Research article

Analysis of the stability and the bifurcations of two heterogeneous triopoly games with an isoelastic demand

  • Received: 04 July 2022 Revised: 23 August 2022 Accepted: 30 August 2022 Published: 01 September 2022
  • MSC : 37B25, 37M20, 37N40

  • In this paper, we explore two heterogeneous triopoly games where the market demand function is isoelastic. The local stability and the bifurcations of these games are systematically analyzed using a symbolic approach, proposed by the author, of counting real solutions of a parametric system. The novelty of our study is twofold. On one hand, we introduce into the study of oligopoly games several methods of symbolic computation, which can establish analytical results and are different from the existing methods in the literature based on numerical simulations. In particular, we obtain the analytical conditions of the local stability and prove the existence of double routes to chaos through the period-doubling bifurcation and the Neimark-Sacker bifurcation. On the other hand, in the special case of the involved firms having identical marginal costs, we acquire the analytical conditions of the local stability for the two models. By further analyzing these conditions, it seems that the presence of the local monopolistic approximation (LMA) mechanism has a stabilizing effect for heterogeneous triopoly games with the isoelastic demand.

    Citation: Xiaoliang Li. Analysis of the stability and the bifurcations of two heterogeneous triopoly games with an isoelastic demand[J]. AIMS Mathematics, 2022, 7(10): 19388-19414. doi: 10.3934/math.20221065

    Related Papers:

  • In this paper, we explore two heterogeneous triopoly games where the market demand function is isoelastic. The local stability and the bifurcations of these games are systematically analyzed using a symbolic approach, proposed by the author, of counting real solutions of a parametric system. The novelty of our study is twofold. On one hand, we introduce into the study of oligopoly games several methods of symbolic computation, which can establish analytical results and are different from the existing methods in the literature based on numerical simulations. In particular, we obtain the analytical conditions of the local stability and prove the existence of double routes to chaos through the period-doubling bifurcation and the Neimark-Sacker bifurcation. On the other hand, in the special case of the involved firms having identical marginal costs, we acquire the analytical conditions of the local stability for the two models. By further analyzing these conditions, it seems that the presence of the local monopolistic approximation (LMA) mechanism has a stabilizing effect for heterogeneous triopoly games with the isoelastic demand.



    加载中


    [1] H. N. Agiza, On the analysis of stability, bifurcation, chaos and chaos control of Kopel map, Chaos Soliton. Fract., 10 (1999), 1909–1916. https://doi.org/10.1016/S0960-0779(98)00210-0 doi: 10.1016/S0960-0779(98)00210-0
    [2] E. Ahmed, H. N. Agiza, S. Z. Hassan, On modifications of Puu's dynamical duopoly, Chaos Soliton. Fract., 11 (2000), 1025–1028. https://doi.org/10.1016/S0960-0779(98)00322-1 doi: 10.1016/S0960-0779(98)00322-1
    [3] B. Al-Hdaibat, W. Govaerts, N. Neirynck, On periodic and chaotic behavior in a two-dimensional monopoly model, Chaos Soliton. Fract., 70 (2015), 27–37. https://doi.org/10.1016/j.chaos.2014.10.010 doi: 10.1016/j.chaos.2014.10.010
    [4] J. Andaluz, A. A. Elsadany, G. Jarne, Nonlinear Cournot and Bertrand-type dynamic triopoly with differentiated products and heterogeneous expectations, Math. Comput. Simulat., 132 (2017), 86–99. https://doi.org/10.1016/j.matcom.2016.07.001 doi: 10.1016/j.matcom.2016.07.001
    [5] S. S. Askar, A. M. Alshamrani, K. Alnowibet, The arising of cooperation in Cournot duopoly games, Appl. Math. Comput., 273 (2016), 535–542. https://doi.org/10.1016/j.amc.2015.10.027 doi: 10.1016/j.amc.2015.10.027
    [6] G. I. Bischi, M. Kopel, Equilibrium selection in a nonlinear duopoly game with adaptive expectations, J. Econ. Behav. Organ., 46 (2001), 73–100. https://doi.org/10.1016/S0167-2681(01)00188-3 doi: 10.1016/S0167-2681(01)00188-3
    [7] G. I. Bischi, A. Naimzada, L. Sbragia, Oligopoly games with local monopolistic approximation, J. Econ. Behav. Organ., 62 (2007), 371–388. https://doi.org/10.1016/j.jebo.2005.08.006 doi: 10.1016/j.jebo.2005.08.006
    [8] J. S. Cánovas, M. Muñoz-Guillermo, On the dynamics of Kopel's Cournot duopoly model, Appl. Math. Comput., 330 (2018), 292–306. https://doi.org/10.1016/j.amc.2018.02.043 doi: 10.1016/j.amc.2018.02.043
    [9] F. Cavalli, A. Naimzada, Nonlinear dynamics and convergence speed of heterogeneous Cournot duopolies involving best response mechanisms with different degrees of rationality, Nonlinear Dyn., 81 (2015), 967–979. https://doi.org/10.1007/s11071-015-2044-y doi: 10.1007/s11071-015-2044-y
    [10] A. A. Cournot, Recherches sur les principes mathématiques de la Théorie des richesses, Paris: L. Hachette, 1838.
    [11] S. Elaydi, An introduction to difference equations, New York: Springer, 2005. https://doi.org/10.1007/0-387-27602-5
    [12] A. A. Elsadany, Competition analysis of a triopoly game with bounded rationality, Chaos Soliton. Fract., 45 (2012), 1343–1348. https://doi.org/10.1016/j.chaos.2012.07.003 doi: 10.1016/j.chaos.2012.07.003
    [13] A. A. Elsadany, H. N. Agiza, E. M. Elabbasy, Complex dynamics and chaos control of heterogeneous quadropoly game, Appl. Math. Comput., 219 (2013), 11110–11118. https://doi.org/10.1016/j.amc.2013.05.029 doi: 10.1016/j.amc.2013.05.029
    [14] W. Govaerts, R. K. Ghaziani, Stable cycles in a Cournot duopoly model of Kopel, J. Comput. Appl. Math., 218 (2008), 247–258. https://doi.org/10.1016/j.cam.2007.01.012 doi: 10.1016/j.cam.2007.01.012
    [15] W. Govaerts, R. K. Ghaziani, Y. A. Kuznetsov, H. G. E. Meijer, Numerical methods for two-parameter local bifurcation analysis of maps, SIAM J. Sci. Comput., 29 (2007), 2644–2667. https://doi.org/10.1137/060653858 doi: 10.1137/060653858
    [16] J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, New York: Springer, 2013. https://doi.org/10.1007/978-1-4612-1140-2
    [17] C. Hommes, Behavioral rationality and heterogeneous expectations in complex economic systems, Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139094276
    [18] E. I. Jury, L. Stark, V. V. Krishnan, Inners and stability of dynamic systems, IEEE T. Syst. Man Cy., SMC-6 (1976), 724–725. https://doi.org/10.1109/TSMC.1976.4309436 doi: 10.1109/TSMC.1976.4309436
    [19] M. Kalkbrener, A generalized Euclidean algorithm for computing triangular representations of algebraic varieties, J. Symb. Comput., 15 (1993), 143–167. https://doi.org/10.1006/jsco.1993.1011 doi: 10.1006/jsco.1993.1011
    [20] M. Kopel, Simple and complex adjustment dynamics in Cournot duopoly models, Chaos Soliton. Fract., 7 (1996), 2031–2048. https://doi.org/10.1016/S0960-0779(96)00070-7 doi: 10.1016/S0960-0779(96)00070-7
    [21] Y. A. Kuznetsov, Elements of applied bifurcation theory, New York: Springer, 1998. https://doi.org/10.1007/b98848
    [22] B. Li, Z. M. He, 1:2 and 1:4 resonances in a two-dimensional discrete Hindmarsh-Rose model, Nonlinear Dyn., 79 (2015), 705–720. https://doi.org/10.1007/s11071-014-1696-3 doi: 10.1007/s11071-014-1696-3
    [23] B. Li, H. J. Liang, Q. Z. He, Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model, Chaos Soliton. Fract., 146 (2021), 110856. https://doi.org/10.1016/j.chaos.2021.110856 doi: 10.1016/j.chaos.2021.110856
    [24] B. Li, H. J. Liang, L. Shi, Q. Z. He, Complex dynamics of Kopel model with nonsymmetric response between oligopolists, Chaos Soliton. Fract., 156 (2022), 111860. https://doi.org/10.1016/j.chaos.2022.111860 doi: 10.1016/j.chaos.2022.111860
    [25] X. L. Li, C. Q. Mou, D. M. Wang, Decomposing polynomial sets into simple sets over finite fields: The zero-dimensional case, Comput. Math. Appl., 60 (2010), 2983–2997. https://doi.org/10.1016/j.camwa.2010.09.059 doi: 10.1016/j.camwa.2010.09.059
    [26] X. L. Li, D. M. Wang, Computing equilibria of semi-algebraic economies using triangular decomposition and real solution classification, J. Math. Econ., 54 (2014), 48–58. https://doi.org/10.1016/j.jmateco.2014.08.007 doi: 10.1016/j.jmateco.2014.08.007
    [27] J. H. Ma, X. S. Pu, Complex dynamics in nonlinear triopoly market with different expectations, Discrete Dyn. Nat. Soc., 2011 (2011), 902014. https://doi.org/10.1155/2011/902014 doi: 10.1155/2011/902014
    [28] J. H. Ma, X. S. Pu, The research on Cournot-Bertrand duopoly model with heterogeneous goods and its complex characteristics, Nonlinear Dyn., 72 (2013), 895–903. https://doi.org/10.1007/s11071-013-0761-7 doi: 10.1007/s11071-013-0761-7
    [29] J. H. Ma, K. F. Wu, Complex system and influence of delayed decision on the stability of a triopoly price game model, Nonlinear Dyn., 73 (2013), 1741–1751. https://doi.org/10.1007/s11071-013-0900-1 doi: 10.1007/s11071-013-0900-1
    [30] A. E. Matouk, A. A. Elsadany, B. G. Xin, Neimark-Sacker bifurcation analysis and complex nonlinear dynamics in a heterogeneous quadropoly game with an isoelastic demand function, Nonlinear Dyn., 89 (2017), 2533–2552. https://doi.org/10.1007/s11071-017-3602-2 doi: 10.1007/s11071-017-3602-2
    [31] A. Matsumoto, F. Szidarovszky, Delay dynamics in nonlinear monopoly with gradient adjustment, Decis. Econ. Finan., 44 (2021), 533–557. https://doi.org/10.1007/s10203-021-00342-x doi: 10.1007/s10203-021-00342-x
    [32] A. K. Naimzada, G. Ricchiuti, Complex dynamics in a monopoly with a rule of thumb, Appl. Math. Comput., 203 (2008), 921–925. https://doi.org/10.1016/j.amc.2008.04.020 doi: 10.1016/j.amc.2008.04.020
    [33] A. K. Naimzada, F. Tramontana, Controlling chaos through local knowledge, Chaos Soliton. Fract., 42 (2009), 2439–2449. https://doi.org/10.1016/j.chaos.2009.03.109 doi: 10.1016/j.chaos.2009.03.109
    [34] A. Naimzada, F. Tramontana, Two different routes to complex dynamics in an heterogeneous triopoly game, J. Differ. Equ. Appl., 21 (2015), 553–563. https://doi.org/10.1080/10236198.2015.1040403 doi: 10.1080/10236198.2015.1040403
    [35] R. C. Oldenbourg, H. Sartorius, The dynamics of automatic controls, American Society of Mechanical Engineers, 1948.
    [36] Y. Peng, Q. Lu, Y. Xiao, A dynamic Stackelberg duopoly model with different strategies, Chaos Soliton. Fract., 85 (2016), 128–134. https://doi.org/10.1016/j.chaos.2016.01.024 doi: 10.1016/j.chaos.2016.01.024
    [37] T. Puu, Chaos in duopoly pricing, Chaos Soliton. Fract., 1 (1991), 573–581. https://doi.org/10.1016/0960-0779(91)90045-B doi: 10.1016/0960-0779(91)90045-B
    [38] T. Puu, The chaotic monopolist, Chaos Soliton. Fract., 5 (1995), 35–44. https://doi.org/10.1016/0960-0779(94)00206-6 doi: 10.1016/0960-0779(94)00206-6
    [39] L. Shi, Z. H. Sheng, F. Xu, Complexity analysis of remanufacturing duopoly game with different competition strategies and heterogeneous players, Nonlinear Dyn., 82 (2015), 1081–1092. https://doi.org/10.1007/s11071-015-2218-7 doi: 10.1007/s11071-015-2218-7
    [40] R. D. Theocharis, On the stability of the Cournot solution on the oligopoly problem, Rev. Econ. Stud., 27 (1960), 133–134. https://doi.org/10.2307/2296135 doi: 10.2307/2296135
    [41] F. Tramontana, A. E. A. Elsadany, Heterogeneous triopoly game with isoelastic demand function, Nonlinear Dyn., 68 (2012), 187–193. https://doi.org/10.1007/s11071-011-0215-z doi: 10.1007/s11071-011-0215-z
    [42] H. L. Tu, X. Y. Wang, Complex dynamics and control of a dynamic R & D Bertrand triopoly game model with bounded rational rule, Nonlinear Dyn., 88 (2017), 703–714. https://doi.org/10.1007/s11071-016-3271-6 doi: 10.1007/s11071-016-3271-6
    [43] J. Tuinstra, A price adjustment process in a model of monopolistic competition, Int. Game Theory Rev., 6 (2004), 417–442. https://doi.org/10.1142/S0219198904000289 doi: 10.1142/S0219198904000289
    [44] D. M. Wang, Computing triangular systems and regular systems, J. Symb. Comput., 30 (2000), 221–236. https://doi.org/10.1006/jsco.1999.0355 doi: 10.1006/jsco.1999.0355
    [45] G. L. Wen, Criterion to identify Hopf bifurcations in maps of arbitrary dimension, Phys. Rev. E, 72 (2005), 026201. https://doi.org/10.1103/PhysRevE.72.026201 doi: 10.1103/PhysRevE.72.026201
    [46] G. L. Wen, S. J. Chen, Q. T. Jin, A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker, J. Sound Vib., 311 (2008), 212–223. https://doi.org/10.1016/j.jsv.2007.09.003 doi: 10.1016/j.jsv.2007.09.003
    [47] W. T. Wu, Basic principles of mechanical theorem proving in elementary geometries, J. Automa. Reasoning, 2 (1986), 221–252. https://doi.org/10.1007/BF02328447 doi: 10.1007/BF02328447
    [48] W. J. Wu, Z. Q. Chen, W. H. Ip, Complex nonlinear dynamics and controlling chaos in a Cournot duopoly economic model, Nonlinear Anal.-Real, 11 (2010), 4363–4377. https://doi.org/10.1016/j.nonrwa.2010.05.022 doi: 10.1016/j.nonrwa.2010.05.022
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(894) PDF downloads(48) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog