1, 9\ (\text{ mod}\ {20})\; and \;so \;p = x^2+5y^2, } \\- \frac {7}{10}x^2+ \frac 9{10}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 3, 7\ (\text{ mod}\ {20})\; and \;so \;2p = x^2+5y^2;}\end{cases} \end{align*} |
if (\frac {{-5}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{16^k(2k-1)} \equiv -6(-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{4k}{2k}}{(-1024)^k(2k-1)} - \frac {11}8p\ (\text{ mod}\ {p^2}). |
Conjecture 6.14. Let p > 3 be a prime. If (\frac {{-6}}{p}) = 1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{32^k(2k-1)} \equiv \begin{cases} - \frac 74x^2+ \frac 78p\ (\text{ mod}\ {p^2}) & {if \; p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}) , }\\- \frac 72x^2+ \frac {7}{8}p\ (\text{ mod}\ {p^2})& {if \; p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}) ;}\end{cases} |
if (\frac {{-6}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kf_k}{32^k(2k-1)} \equiv \frac 94\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(2k-1)}+ \frac 14\Big( \frac {p}{3}\Big)p\ (\text{ mod}\ {p^2}). |
Conjecture 6.15. Let p > 3 be a prime, then
\begin{align*} (-1)^{ \frac {p-1}2}\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{54^k(2k-1)} \equiv\begin{cases} \frac {52}{9}y^2- \frac {26+2(-1)^{ \frac {p-1}2}}{27}p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\ \frac {32}{27}R_3(p)+ \frac 2{27}(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3) .} \end{cases} \end{align*} |
Conjecture 6.16. Let p > 3 be a prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{100^k(2k-1)} \equiv\begin{cases} - \frac {58}{25}x^2+ \frac {145-18( \frac {p}{3})}{125}p\ (\text{ mod}\ {p^2})& {if \; p = x^2+2y^2 \equiv 1, 3\ (\text{ mod}\ 8) , } \\- \frac {9}{50}R_2(p)- \frac {18}{125}\big( \frac {p}{3}\big)p\ (\text{ mod}\ {p^2})& {if \; p \equiv 5, 7\ (\text{ mod}\ 8) \; and \; p\not = 5 .} \end{cases} |
Conjecture 6.17. Let p > 3 be a prime, then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{(-12)^k(2k-1)} \equiv\begin{cases} p-4x^2\ (\text{ mod}\ {p^2})& {if \; 12\mid p-1 \; and \;so \; p = x^2+9y^2 , } \\ 2x^2-p\ (\text{ mod}\ {p^2})& {if \; 12\mid p-5 \; and \;so \; 2p = x^2+9y^2 , } \\3\binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \; p \equiv 7\ (\text{ mod}\ {12}) , } \\-6\binom{[p/3]}{[p/12]}^2\ (\text{ mod}\ p)& {if \; p \equiv 11\ (\text{ mod}\ {12}) .} \end{cases} |
Conjecture 6.18. Let p > 3 be a prime. If (\frac {{-6}}{p}) = 1 , then
\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{36^k(2k-1)} \equiv \begin{cases} - \frac {14}9x^2+ \frac 79p\ (\text{ mod}\ {p^2}) & {if \; p = x^2+6y^2 \equiv 1, 7\ (\text{ mod}\ {24}) , }\\- \frac {28}9x^2+ \frac {7}{9}p\ (\text{ mod}\ {p^2})& {if \; p = 2x^2+3y^2 \equiv 5, 11\ (\text{ mod}\ {24}) ;}\end{cases} |
if (\frac {{-6}}{p}) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}ka_k}{36^k(2k-1)} \equiv -2\Big( \frac {p}{3}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}k}{216^k(2k-1)}- \frac 29p\ (\text{ mod}\ {p^2}). |
Conjecture 6.19. Let p > 3 be a prime, then
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kQ_k}{(-36)^k(2k-1)} \equiv\begin{cases} - \frac 49x^2+ \frac 29p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac 89R_3(p)\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3), } \end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kQ_k}{18^k(2k-1)} \equiv\begin{cases} - \frac {52}9x^2+ \frac {26-12(-1)^{(p-1)/2}}9p\ (\text{ mod}\ {p^2})& {if \;p = x^2+3y^2 \equiv 1\ (\text{ mod}\ 3), } \\- \frac {32}9R_3(p)- \frac 43(-1)^{ \frac {p-1}2}p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2\ (\text{ mod}\ 3) .} \end{cases} \end{align*} |
Conjecture 6.20. Let p be a prime with p\not = 2, 3, 11 , then
\begin{align*} \sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{4^k(2k-1)} \equiv \begin{cases} 2p-2y^2\ (\text{ mod}\ {p^2})& {if \;p \equiv 1, 3, 4, 5, 9\ (\text{ mod}\ {11})\; and \;4p = x^2+11y^2, }\\ 5\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k^2 \binom{3k}{k}} {64^k(k+1)}+3p\ (\text{ mod}\ {p^2})& {if \;p \equiv 2, 6, 7, 8, 10\ (\text{ mod}\ {11}) .}\end{cases} \end{align*} |
Conjecture 6.21. Let p be a prime with p\not = 2, 3, 19 . If (\frac {p}{{19}}) = 1 \; and \;so \; 4p = x^2+19y^2 , the
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'} {36^k(2k-1)} \equiv \frac {74}{9}y^2- \frac {22}{27}p\ (\text{ mod}\ {p^2}); |
if \big(\frac {p}{{19}}\big) = -1 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'} {36^k(2k-1)} \equiv- \frac {40}3 \Big( \frac {{-6}}{p}\Big)\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}k \binom{3k}k \binom{6k}{3k}}{(-96)^{3k}(2k-1)} - \frac {1397}{864}p \ (\text{ mod}\ {p^2}). |
Conjecture 6.22. Let p be a prime with p > 3 , then
\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{18^k(2k-1)} \equiv\begin{cases} - \frac 43x^2+ \frac {26}{27}p\ (\text{ mod}\ {p^2})& {if \; 4\mid p-1 \; and \;so \; p = x^2+4y^2 , } \\ \frac 8{27}p- \frac {10}9R_1(p)\ (\text{ mod}\ {p^2})& {if \; p \equiv 3\ (\text{ mod}\ 4) .} \end{cases} |
Remark 6.1. In [29], Z. W. Sun conjectured that for any prime p > 3 ,
\begin{align*} &\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{36^k} \equiv\begin{cases} x^2-2p\ (\text{ mod}\ {p^2})& \hbox{if $( \frac {p}{{19}}) = 1$ and so $4p = x^2+19y^2$,} \\0\ (\text{ mod}\ {p^2})& \hbox{if $( \frac {p}{{19}}) = -1$,}\end{cases} \\&\sum\limits_{k = 0}^{p-1} \frac { \binom{2k}kA_k'}{18^k} \equiv\begin{cases} 4x^2-2p\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 1\ (\text{ mod}\ 4)$ and so $p = x^2+4y^2$,} \\0\ (\text{ mod}\ {p^2})& \hbox{if $p \equiv 3\ (\text{ mod}\ 4)$.} \end{cases} \end{align*} |
For congruences related to Conjectures 6.1–6.18 see [21,22,23,24,25].
In Sections 2–4, we prove some congruences for the sums involving binomial coefficients and Apéry-like numbers modulo p^r , where p is an odd prime and r\in\{1, 2, 3\} . Based on calculations by Maple, in Sections 3, 5 and 6 we pose 83 challenging conjectures on congruences modulo p^2 or p^3 .
The author is supported by the National Natural Science Foundation of China (Grant No. 11771173).
The author declares no conflicts of interest regarding the publication of this paper.
[1] | S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, In: Symbolic computation, number theory, special functions, physics and combinatorics, Dordrecht: Kluwer, 2001, 1–12. doi: 10.1007/978-1-4613-0257-5_1. |
[2] | G. Almkvist, W. Zudilin, Differential equations, mirror maps and zeta values, In: Mirror symmetry, AMS/IP Studies in Advanced Mathematics, Vol. 38, International Press & American Mathematical Society, 2007,481–515. |
[3] | B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi sums, New York: Wiley, 1998. |
[4] |
F. Beukers, Another congruence for the Apéry numbers, J. Number Theory, 25 (1987), 201–210. doi: 10.1016/0022-314X(87)90025-4. doi: 10.1016/0022-314X(87)90025-4
![]() |
[5] | H. W. Gould, Combinatorial identities: A standardized set of tables listing 500 binomial coefficient summations, Morgantown: West Virginia University, 1972. |
[6] |
V. J. W. Guo, W. Zudilin, A q-microscope for supercongruences, Adv. Math., 346 (2019), 329–358. doi: 10.1016/j.aim.2019.02.008. doi: 10.1016/j.aim.2019.02.008
![]() |
[7] | L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, In: Proceedings of the conference on p-adic analysis, Houthalen, 1987,189–195. |
[8] |
T. Ishikawa, Super congruence for the Apéry numbers, Nagoya Math. J., 118 (1990), 195–202. doi: 10.1017/S002776300000307X. doi: 10.1017/S002776300000307X
![]() |
[9] |
D. H. Lee, S. G. Hahn, Gauss sums and binomial coefficients, J. Number Theory, 92 (2002), 257–271. doi: 10.1006/jnth.2001.2688. doi: 10.1006/jnth.2001.2688
![]() |
[10] |
L. Long, R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math., 290 (2016), 773–808. doi: 10.1016/j.aim.2015.11.043. doi: 10.1016/j.aim.2015.11.043
![]() |
[11] |
F. Jarvis, H. A. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J., 22 (2010), 171–186. doi: 10.1007/s11139-009-9218-5
![]() |
[12] |
S. Mattarei, R. Tauraso, Congruences for central binomial sums and finite polylogarithms, J. Number Theory, 133 (2013), 131–157. doi: 10.1016/j.jnt.2012.05.036. doi: 10.1016/j.jnt.2012.05.036
![]() |
[13] |
E. Mortenson, Supercongruences for truncated _{n+1}F_n hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc., 133 (2005), 321–330. doi: 10.1090/S0002-9939-04-07697-X. doi: 10.1090/S0002-9939-04-07697-X
![]() |
[14] | F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, In: Calabi-Yau varieties and mirror symmetry, Providence, RI: American Mathematical Society, 2003,223–231. |
[15] |
V. Strehl, Binomial identities-combinatorial and algorithmic aspects, Discrete Math., 136 (1994), 309–346. doi: 10.1016/0012-365X(94)00118-3. doi: 10.1016/0012-365X(94)00118-3
![]() |
[16] |
Z. H. Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math. Soc., 139 (2011), 1915–1929. doi: 10.1090/S0002-9939-2010-10566-X. doi: 10.1090/S0002-9939-2010-10566-X
![]() |
[17] |
Z. H. Sun, Congruences concerning Legendre polynomials II, J. Number Theory, 133 (2013), 1950–1976. doi: 10.1016/j.jnt.2012.11.004. doi: 10.1016/j.jnt.2012.11.004
![]() |
[18] |
Z. H. Sun, Congruences involving \binom2kk^2 \binom3kk, J. Number Theory, 133 (2013), 1572–1595. doi: 10.1016/j.jnt.2012.10.001. doi: 10.1016/j.jnt.2012.10.001
![]() |
[19] |
Z. H. Sun, Legendre polynomials and supercongruences, Acta Arith., 159 (2013), 169–200. doi: 10.4064/aa159-2-6
![]() |
[20] |
Z. H. Sun, Generalized Legendre polynomials and related supercongruences, J. Number Theory, 143 (2014), 293–319. doi: 10.1016/j.jnt.2014.04.012. doi: 10.1016/j.jnt.2014.04.012
![]() |
[21] |
Z. H. Sun, Congruences for Domb and Almkvist-Zudilin numbers, Integr. Transf. Spec. F., 26 (2015), 642–659. doi: 10.1080/10652469.2015.1034122. doi: 10.1080/10652469.2015.1034122
![]() |
[22] |
Z. H. Sun, Identities and congruences for Catalan-Larcombe-French numbers, Int. J. Number Theory, 13 (2017), 835–851. doi: 10.1142/S1793042117500440. doi: 10.1142/S1793042117500440
![]() |
[23] |
Z. H. Sun, Congruences for sums involving Franel numbers, Int. J. Number Theory, 14 (2018), 123–142. doi: 10.1142/S1793042118500094. doi: 10.1142/S1793042118500094
![]() |
[24] |
Z. H. Sun, Super congruences for two Apéry-like sequences, J. Difference Equ. Appl., 24 (2018), 1685–1713. doi: 10.1080/10236198.2018.1515930. doi: 10.1080/10236198.2018.1515930
![]() |
[25] |
Z. H. Sun, Congruences involving binomial coefficients and Apéry-like numbers, Publ. Math. Debrecen, 96 (2020), 315–346. doi: 10.5486/PMD.2020.8577
![]() |
[26] |
Z. H. Sun, Supercongruences and binary quadratic forms, Acta Arith., 199 (2021), 1–32. doi: 10.4064/aa200308-27-9. doi: 10.4064/aa200308-27-9
![]() |
[27] |
Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), 2509–2535. doi: 10.1007/s11425-011-4302-x. doi: 10.1007/s11425-011-4302-x
![]() |
[28] |
Z. W. Sun, On sums involving products of three binomial coefficients, Acta Arith., 156 (2012), 123–141. doi: 10.4064/aa156-2-2
![]() |
[29] | Z. W. Sun, Conjectures and results on x^2 mod p^2 with 4p = x^2+dy^2, In: Number theory and related areas, Beijing-Boston: Higher Education Press & International Press, 2013,149–197. |
[30] |
Z. W. Sun, Congruences for Franel numbers, Adv. Appl. Math., 51 (2013), 524–535. doi: 10.1016/j.aam.2013.06.004. doi: 10.1016/j.aam.2013.06.004
![]() |
[31] | Z. W. Sun, New series for some special values of L-functions, Nanjing Univ. J. Math. Biquarterly, 32 (2015), 189–218. |
[32] |
Z. W. Sun, Congruences involving g_n(x) = \sum_{k = 0}^n \binom nk^2 \binom2kkx^k, Ramanujan J., 40 (2016), 511–533. doi: 10.1007/s11139-015-9727-3. doi: 10.1007/s11139-015-9727-3
![]() |
[33] |
Z. W. Sun, Two new kinds of numbers and related divisibility results, Colloq. Math., 154 (2018), 241–273. doi: 10.4064/cm7405-1-2018
![]() |
[34] | Z. W. Sun, List of Conjectural series for powers of \pi and other constants, In: Ramanujan's Identities, Harbin Institute of Technology Press, 2021,205–261. |
[35] | R. Tauraso, A supercongruence involving cubes of Catalan numbers, Integers, 20 (2020), #A44, 1–6. |
[36] | D. Zagier, Integral solutions of Apéry-like recurrence equations, In: Groups and symmetries: From Neolithic Scots to John McKay, CRM Proceedings and Lecture Notes, Vol. 47, Providence, RI: American Mathematical Society, 2009,349–366. |
1. | Zhao Shen, On a Conjecture of J. Shallit About Apéry-Like Numbers, 2022, 1073-7928, 10.1093/imrn/rnac047 | |
2. | Zhi-Hong Sun, Supercongruences involving products of three binomial coefficients, 2023, 117, 1578-7303, 10.1007/s13398-023-01458-y | |
3. | Guoshuai Mao, Zhengkai Zhao, Proof of Some Congruence Conjectures of Z.-H. Sun, 2025, 2731-8648, 10.1007/s11464-024-0111-8 |