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Abstract: In this paper, we explore two heterogeneous triopoly games where the market demand
function is isoelastic. The local stability and the bifurcations of these games are systematically
analyzed using a symbolic approach, proposed by the author, of counting real solutions of a parametric
system. The novelty of our study is twofold. On one hand, we introduce into the study of oligopoly
games several methods of symbolic computation, which can establish analytical results and are
different from the existing methods in the literature based on numerical simulations. In particular,
we obtain the analytical conditions of the local stability and prove the existence of double routes to
chaos through the period-doubling bifurcation and the Neimark-Sacker bifurcation. On the other hand,
in the special case of the involved firms having identical marginal costs, we acquire the analytical
conditions of the local stability for the two models. By further analyzing these conditions, it seems
that the presence of the local monopolistic approximation (LMA) mechanism has a stabilizing effect
for heterogeneous triopoly games with the isoelastic demand.
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1. Introduction

Unlike a competitive market with a large number of relatively small companies producing substitute
products and competing with each other, an oligopoly is a market supplied by only a few firms. It is well
known that Cournot developed the first formal theory of oligopoly in [10], where a static duopoly model
is investigated and each firm is supposed to have perfect information about its rival’s strategic behavior.
However, a dynamic oligopolistic model is much more complex than a competitive model although
only a few firms are involved, since a firm’s decision, as well as the reactions of its competitors, can
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change the price and further influence their profits.
Puu [37] followed Cournot’s seminal work but introduced an isoelastic demand function by setting

the price simply the reciprocal of the total supply of the market. In his game, where the players have
naive expectations, it was shown that the evolution of the dynamics can develop a period-doubling
bifurcation and finally reach chaos. It was pointed out in [17] that expectations and behavioral
rationalities play ambitious roles in modeling economic phenomena. To our knowledge, there are
mainly four types of expectations in the current literature, i.e., the naive [37], the boundedly
rational [12], the adaptive [6], and the local monopolistic approximation (or LMA for short) [43].

The monopoly, a market ruled by one single firm, is the simplest oligopoly but may exhibit quite
complex dynamic behavior such as quasi-period orbits and chaos [3, 31, 32, 38]. In the real world,
however, it is more possible that complex dynamic phenomena appear in a market supplied by two,
three, or even four companies, which is called a duopoly, a triopoly, or a quadropoly, respectively.
Among them, the duopoly is most intensively studied, see, e.g., [1, 2, 5, 8, 14, 20, 24, 28, 36, 39, 48].
Furthermore, the reader can refer to [4,12,27,29,41,42] for the explorations of triopoly games, which
are also of concern in this paper. However, there are relatively few studies on quadropoly models, and
the reader may refer to [13, 30].

Oligopoly games with heterogeneous players are more realistic than those with homogeneous
players. The reason is that we rarely find different firms that behave according to identical rules
among a large number of possible strategies. Furthermore, in ecology, one knows that it is impossible
for species with identical niches can coexist indefinitely according to the competitive exclusion
principle. This principle also applies to economics, since in the real economy we often observe that
companies with different business strategies coexist in the same industry. However, homogeneous
firms in many industries, e.g., the Internet industry, can just coexist temporarily before the state of the
economic system reaches an equilibrium.

In this work, we investigate two distinct heterogeneous triopoly games with the same isoelastic
demand function proposed by Puu [37]. One game was first introduced in [41], where an adaptive
firm, a naive firm, and a boundedly rational firm compete with each other. By numerical simulations,
it was observed that this game could exhibit both the period-doubling bifurcation and the Neimark-
Sacker bifurcation as the parameters vary. The other game [34] is similar but with the first adaptive
player replaced by an LMA player. For this game, it was also discovered that there exist two possible
routes to chaos, through the period-doubling bifurcation and the Neimark-Sacker bifurcation.

We try to apply the symbolic approach, proposed by the author of this paper and his coworker [26],
to algebraically analyze the stability and the bifurcations of the above two models. Consider the
parametric system of the following form.

F1(u,x) = 0, . . . , Fn(u,x) = 0,
N1(u,x) , 0, . . . ,Nm(u,x) , 0,
P1(u,x) > 0, . . . , Pa(u,x) > 0,
Pa+1(u,x) ≥ 0, . . . , Pa+b(u,x) ≥ 0,

(1.1)

where u = (u1, u2, . . . , ud) are the parameters, x = (x1, x2, . . . , xn) are the variables, and F1, . . . , Fn,
N1, . . . ,Nm, P1, . . . , Pa+b are all polynomials. The symbolic approach [26] permits us to obtain the
necessary and sufficient condition that system (1.1) has a given number of distinct real solutions. The
basic idea of this approach is to first transform system (1.1) into a new system in one unique variable
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and then analyze the real solutions of the resulting system. Different from those based on numerical
computations, this approach can establish exact and rigorous results and thus is more adequate for the
theoretical study of economic models.

Take the following system as an illustrative example.
x3 − uy2 = 0,
y2 − 2 x − 1 = 0,
x − y , 0,
y + s > 0,

(1.2)

where u, s are parameters. In the first step, using the triangular decomposition method, one can
transform system (1.2) into a univariate system, i.e., (1.3), without changing the roots. The triangular
decomposition method, used here, can be viewed as an extension of the Gaussian elimination method.
The main functions of both methods are to transform a system into a triangular form. However, the
triangular decomposition method is for polynomial systems, while the Gaussian elimination method
is for linear systems. The reader may refer to [19, 25, 44, 47] and references therein for the triangular
decomposition. 

x6 − (4 u + 3)x4 − 18 ux3 + (4 u2 − 26 u + 3)x2

+ (4 u2 − 14 u)x + u2 − 2 u − 1 = 0,
(−J + Is)I > 0,

(1.3)

where

I = −3 x2 − 8 x + 2 u − 5,
J = −x3 − 6 x2 + (2 u − 7)x + u − 2.

By virtue of the concept of border polynomial (see [26] for its definition), we can then decompose
the parameter space {(u, s) | u ∈ R, s ∈ R} into regions such that in each region the number of distinct
real solutions of (1.3) or (1.2) is invariant. Therefore, the number of real solutions in each region can
be determined by counting it at a selected sample point. Here, we neglect the rest of the tedious minor
steps. Finally, our computational results show that provided

u(32 u − 27)(u2 − 2 u − 1)R , 0,

where R = s6 − 3 s4 − 8 us2 + 3 s2 − 1, the number of distinct real solutions of system (1.2) is

• 0 if and only if R < 0 and s < 0;
• 1 if and only if R > 0;
• 2 if and only if R < 0 and s > 0.

The reader can refer to [26] for more technical details of the above approach.
The novelty of our work is twofold: the methodology and the theoretical results. On one hand,

we introduce the symbolic approach proposed by the author into the study of the dynamic behavior of
oligopoly games. We show that this approach can establish exact results and might be a powerful tool in
theoretical economics, such as theorem proving (see, e.g., the proof of Theorems 1 and 2). In particular,
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for the triopoly models of [34, 41], we obtain the analytical conditions of the local stability and prove
the existence of double routes to chaos, i.e., through the period-doubling bifurcation and the Neimark-
Sacker bifurcation. It is worth noting that, for the two games considered in this paper, the existing
investigations are just built on observations through numerical simulations. Our analytical results not
only confirm the numerical results in the current literature but also provide a solid foundation for the
theoretical development of these games. On the other hand, for the special case of the involved firms
having identical marginal costs, we acquire the conditions of the local stability for both models. By
further analyzing these conditions, we confirm the statement in [7,9,33] that the presence of the LMA
mechanism might have a stabilizing effect. Furthermore, we find that there may exist a connection
between the two models by showing the stable regions of them would be the same if the proportion
parameter of the first model takes the value of 2/3.

The rest of this paper is structured as follows. In Section 2, we revisit the construction of the two
models. In Section 3, the local stability is thoroughly investigated, and the stable regions of the two
games are compared analytically in the special case of identical marginal costs. In Section 4,
employing the algebraic criteria proposed by Wen and others [45, 46], we obtain the complete
conditions of the occurrence of the period-doubling bifurcation and the Neimark-Sacker bifurcation.
Moreover, by the bifurcation continuation, we provide some preliminary numerical results of other
observed bifurcations. The paper is concluded with some remarks in Section 5.

2. Models

Let us consider a market served by three firms producing substitute products. We use x(t), y(t),
and z(t) to denote the outputs of the three firms at period t, respectively. Assume that the demand
function of the market is isoelastic, which is founded on the hypothesis that the consumers have the
Cobb-Douglas utility function. Specifically, the price of the product (the inverse demand function) is
set to be

p(Q) =
1
Q

=
1

x + y + z
,

where Q = x + y + z is the total supply. Moreover, the marginal cost of each firm is supposed to be
constant. To be exact, the cost functions of the three firms are set to be c1x, c2y, and c3z (c1, c2, c3 > 0),
respectively.

Under the above assumptions, the first firm should have the profit function

Π1(x, y, z) =
x

x + y + z
− c1x.

Evidently, its marginal profit would be

φ1(x, y, z) =
y + z

(x + y + z)2 − c1.

The profits Π2,Π3, and the marginal profits φ2, φ3 of the second and the third firm can be similarly
obtained.

Suppose that the first firm is an adaptive player. At each period, the first firm decides the output
x(t +1) according to its previous output x(t) and its expectations of other competitors’ outputs at period
t + 1. Specifically, firm 1 naively expects that at period t + 1 firms 2 and 3 would produce the same
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quantity as at period t. Therefore, the first firm could calculate the optimal output xopt to maximize its
expected profit of period t + 1 such that the first order condition φ1(xopt, y(t), z(t)) = 0 is fulfilled. That
is

xopt =

√
y(t) + z(t)

c1
− y(t) − z(t).

The adaptive decision mechanism for firm 1 is that it chooses the output x(t + 1) proportionally to
be

x(t + 1) = (1 − l)x(t) + lxopt = (1 − l)x(t) + l
√y(t) + z(t)

c1
− y(t) − z(t)

 ,
where l ∈ [0, 1] is a parameter controlling the proportion.

The second firm is simply a naive player, who expects that the outputs of its rivals would be equal
to those at the last period. Thus, to gain the maximal expected profit, it would choose the best response
to produce

y(t + 1) =

√
x(t) + z(t)

c2
− x(t) − z(t).

Our third firm is assumed to be a boundedly rational player, that adopts the so-called gradient
adjustment mechanism, i.e.,

z(t + 1) = z(t) + kz(t)φ3(x(t), y(t), z(t)) = z(t) + kz(t)
 x(t) + y(t)(

x(t) + y(t) + z(t)
)2 − c3

 ,
where k > 0 is a parameter controlling the adjustment speed. In other words, the third firm
increases/decreases its output according to the information given by its marginal profit of the last
period. It is worth noting that the adjustment speed depends upon not only the parameter k but also
the size of the firm z(t).

In short, the above triopoly game could be described by the following 3-dimensional discrete
dynamic system denoted by TANB(x, y, z).

TANB(x, y, z) :



x(t + 1) = (1 − l)x(t) + l
√y(t) + z(t)

c1
− y(t) − z(t)

 ,
y(t + 1) =

√
x(t) + z(t)

c2
− x(t) − z(t),

z(t + 1) = z(t) + kz(t)
 x(t) + y(t)(

x(t) + y(t) + z(t)
)2 − c3

 .
(2.1)

The above game was first explored by Tramontana and Elsadany [41]. Motivated by their work, a
distinct heterogeneous triopoly game was investigated by Naimzada and Tramontana [34], where the
first firm is replaced with a firm that has further reduced rationality and adopts the so-called local
monopolistic approximation (LMA) mechanism [43]. The LMA mechanism is also a boundedly
rational process, where the player has limited knowledge of the demand function. Specifically, the
firm can just observe the current market price p(t) and the corresponding total supply Q(t) and is able
to correctly estimate the slope p′(Q(t)) of the price function around the point (p(t),Q(t)). Then the
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firm uses such information to conjecture the demand function and expects the price at period t + 1 to
be

pe(t + 1) = p(Q(t)) + p′(Q(t))(Qe(t + 1) − Q(t)),

where Qe(t + 1) represents the expected aggregate production at period t + 1. Moreover, the new firm
is also assumed to use the naive expectations of its rivals, i.e., Qe(t + 1) = x(t + 1) + y(t) + z(t). Thus,
we have that

pe(t + 1) =
1

Q(t)
−

1
Q2(t)

(x(t + 1) − x(t)).

The expected profit of firm 1 in the new model is

Πe
1(t + 1) = pe(t + 1)x(t + 1) − c1x(t + 1).

To maximize the expected profit, according to the first order condition, the firm chooses its output
at period t + 1 to be

x(t + 1) =
2 x(t) + y(t) + z(t) − c1

(
x(t) + y(t) + z(t)

)2

2
.

Therefore, the new model can be described by the following 3-dimensional discrete dynamic system
denoted by TLNB(x, y, z).

TLNB(x, y, z) :



x(t + 1) =
2 x(t) + y(t) + z(t) − c1

(
x(t) + y(t) + z(t)

)2

2
,

y(t + 1) =

√
x(t) + z(t)

c2
− x(t) − z(t),

z(t + 1) = z(t) + kz(t)
 x(t) + y(t)(

x(t) + y(t) + z(t)
)2 − c3

 .
(2.2)

3. Local stability

In order to compute the equilibria of the two models introduced in Section 2, we set x(t+1) = x(t) =

x, y(t + 1) = y(t) = y and z(t + 1) = z(t) = z. Then for model TANB,

√
y + z

c1
− (x + y + z) = 0,√

x + z
c2
− (x + y + z) = 0,

kz
[
−c3 +

x + y
(x + y + z)2

]
= 0,

(3.1)

and for model TLNB, 

y + z − c1(x + y + z)2 = 0,√
x + z

c2
− (x + y + z) = 0,

kz
[
−c3 +

x + y
(x + y + z)2

]
= 0.

(3.2)
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Both of them can be solved by two equilibria:

E1 =

(
c2

(c1 + c2)2 ,
c1

(c1 + c2)2 , 0
)
,

E2 =

(
2 ·

c2 + c3 − c1

(c1 + c2 + c3)2 , 2 ·
c1 + c3 − c2

(c1 + c2 + c3)2 , 2 ·
c1 + c2 − c3

(c1 + c2 + c3)2

)
.

It should be noted that the origin (0, 0, 0) is not an equilibrium since it is not defined for maps (2.1)
and (2.2). From an economic point of view, only the equilibrium E2 is of our concern because the
equilibrium E1, where the third firm is out of the market forever, is unstable as mentioned in [41].

The Jacobian matrix takes the form

J =


∂x(t+1)
∂x(t)

∂x(t+1)
∂y(t)

∂x(t+1)
∂z(t)

∂y(t+1)
∂x(t)

∂y(t+1)
∂y(t)

∂y(t+1)
∂z(t)

∂z(t+1)
∂x(t)

∂z(t+1)
∂y(t)

∂z(t+1)
∂z(t)

 .
We use JABG and JLBG to denote the Jacobian matrices of our two models, respectively. Then we

have

JABG =


1 − l l

[
1

2c1

(
y+z
c1

)− 1
2
− 1

]
l
[

1
2c1

(
y+z
c1

)− 1
2
− 1

]
1

2c2

(
x+z
c2

)− 1
2
− 1 0 1

2c2

(
x+z
c2

)− 1
2
− 1

kz(z−x−y)
(x+y+z)3

kz(z−x−y)
(x+y+z)3 1 − kc3 +

k(x+y)(x+y−z)
(x+y+z)3


and

JLBG =


1 − c1(x + y + z) 1/2 − c1(x + y + z) 1/2 − c1(x + y + z)

1
2c2

(
x+z
c2

)− 1
2
− 1 0 1

2c2

(
x+z
c2

)− 1
2
− 1

kz(z−x−y)
(x+y+z)3

kz(z−x−y)
(x+y+z)3 1 − kc3 +

k(x+y)(x+y−z)
(x+y+z)3

 .
One can linearize a dynamic discrete system around the equilibrium and then determine the stability

conditions via the eigenvalues of the Jacobian matrix of the system. The following proposition follows.

Proposition 1. Let E be an equilibrium of a discrete dynamic system. If all the eigenvalues λi of the
Jacobian matrix at E lie in the open unit disk, i.e., |λi| < 1 for all i, then E is locally stable. Moreover,
if the Jacobian matrix at E has at least one eigenvalue λ0 outside the open unit disk, i.e., |λ0| > 1, then
E is unstable.

Let A be the characteristic polynomial of the Jacobian matrix J. The eigenvalues of J are simply
the roots of A. So the problem of stability analysis can be reduced to that of determining whether all
the roots of A lie in the open unit disk |λ| < 1. To our knowledge, in addition to the Routh-Hurwitz
criterion [35] generalized from the corresponding criterion for continuous systems, there are two other
criteria, i.e., the Schur-Cohn criterion [11, pp. 246–248] and the Jury criterion [18], feasible for discrete
dynamic systems. In what follows, we provide a short review of the Schur-Cohn criterion.

Proposition 2 (Schur-Cohn Criterion). For an n-dimensional discrete dynamic system, assume that the
characteristic polynomial of its Jacobian matrix is

A = λn + an−1λ
n−1 + · · · + a0.
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Consider the sequence of determinants D±1 , D±2 , . . ., D±n , where

D±i =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



1 an−1 an−2 · · · an−i+1

0 1 an−1 · · · an−i+2

0 0 1 · · · an−i+3
...

...
...

. . .
...

0 0 0 · · · 1


±



ai−1 ai−2 · · · a1 a0

ai−2 ai−3 · · · a0 0
...

...
. . .

...
...

a1 a0 · · · 0 0
a0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The characteristic polynomial A has all its roots inside the unit open disk if and only if

1) A(1) > 0 and (−1)nA(−1) > 0,
2) D±1 > 0,D±3 > 0, . . . ,D±n−3 > 0,D±n−1 > 0 (when n is even), or

D±2 > 0,D±4 > 0, . . . ,D±n−3 > 0,D±n−1 > 0 (when n is odd).

Consider a 3-dimensional discrete dynamic system with its characteristic polynomial being of the
form

A = λ3 + a2λ
2 + a1λ + a0.

According to the Schur-Cohn criterion, an equilibrium E is locally stable if the following
inequalities are satisfied at E. 

1 + a2 + a1 + a0 > 0,
1 − a2 + a1 − a0 > 0,
− a2

0 − a0a2 + a1 + 1 > 0,
− a2

0 + a0a2 − a1 + 1 > 0.

(3.3)

Consequently, the problem of determining the stability of model TANB can be transformed into
determining the existence of real solutions of

√
y + z

c1
− (x + y + z) = 0,√

x + z
c2
− (x + y + z) = 0,

kz
[
−c3 +

x + y
(x + y + z)2

]
= 0,

1 + a2 + a1 + a0 > 0,
1 − a2 + a1 − a0 > 0,
− a2

0 − a0a2 + a1 + 1 > 0,
− a2

0 + a0a2 − a1 + 1 > 0,
x > 0, y > 0, z > 0,
k > 0, 1 ≥ l ≥ 1, c1 > 0, c2 > 0, c3 > 0,

(3.4)

where x > 0, y > 0, z > 0 are used to let us focus on E2 rather than E1. It should be noted that a0, a1

and a2 are rational functions, which are extremely complex and involve the radical expressions
√

y+z
c1

and
√

x+z
c2

.

AIMS Mathematics Volume 7, Issue 10, 19388–19414.



19396

The approach illustrated in Section 1 can be used to count real solutions but are only feasible for
polynomial systems. Here, the obvious obstacle is that system (3.4) involves radical expressions, and
thus can not be directly tackled with this approach. However, the following substitutions are helpful.

u =

√
x + z

c2
, v =

√
y + z

c1
. (3.5)

We use ā0, ā1 and ā2 to denote the results of a0, a1 and a2 after the above substitutions. Evidently,
system (3.4) is equivalent to the following system.

c2u2 − (x + z) = 0,
c1v2 − (y + z) = 0,
v − (x + y + z) = 0,
u − (x + y + z) = 0,

Numer
(
kz

[
−c3 +

x + y
(x + y + z)2

])
= 0,

Numer(1 + ā2 + ā1 + ā0) · Denom(1 + ā2 + ā1 + ā0) > 0,
Numer(1 − ā2 + ā1 − ā0) · Denom(1 − ā2 + ā1 − ā0) > 0,
Numer(−ā2

0 − ā0ā2 + ā1 + 1) · Denom(−ā2
0 − ā0ā2 + ā1 + 1) > 0,

Numer(−ā2
0 + ā0ā2 − ā1 + 1) · Denom(−ā2

0 + ā0ā2 − ā1 + 1) > 0,
x > 0, y > 0, z > 0, u > 0, v > 0,
k > 0, 1 ≥ l ≥ 1, c1 > 0, c2 > 0, c3 > 0,

(3.6)

where Numer(·) and Denom(·) represent the numerator and the denominator, respectively.
System (3.6) can be viewed as a pure polynomial system with the variables x, y, z, u, v and the
parameters k, l, c1, c2, c3.

In [41], numerical simulations rather than symbolic deductions are used to explore the magnitude
of the stability region of model TANB. The reason may be that the expressions of the eigenvalues of the
Jacobian matrix are so complicated that any rigorous analysis seems to be impossible. However, by
the Schur-Cohn criterion, we obtain several analytical results. It is impossible to deal with the complex
computation results if we keep all 5 parameters. For comparison, as in [41], we just keep c3 and k as
free parameters and set c1 = 1.63, c2 = 2.1 and l = 0.6, then we acquire the following theorem using
our symbolic approach illustrated in Section 1.

Theorem 1. Assume that c1 = 163/100, c2 = 21/10 and l = 3/5∗. The equilibrium E2 of model TANB

is locally stable if
LS 1

ANB > 0, LS 2
ANB < 0, LS 3

ANB > 0 and LS 4
ANB < 0,

where
LS 1

ANB = 100 c3 − 47, LS 2
ANB = 100 c3 − 373, (3.7)

and LS 3
ANB, LS 4

ANB are complicated polynomials listed in Appendix.
∗Here, we use fractions instead of floats to underline that the inputs of our algorithms are rigorous expressions.
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Remark 1. Let LS 3
ANB = 0. One can obtain

k =
600(100 c3 + 373)(10000 c2

3 − 74600 c3 − 1147627)

(100 c3 − 373)(3000000 c3
3 − 139830000 c2

3 + 1446604100 c3 − 674426149)
.

When c3 = 373/100, we have

10000 c2
3 − 74600 c3 − 1147627 = −1286756 < 0,

and
3000000 c3

3 − 139830000 c2
3 + 1446604100 c3 − 674426149 = 2931651688 > 0.

Therefore, k → +∞ as c3 tends to 373/100 from the left, i.e., c3 → (373/100)−. Consequently, the
curves of LS 2

ANB = 0 and LS 3
ANB = 0 approach arbitrarily close to each other around c3 = 373/100.

From an economic point of view, it is known that for any adjustment speed k of firm 3 (even quite
large), there always exist some values of the marginal cost c3 of firm 3 such that model TANB is locally
stable. This finding is interesting because for oligopolies with boundedly rational players it is common
that the equilibrium would lose its stability if the adjustment speed is fast enough.

The (c3, k) parameter plane of model TANB is depicted in Figure 1. One can verify that the
equilibrium E2 is locally stable in the grey region surrounded by the green curve, the blue curve, the
two black vertical lines, and the horizontal axis. For example, at (35/10, 5) (the red point in Figure 1),
we have that

LS 1
ANB = 303 > 0,

LS 2
ANB = −23 < 0,

LS 3
ANB = 235459766985 > 0,

LS 4
ANB = −57987124733737424925 < 0,

which satisfies the stability conditions given in Theorem 1.

Figure 1. The 2-dimensional (c3, k) parameter plane of model TANB with the other parameters
fixed: c1 = 1.63, c2 = 2.1 and l = 0.6. The two vertical black lines represent LS 1

ANB = 0 and
LS 2

ANB = 0. The blue curve is LS 3
ANB = 0, while the green curve is LS 4

ANB = 0.

For model TLNB, by setting c1 = 0.5 and c2 = 0.55 as in [34], we obtain the following theorem.
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Theorem 2. Assume that c1 = 1/2 and c2 = 11/20†. The equilibrium E2 of model TLNB is locally
stable if

LS 1
LNB > 0, LS 2

LNB < 0, LS 3
LNB < 0 and LS 4

LNB < 0,

where
LS 1

LNB = 20 c3 − 1, LS 2
LNB = 20 c3 − 21, (3.8)

and the expressions of LS 3
LNB, LS 4

LNB can be found in Appendix.

Remark 2. If LS 1
LNB = 0, then

k = −
40(400 c2

3 − 4360 c3 − 1499)

(20 c3 − 21)(2000 c2
3 − 8840 c3 + 1361)

.

Furthermore, when c3 = 21/20, we have

400 c2
3 − 4360 c3 − 1499 = −5636 < 0, 2000 c2

3 − 8840 c3 + 1361 = −5716 < 0.

Accordingly, k → +∞ as c3 → (21/20)−, which means that the curve of LS 1
LNB = 0 approaches

arbitrarily close to LS 3
LNB as c3 → (21/20)−. Consequently, it is known that for model TLNB, even

if the adjustment speed k is extremely large, there exist values of the marginal cost c3 such that the
equilibrium E2 is locally stable. Therefore, k is large enough and is not a sufficient condition of
instability.

The (c3, k) parameter plane of model TLNB is displayed in Figure 2. One can see that the equilibrium
E2 is locally stable in the grey region surrounded by the green curve, the blue curve, the two black
vertical lines, and the horizontal axis. For instance, at (1, 10), the red point in Figure 2,

LS 1
LNB = 19 > 0,

LS 2
LNB = −1 < 0,

LS 3
LNB = −163570 < 0,

LS 4
LNB = −48322655 < 0,

which satisfies the stability conditions of Theorem 2.

Figure 2. The 2-dimensional (c3, k) parameter plane of model TLNB with the other parameters
fixed: c1 = 0.5 and c2 = 0.55. The two vertical black lines represent LS 1

LNB = 0 and
LS 2

LNB = 0. The blue curve is LS 3
LNB = 0, while the green curve is LS 4

LNB = 0.
†Here, we use fractions instead of floats to underline that inputs of our algorithms are rigorous expressions.
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By the analytical results of Theorems 1 and 2, we confirm the observations by numerical
simulations of [34, 41] (see Figures 1 and 2). There are several benefits of acquiring analytical,
instead of simulated, results. Simulations can only be performed in a bounded area of the parameter
space and provide limited information on stability. Analytical results, however, may unveil more
features of models’ stability. For example, according to Theorem 1 or 2, we know that there exists one
single piece of the stable region (the grey area in Figure 1 or 2), and other ones are impossible.
Moreover, analytical, rather than simulated, results could be reused to produce further theoretical
conclusions such as Remarks 1 and 2.

Bischi and others [7] proved that for an oligopoly with an isoelastic demand and identical firms
adopting the LMA mechanism, instability arises if there exist at least 5 firms. While for an oligopoly
with a linear demand and identical firms adopting the best response mechanism, the equilibrium goes
unstable if at least 4 firms compete with each other [40]. Accordingly, the LMA mechanism may
improve the model stability compared to the best response mechanism for games with homogeneous
players. In [33], it was proved that the equilibrium is globally stable in a homogeneous duopoly
game if both firms adopt the LMA mechanism. Moreover, Cavalli and Naimzada [9] investigated
several heterogeneous duopoly games and found the similar phenomenon that the LMA mechanism
may enlarge the size of the stable region, which suggests that the stability is influenced not only by the
rationality level of the firms but also by the reaction way the least rational firm uses.

Therefore, it would be interesting to investigate how the LMA mechanism is connected to the local
stability of heterogenous triopoly games. The comparison of the two games considered in this paper
may expose this connection. To obtain results possible for comparison, we simplify the situation by
setting the marginal costs of the three firms identical. The following theorem is finally acquired.

Theorem 3. Suppose that c1 = c2 = c3 = c. For model TANB, the equilibrium E2 is locally stable if

ck <
192 − 102 l
68 − 33 l

. (3.9)

Moreover, for model TLNB, the equilibrium E2 is locally stable if

ck <
62
23
. (3.10)

The (c, k) parameter plane of the two games is depicted in Figure 3. The stable regions are
surrounded by the horizontal axis, the vertical axis, and the corresponding curves. The red curve
represents the border of the region described by (3.10). The green and blue curves are the borders
of (3.9) with l = 1 and l = 0, respectively.
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Figure 3. The 2-dimensional (c, k) parameter plane with identical marginal costs: c1 = c2 =

c3 = c.

According to Theorem 3, if l = 2/3, the stable regions of these two models would be the same.
This fact is informative and unveils that there might be a connection between an adaptive player and
an LMA player‡. Furthermore, if 0 ≤ l < 2/3, the stable region of model TANB is larger than that
of model TLNB; if 2/3 < l ≤ 1, the conclusion is the opposite. In the special case when l = 1, the
first firm in model TANB degenerates to a naive player adopting the best response mechanism. This
confirms the observation in [7, 9, 33] that the LMA mechanism has an effect of stability enhancement
and suggests that we may extend a similar conclusion to the case of heterogeneous oligopolies with
n players. However, if 0 < l < 1, a general adaptive decision mechanism is used by the first firm in
model TANB. As the proportion parameter l decreases from 1 to 0, the first firm adjusts its output with
more caution and the stability region becomes larger. The LMA mechanism might lead to a global
underestimation of the prices and result in more careful adjustments. Therefore, the stability of an
oligopoly may be essentially connected to the adjustment speed of the output.

4. Bifurcations

The technique of linearization used for stability analysis may fail at bifurcation points, for near such
points the dynamic behavior of the system may differ qualitatively from that of its linearization. This
means that a small smooth change of the bifurcation parameters may cause a sudden qualitative change
to the dynamic behavior of the system. In this paper, we analytically and numerically investigate serval
types of bifurcations, such as period-doubling, Neimark-Sacker, and resonance.

4.1. Period-doubling bifurcation

The numerical analysis of the period-doubling and the Neimark-Sacker bifurcations has been
carried out in [34, 41]. Instead, we focus on the rigorous proof of the existence of these two
bifurcations. First, consider the period-doubling bifurcation. We need the following formal definition,
which could also be found in [21].

Definition 1 (Period-doubling bifurcation). Consider an n-dimensional iteration map Fu : x(t) 7→
x(t + 1) with an equilibrium E, where x(t) = (x1(t), x2(t), . . . , xn(t)) is the state vector at period t

‡The two models considered in this paper are differentiated only by the first firm, which is an adaptive player in TANB but an LMA
player in TLNB.
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and u = (u1, u2, . . . , ud) stands for all the parameters. A period-doubling bifurcation, also called
flip bifurcation, takes place at a bifurcation parameter point u = u if and only if the following two
conditions are satisfied.

1) Eigenvalue assignment: the Jacobian matrix at E has one real eigenvalue λ1(u) = 1, and |λ j(u)| <
1 for all the rest eigenvalues λ j, j , 1.

2) Transversality condition: for any parameter u j (1 ≤ j ≤ d),

∂|λ1(u)|
∂ui

∣∣∣∣∣∣
u=u

, 0.

It is known that ranges of parameter values exist where the dynamics are periodic if the period-
doubling bifurcation occurs. From an economic point of view, it is quite realistic to assume that a
boundedly rational firm can not learn the pattern behind quantities and profits if a long period of
periodic dynamics takes place. Wen and others [46] generalized the Schur-Cohn criterion and proposed
a new criterion for the detection of the period-doubling bifurcation, which is as follows.

Proposition 3. Let A = λn + an−1λ
n−1 + · · · + a0 be the characteristic polynomial of the Jacobian

matrix of an n-dimensional iteration map Fu and D±i be the same as in the Schur-Cohn criterion. A
period-doubling bifurcation appears if and only if the following conditions are satisfied.

1) Eigenvalue assignment: at the bifurcation point u = u,

(a) A(1) > 0 and A(−1) = 0,
(b) D±1 > 0,D±3 > 0, . . . ,D±n−3 > 0,D±n−1 > 0 (when n is even), or

D±2 > 0,D±4 > 0, . . . ,D±n−3 > 0,D±n−1 > 0 (when n is odd).

2) Transversality condition: for any parameter u j (1 ≤ j ≤ d),∑n−1
i=0 (−1)i∂ai/∂u j∑n−1

i=1 i(−1)n−iai + n
, 0,

where ∂ai/∂u j is the partial derivative of ai(u) with respective to u j.

For a 3-dimensional iteration map as (2.1) and (2.2), the criterion becomes simple and is restated in
the following corollary.

Corollary 1. Consider a 3-dimensional discrete dynamic system. Let A = λ3 + a2λ
2 + a1λ + a0 be the

characteristic polynomial of its Jacobian matrix. There is a period-doubling bifurcation if and only if
1 + a2 + a1 + a0 > 0, − 1 + a2 − a1 + a0 = 0,
− a2

0 − a0a2 + a1 + 1 > 0, − a2
0 + a0a2 − a1 + 1 > 0,

∂a0/∂u j − ∂a1/∂u j + ∂a2/∂u j

3 − 2 a2 + a1
, 0, for any parameter u j.

(4.1)

For model TANB, in order to calculate the bifurcation parameter surface determined by −1 + a2 −
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a1 + a0 = 0, we consider 

− 1 + a2 − a1 + a0 = 0,√
y + z

c1
− (x + y + z) = 0,√

x + z
c2
− (x + y + z) = 0,

kz
[
−c3 +

x + y
(x + y + z)2

]
= 0,

(4.2)

and then transform it into a polynomial system by applying the substitutions (3.5). Using the
triangular decomposition method, we obtain three triangular sets, i.e., (4.3). The union of the zeros of
the resulting triangular polynomial systems is the same as the zeros of the system generated by
substituting (3.5) into (4.2).

T1 = [ u, v, z, y, x],
T2 = [ u − z − y − x, v − z − y − x, c3z + (−c1 + c3)y − xc1,

(−c3 + c1 − c2)y + x(c1 − c2 + c3), PDANB],
T3 = [ (c1 + c2)u − 1, (c1 + c2)v − 1, z, (c2

1 + 2 c1c2 + c2
2)y − c1,

(c2
1 + 2 c1c2 + c2

2)x − c2, kc3 − c1k − c2k − 2 ],

(4.3)

where PDANB is complicated and can be found in Appendix. Obviously, T1 is corresponding to
(x, y, z) = (0, 0, 0), where map (2.1) is not defined. The triangular set T3 is corresponding to E1.
However, the equilibrium E1 is not of our concern, so we focus only on T2. It is clear that in T2 the
last polynomial PDANB involves only c1, c2, c3, l and k (all the parameters) but none of u, v, x, y and z,
thus the bifurcation parameter surface of the period-doubling bifurcation for model TANB is
PDANB = 0. In addition, if the bifurcation could take place, it is also required the transversality
condition is satisfied. Consequently, we obtain the following result.

Theorem 4. For model TANB, the bifurcation parameter surface of the period-doubling bifurcation is
PDANB = 0. Furthermore, if a period-doubling bifurcation takes place, the following transversality
condition should be satisfied.

PT k
ANB , 0, PT l

ANB , 0, PT c1
ANB , 0, PT c2

ANB , 0, PT c3
ANB , 0.

See Appendix for the expressions.

Similarly, we have the following theorem for model TLNB.

Theorem 5. For model TLNB, the bifurcation parameter surface of the period-doubling bifurcation is
PDLNB = 0. Furthermore, if a period-doubling bifurcation takes place, the following transversality
condition should be satisfied.

PT k
LNB , 0, PT c1

LNB , 0, PT c2
LNB , 0, PT c3

LNB , 0.

See Appendix for the expressions.
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It is easy to verify that PDANB becomes LS 3
ANB if setting c1 = 1.63, c2 = 2.1, l = 0.6 as in Theorem 1.

Moreover, PDLNB becomes LS 3
LNB if setting c1 = 0.5, c2 = 0.55 as in Theorem 2. Thus, one knows that

the equilibrium E2 would lose its stability through the period-doubling bifurcation when a parameter
point in the stable region goes across the blue curve of Figure 1 or 2. Furthermore, for we keep only
c3 and k as the parameters in Section 3, the transversality conditions with respect to c3 and k are
required, which are PT k

ANB , 0, PT c3
ANB , 0 for model TANB and PT k

LNB , 0, PT c3
LNB , 0 for model TLNB,

respectively. These conditions are shown in Figures 1 and 2 with the red curves. One can see that the
red curves do not pass through the segments of the blue curves where the period-doubling bifurcation
takes place for both models. Therefore, the problem of violating the transversality condition does not
occur in our settings.

Furthermore, in the case of the identical marginal costs c1 = c2 = c3 = c, PDANB would be (33 ckl−
68 ck − 102 l + 192)c3 corresponding to (3.9), and PDANB would be (23 ck − 62)c2 corresponding
to (3.10). This means that for both models the equilibrium E2 can lose its stability via the period-
doubling bifurcation when the marginal costs of the firms are identical. The bifurcation diagrams with
respect to k are given in Figure 4, where the bifurcations against x, y, and z are marked in red, blue,
and green, respectively.

(a) The bifurcation diagram with respect to k for
model TANB with identical marginal costs c1 =

c2 = c3 = 2 and l = 0.5.

(b) The bifurcation diagram with respect to k for
model TLNB with identical marginal costs c1 =

c2 = c3 = 2.5.

Figure 4. Period-doubling Bifurcation.

4.2. Neimark-Sacker bifurcation

Quasi-periodic solutions are more difficult to deal with than periodic solutions. From an economic
point of view, a quasi-periodic trajectory looks like chaos to boundedly rational firms with incomplete
information and limited capability of calculation. Furthermore, if quasi-periodic dynamics appear, the
pattern behind productions and profits is also hard to learn even for completely rational players. Thus, it
is extremely challenging for a firm to handle a quasi-periodic economy, where no market rules could be
discovered and followed. When a Neimark-Sacker bifurcation takes place, dynamics suddenly become
quasi-periodic. The reader may refer to [16] for the following formal definition of the Neimark-Sacker
bifurcation.

Definition 2 (Neimark-Sacker bifurcation). Consider an n-dimensional iteration map Fu : x(t) 7→
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x(t + 1) with an equilibrium E, where x(t) = (x1(t), x2(t), . . . , xn(t)) is the state vector at period t
and u = (u1, u2, . . . , ud) stands for all the parameters. A Neimark-Sacker bifurcation takes place at a
bifurcation parameter point u = u if and only if the following two conditions are satisfied.

1) Eigenvalue assignment: the Jacobian matrix at E has a pair of complex conjugate eigenvalues
λ1(u), λ2(u) on the unit circle, i.e., |λ1(u)| = |λ2(u)| = 1, and |λ j(u)| < 1 for all the rest
eigenvalues λ j, j , 1, 2.

2) Transversality condition: for any parameter u j (1 ≤ j ≤ d),

∂|λ1(u)|
∂ui

∣∣∣∣∣∣
u=u

, 0.

Based on the Schur-Cohn criterion, a criterion for the identification of the Neimark-Sacker
bifurcation was proposed in [45], which is restated below.

Proposition 4. Let A = λn + an−1λ
n−1 + · · · + a0 be the characteristic polynomial of the Jacobian

matrix of an n-dimensional iteration map Fu and D±i be the same as in the Schur-Cohn criterion. A
Neimark-Sacker bifurcation occurs if and only if the following conditions are satisfied.

1) Eigenvalue assignment: at the bifurcation point u = u,

(a) A(1) > 0 and (−1)nA(−1) > 0,
(b) D±1 > 0,D±3 > 0, . . . ,D±n−3 > 0,D+

n−1 > 0,D−n−1 = 0 (when n is even), or
D±2 > 0,D±4 > 0, . . . ,D±n−3 > 0,D+

n−1 > 0,D−n−1 = 0 (when n is odd).

2) Transversality condition: for any parameter u j (1 ≤ j ≤ d),

∂D−n−1

∂u j

∣∣∣∣
u=u
, 0.

Corollary 2. Consider a 3-dimensional discrete dynamic system. Let A = λ3 + a2λ
2 + a1λ + a0 be the

characteristic polynomial of its Jacobian matrix. The Neimark-Sacker bifurcation occurs if and only if
1 + a2 + a1 + a0 > 0, − 1 + a2 − a1 + a0 < 0,
− a2

0 − a0a2 + a1 + 1 > 0, − a2
0 + a0a2 − a1 + 1 = 0,

− 2
∂a0

∂u j
+ a0

∂a2

∂u j
+ a2

∂a0

∂u j
−
∂a1

∂u j
, 0, for any parameter u j.

(4.4)

Through a series of computations, the following two theorems are obtained.

Theorem 6. For model TANB, the bifurcation parameter surface of the Neimark-Sacker bifurcation
is NS ANB = 0. Furthermore, if a Neimark-Sacker bifurcation appears, the following transversality
condition should be satisfied.

NT k
ANB , 0, NT l

ANB , 0, NT c1
ANB , 0, NT c2

ANB , 0, NT c3
ANB , 0.

See Appendix for these expressions.
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Theorem 7. For model TLNB, the bifurcation parameter surface of the Neimark-Sacker bifurcation
is NS LNB = 0. Furthermore, if a Neimark-Sacker bifurcation occurs, the following transversality
condition should be satisfied.

NT k
LNB , 0, NT c1

LNB , 0, NT c2
LNB , 0, NT c3

LNB , 0.

See Appendix for these expressions.

We could see that NS ANB and NS LNB become LS 4
ANB and LS 4

LNB, respectively, if setting c1 = 1.63,
c2 = 2.1, l = 0.6 as in Theorem 1 and setting c1 = 0.5, c2 = 0.55 as in Theorem 2. This means that
across the green curve in Figure 1 or 2 as the parameters vary, the equilibrium E2 would lose its stability
through the Neimark-Sacker bifurcation. Moreover, since we only keep c3 and k as free parameters,
the transversality conditions with respect to c3 and k are needed, which are NT k

ANB , 0,NT c3
ANB , 0

for model TANB and NT k
LNB , 0,NT c3

LNB , 0 for model TLNB. These conditions are plotted as magenta
curves in Figures 1 and 2. It is obvious that the magenta curves do not pass through the segments
of the green curves where the Neimark-Sacker bifurcation is developed for both models. Therefore,
in our settings, we do not need to worry about the possibility that the transversality condition might
be violated. Furthermore, in the case of identical marginal costs, plugging c1 = c2 = c3 = c into
NS ANB and NS LBN , one can check that it is impossible that NS ANB or NS LBN vanishes, which means
the Neimark-Sacker bifurcation can not occur for our two models.

4.3. Other observed bifurcations

In what follows, we use continuation methods§ to explore other types of bifurcations as
complements to the current literature on numerical investigations of the two models considered in this
paper. For this purpose, we employ MatContM, a powerful numerical tool implemented by Govaerts
and others [15]. Specifically, MatContM is a MATLAB toolbox, which can be applied to detect the
dynamic behavior of an iteration map such as equilibria, periodic orbits, homoclinic orbits,
heteroclinic orbits, and bifurcation points.

Let k and c1 be free parameters. Using MatContM, we observe other bifurcations such as resonance,
generalized period-doubling, and Chenciner bifurcations. For model TANB or map (2.1), we find three
kinds of resonance, i.e., the 1:2 resonance, the 1:3 resonance, and the 1:4 resonance labeled R2, R3,
and R4 in Figure 5 (a), respectively. The 1:2 resonant point is the intersection of the Neimark-Sacker
bifurcation curve and the period-doubling bifurcation curve. The reader may refer to [22, 23] for more
information on resonance bifurcations. The Chenciner bifurcation is also identified (labeled CH in
Figure 5 (a)) to provide insights into the transition between different closed invariant circles. The
Chenciner bifurcation may introduce much more complex dynamic behavior including the coexistence
of two stable attractors and chaos. The label GPD in Figure 5 (a) is used to locate the generalized
period-doubling point generated from the 1:2 resonant point.

Furthermore, Figure 5 (b) is plotted to display the numerical results of model TLNB or map (2.2)
discovered by MatContM. Similarly, we find three different resonance bifurcations, i.e., the 1:2
resonance (R2), the 1:3 resonance (R3), and the 1:4 resonance (R3). In addition, two generalized
period-doubling (GPD) points are detected. One may notice that in Figure 5 (b) the left segment of

§The main idea of continuation methods is to trace solution manifolds of various objects while we continuously change the parameters
of the considered iteration map.
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the Neimark-Sacker bifurcation curve marked in magenta is incorrect. See Figure 2, based on
analytical conditions of Theorem 2, for the correct Neimark-Sacker bifurcation curve. This means
that numerical results may be unreliable in some cases and need to be confirmed by symbolic results.

(a) for model TANB with c2 = 2.1, c3 = 0.5 and
l = 0.6.

(b) for model TLNB with c2 = 0.55 and c3 = 0.1.

Figure 5. The numerical continuation using MatContM. The Neimark-Sacker and the period-
doubling bifurcation curves are marked in magenta and blue, respectively.

In the above discussion, we simply provide the results by the bifurcation continuation and leave the
detailed bifurcation analysis to our future research.

5. Conclusions

In this paper, we have analyzed the dynamics of two different heterogeneous triopoly games under
the assumption that the demand function of the market is isoelastic. Nonlinearities are introduced both
in the demand function and in the decisional mechanisms adopted by the firms. We have considered
several decisional mechanisms including the naive (best response) mechanism, the boundedly rational
(gradient adjustment) mechanism, the adaptive mechanism, and the local monopolistic approximation
(LMA) mechanism. In particular, in both games, the second firm is a naive player, while the third firm
is a boundedly rational player. The only difference is that firm 1 is an adaptive player in model TANB,
but an LMA player in model TLNB.

The existing results of triopoly games in the literature are usually based on observations through
numerical simulations. In comparison, using the approach proposed in [26], we have obtained several
analytical results for the two models considered in this paper. In particular, we have rigorously proved
the existence of double routes, through the period-doubling bifurcation and the Neimark-Sacker
bifurcation, from the stable state to the chaotic behavior. In addition, we have considered the special
case that the involved firms have identical marginal costs and acquired the analytical conditions of the
local stability for each model. It has been found that the presence of the local monopolistic
approximation (LMA) mechanism might have a stabilizing effect on heterogeneous triopoly games
with the isoelastic demand. Using MatContM, a numerical toolbox, we have observed other
bifurcations such as resonance, generalized period-doubling, and Chenciner bifurcations.
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In our future work, the rigorous bifurcation analysis and the proof of the existence of chaos are
theoretically interesting although they have been observed via simulations. Moreover, we are also
curious to learn how to control chaos in oligopoly games using symbolic methods.
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2kl + 108 c4

2c3kl − 152 c3
2c2

3kl + 136 c2
2c3

3kl − 68 c2c4
3kl + 12 c5

3kl

+ 9 c4
2l2 + 12 c3

2c3l2 − 2 c2
2c2

3l2 − 4 c2c3
3l2 + c4

3l2 + 50 c4
2l + 16 c3

2c3l + 4 c2
2c2

3l + 32 c2c3
3l

− 6 c4
3l)c1 + 9 c6

2kl2 − 24 c5
2c3kl2 + 13 c4

2c2
3kl2 + 16 c3

2c3
3kl2 − 21 c2

2c4
3kl2 + 8 c2c5

3kl2 − c6
3kl2

− 9 c5
2l2 − 3 c4

2c3l2 + 14 c3
2c2

3l2 + 2 c2
2c3

3l2 − 5 c2c4
3l2 + c5

3l2,

NT l
ANB = (k2l + 2 k2)c7

1 + (−5 c2k2l + 3 c3k2l − 8 c2k2 − 4 c3k2 − 6 kl − 6 k)c6
1 + (c2

2k2l − 6 c2c3k2l

+ c2
3k2l − 6 c2

2k2 + 24 c2c3k2 − 10 c2
3k2 + 16 c2kl − 16 c3kl + 26 c2k + 14 c3k + 9 l)c5

1

+ (19 c3
2k2l − 23 c2

2c3k2l + 17 c2c2
3k2l − 5 c3

3k2l + 32 c3
2k2 − 24 c2

2c3k2 + 8 c3
3k2 + 10 c2

2kl

+ 12 c2c3kl − 6 c2
3kl + 36 c2

2k + 8 c2c3k + 20 c2
3k − 3 c2l + 21 c3l − 24 c2)c4

1 + (−5 c4
2k2l

+ 28 c3
2c3k2l − 46 c2

2c2
3k2l + 28 c2c3

3k2l − 5 c4
3k2l + 22 c4

2k2 − 64 c3
2c3k2 + 92 c2

2c2
3k2 − 64 c2c3

3k2

+ 14 c4
3k2 − 16 c3

2kl + 48 c2
2c3kl − 48 c2 c2

3kl + 16 c3
3kl + 20 c3

2k − 60 c2
2c3k + 28 c2c2

3k − 20 c3
3k

− 54 c2
2l + 4 c2c3l + 10 c2

3l − 72 c2
2 − 40 c2c3)c3

1 + (−23 c5
2k2l + 53 c4

2c3k2l − 38 c3
2c2

3k2l

+ 10 c2
2c3

3k2l − 3 c2c4
3k2l + c5

3k2l − 24 c5
2k2 + 60 c4

2c3k2 − 48 c3
2c2

3k2 + 8 c2
2c3

3k2 + 8 c2c4
3k2

− 4 c5
3k2 + 14 c4

2kl + 8 c3
2c3kl + 52 c2

2c2
3kl − 56 c2c3

3kl + 14 c4
3kl + 66 c4

2k − 88 c3
2c3k

+ 124 c2
2c2

3k + 8 c2c3
3k − 14 c4

3k − 54 c3
2l − 34 c2

2c3l + 14 c2c2
3l − 6 c3

3l − 72 c3
2 − 80 c2

2c3

− 8 c2c2
3)c2

1 + (3 c6
2k2l − 22 c5

2c3k2l + 61 c4
2c2

3k2l − 84 c3
2c3

3k2l + 61 c2
2c4

3k2l − 22 c2c5
3k2l

+ 3 c6
3k2l − 18 c6

2k2 + 72 c5
2c3k2 − 130 c4

2c2
3k2 + 144 c3

2c3
3k2 − 102 c2

2c4
3k2 + 40 c2c5

3k2 − 6 c6
3k2

+ 50 c5
2k − 34 c4

2c3k − 12 c3
2c2

3k + 28 c2
2c3

3k − 38 c2c4
3k + 6 c5

3k − 3 c4
2l + 4 c3

2c3l + 14 c2
2c2

3l

+ 4 c2c3
3l − 3 c4

3l − 24 c4
2 − 40 c3

2c3 − 8 c2
2c2

3 + 8 c2c3
3)c1 + c5

3l + 9 c5
2l − 33 c6

2c3k2l − 9 c2c6
3k2l

+ 12 c5
2c3kl + 34 c4

2c2
3kl − 24 c3

2c3
3kl − 14 c2

2c4
3kl + 12 c2c5

3kl + 37 c5
2c2

3k2l + 3 c4
2c3

3k2l

− 37 c3
2c4

3k2l + 29 c2
2c5

3k2l + c7
3k2l + 21 c4

2c3 l − 6 c2
2c3

3l − 3 c2c4
3l − 18 c6

2kl − 2 c6
3kl + 9 c7

2k2l

+ 10 c3
2c2

3l,

NT c1
ANB = (k2l + 2 k2)c7

1 + (−3 c2k2l + lk2c3 − 4 c2k2 − 8 k2c3 − 4 kl − 2 k)c6
1 + (−7 c2

2k2l + 6 c2c3k2l

− 3 lk2c2
3 − 18 c2

2k2 + 24 c2c3k2 + 2 k2c2
3 + 6 c2kl − 6 lkc3 + 22 c2k + 2 kc3 + 3 l)c5

1 + (13 c3
2k2l

− 17 c2
2c3k2l + 15 c2 c2

3k2l − 3 c3
3k2l + 8 c3

2k2 + 48 c2
2c3k2 − 56 c2c2

3k2 + 16 c3
3k2 + 18 c2

2kl

− 4 c2c3kl + 2 c2
3kl + 28 c2

2k − 8 c2c3k + 12 c2
3k − 5 c2l + 11 c3l − 8 c2)c4

1 + (27 c4
2k2l

− 44 c3
2c3k2l + 26 c2

2c2
3k2l − 12 c2c3

3k2l + 3 c4
3k2l + 62 c4

2k2 − 80 c3
2c3k2 + 12 c2

2c2
3k2

+ 16 c2 c3
3k2 − 10 c4

3k2 − 4 c3
2kl + 12 c2

2c3kl − 12 c2c2
3kl + 4 c3

3kl − 68 c3
2k + 12 c2

2c3k

− 44 c2c2
3k + 4 c3

3k − 10 c2
2l − 12 c2c3l + 14 c2

3l + 8 c2
2 − 24 c2c3)c3

1 + (−c5
2k2l + 15 c4

2c3k2l

− 42 c3
2c2

3k2l + 46 c2
2c3

3k2l − 21 c2c4
3k2l + 3 c5

3k2l + 60 c5
2k2 − 168 c4

2c3k2 + 200 c3
2c2

3k2

− 144 c2
2c3

3k2 + 60 c2c4
3k2 − 8 c5

3k2 − 122 c4
2k + 56 c3

2c3k − 44 c2
2c2

3k + 24 c2c3
3k − 10 c4

3k − 2 c3
2l

− 14 c2
2c3l − 6 c2c2

3l + 6 c3
3l + 40 c3

2 + 16 c2
2c3 − 24 c2c2

3)c2
1 + (−21 c6

2k2l + 70 c5
2c3k2l

− 87 c4
2c2

3k2l + 52 c3
2c3

3k2l − 19 c2
2c4

3k2l + 6 c2c5
3k2l − c6

3k2l + 18 c6
2k2 − 72 c5

2c3k2 + 130 c4
2c2

3k2

− 144 c3
2c3

3k2 + 102 c2
2c4

3k2 − 40 c2c5
3k2 + 6 c6

3k2 + 30 c5
2kl − 22 c4

2c3kl − 20 c3
2c2

3kl + 20 c2
2c3

3kl

− 10 c2c4
3kl + 2 c5

3kl − 50 c5
2k + 34 c4

2c3k + 12 c3
2c2

3k − 28 c2
2c3

3k + 38 c2c4
3k − 6 c5

3k − 9 c4
2l
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− 12 c3
2c3l + 2 c2

2c2
3l + 4 c2c3

3l − c4
3l + 24 c4

2 + 40 c3
2c3 + 8 c2

2c2
3 − 8 c2c3

3)c1 − 9 c5
2l − c5

3l

+ 33 c6
2c3k2l − 37 c5

2c2
3k2l − 3 c4

2c3
3k2l + 37 c3

2c4
3k2l − 29 c2

2c5
3k2l + 9 c2c6

3k2l − 12 c5
2c3kl

− 34 c4
2c2

3kl + 24 c3
2c3

3kl + 14 c2
2c4

3kl − 12 c2 c5
3kl − 9 c7

2k2l − c7
3k2l + 18 c6

2kl + 2 c6
3kl − 21 c4

2c3l

− 10 c3
2c2

3l + 6 c2
2c3

3l + 3 c2c4
3l,

NT c2
ANB = (k2l2 + 4 k2l + 4 k2)c7

1 + (−c2k2l2 + 3 c3k2l2 − 8 c3k2l + 4 c2k2 − 28 c3k2 − 6 kl2 − 12 kl)c6
1 + (

− 7 c2
2k2l2 + 2 c2c3k2l2 + c2

3k2l2 − 28 c2
2k2l + 16 c2c3k2l − 20 c2

3k2l − 24 c2
2k2 − 16 c2c3k2

+ 56 c2
3k2 − 16 c3kl2 + 4 c2kl + 28 c3kl + 16 c2k + 9 l2)c5

1 + (−c3
2k2l2 − 15 c2

2c3k2l2

+ 13 c2c2
3k2l2 − 5 c3

3k2l2 − 32 c3
2k2l + 48 c2

2c3k2l − 32 c2c2
3k2l + 16 c3

3k2l − 56 c3
2k2

+ 120 c2
2c3k2 + 18 c2

2kl2 − 24 c2c2
3k2 − 12 c2c3kl2 − 8 c3

3k2 − 6 c2
3kl2 + 56 c2

2kl + 48 c2c3kl

+ 40 c2
3kl + 48 c2

2k − 48 c2c3k + 9 c2l2 + 21 c3l2 − 24 c2l)c4
1 + (11 c4

2k2l2 − 20 c3
2c3k2l2

+ 2 c2
2c2

3k2l2 + 12 c2c3
3k2l2 − 5 c4

3k2l2 + 12 c4
2k2l − 32 c3

2c3k2l + 56 c2
2c2

3k2l − 64 c2c3
3k2l

+ 28 c4
3k2l − 44 c4

2k2 + 176 c3
2c3k2 − 216 c2

2c2
3k2 + 16 c2

2c3kl2 + 144 c2c3
3k2 − 32 c2c2

3kl2

− 60 c4
3k2 + 16 c3

3kl2 + 24 c3
2kl + 24 c2

2c3kl + 56 c2c2
3kl − 40 c3

3kl + 48 c3
2k − 96 c2

2c3k + 2 c2
2l2

− 16 c2c2
3k + 12 c2c3l2 + 10 c2

3l2 − 40 c2
2l − 40 c2c3l)c3

1 + (5 c5
2k2l2 + 5 c4

2c3k2l2 − 30 c3
2c2

3k2l2

+ 26 c2
2c3

3k2l2 − 7 c2c4
3k2l2 + c5

3k2l2 + 32 c5
2k2l − 104 c4

2c3k2l + 128 c3
2c2

3k2l − 80 c2
2c3

3k2l

+ 32 c2c4
3k2l − 8 c5

3k2l − 12 c5
2k2 + 68 c4

2c3k2 − 18 c4
2kl2 − 136 c3

2c2
3k2 + 8 c3

2c3kl2 + 152 c2
2c3

3k2

− 12 c2
2c2

3kl2 − 108 c2c4
3k2 − 24 c2c3

3kl2 + 36 c5
3k2 + 14 c4

3kl2 − 44 c4
2kl + 16 c3

2c3kl + 72 c2
2c2

3kl

− 16 c2c3
3kl − 28 c4

3kl + 16 c4
2k − 48 c3

2c3k + 10 c3
2l2 − 16 c2

2c2
3k + 14 c2

2c3l2 + 48 c2c3
3k

− 2 c2c2
3l2 − 6 c3

3l2 − 8 c3
2l − 16 c2

2c3l − 8 c2c2
3l)c2

1 + (−5 c6
2k2l2 + 18 c5

2c3k2l2 − 19 c4
2c2

3k2l2

− 4 c3
2c3

3k2l2 + 21 c2
2c4

3k2l2 − 14 c2c5
3k2l2 + 3 c6

3k2l2 + 12 c6
2k2l − 48 c5

2c3k2l + 60 c4
2c2

3k2l

− 60c2
2c4

3k2l + 48 c2c5
3k2l − 12 c6

3k2l − 28 c5
2kl + 12 c4

2c3kl + 56 c3
2c2

3kl − 24 c2
2c3

3kl − 28 c2c4
3kl

+ 12 c5
3kl + 5 c4

2l2 + 12 c3
2c3l2 + 6 c2

2c2
3l2 − 4 c2c3

3l2 − 3 c4
3l2 + 8 c4

2l + 24 c3
2c3l + 24 c2

2c2
3l

+ 8 c2 c3
3l)c1 − 11 c4

2c3l2 − 14 c3
2c2

3l2 − 6 c2
2c3

3l2 + c2c4
3l2 + 6 c6

2kl2 − 3 c7
2k2l2 − 3 c5

2l2

+ 4 c5
2c3kl2 − 14 c4

2c2
3kl2 − 8 c3

2c3
3kl2 + 10 c2

2c4
3kl2 + 4 c2c5

3kl2 + c5
3l2 − 2 c6

3kl2 + c7
3k2l2

+ 7 c6
2c3k2l2 + c5

2c2
3k2l2 − 13 c4

2c3
3k2l2 + 7 c3

2c4
3k2l2 + 5 c2

2c5
3k2l2 − 5 c2c6

3k2l2,

NT c3
ANB = (3 kl2 + 6 kl)c6

1 + (−16 l2kc2 + 8 c3kl2 − 34 c2kl − 14 c3kl − 16 c2k − 9 l2)c5
1 + (11 c2

2kl2

− 22 l2kc3c2 + 3 c2
3kl2 + 12 c2

2kl + 56 c2klc3 − 20 c2
3kl + 16 c2

2k + 48 c2kc3 + 27 l2c2 − 21 c3l2

+ 72 c2l)c4
1 + (40 c3

2kl2 − 24 c2
2c3kl2 + 24 c2c2

3kl2 − 8 c3
3kl2 + 108 c3

2kl − 52 c2
2c3kl − 12 c2c2

3kl

+ 20 c3
3kl + 80 c3

2k − 160 c2
2c3k − 2 c2

2l2 + 16 c2c2
3k + 36 c2c3l2 − 10 c2

3l2 − 40 c2
2l + 120 c2c3l

− 128 c2
2)c3

1 + (−23 c4
2kl2 + 44 c3

2c3kl2 − 74 c2
2c2

3kl2 + 44 c2c3
3kl2 − 7 c4

3kl2 + 14 c4
2kl

− 72 c3
2c3kl + 84 c2

2c2
3kl − 72 c2c3

3kl + 14 c4
3kl + 48 c4

2k − 208 c3
2c3k − 2 c3

2l2 + 208 c2
2c2

3k

− 14 c2
2c3l2 − 48 c2c3

3k − 6 c2c2
3l2 + 6 c3

3l2 − 40 c3
2l − 16 c2

2c3l + 24 c2c2
3l − 128 c3

2

− 128 c2
2c3)c2

1 + (−24 c5
2kl2 + 32 c4

2c3kl2 + 16 c3
2c2

3kl2 − 32 c2
2c3

3kl2 + 8 c2c4
3kl2 − 42 c5

2kl

+ 50 c4
2c3kl + 12 c3

2c2
3kl − 44 c2

2c3
3kl + 30 c2c4

3kl − 6 c5
3kl + 27 c4

2l2 + 36 c3
2c3l2 − 6 c2

2c2
3l2

− 12 c2c3
3l2 + 3 c4

3l2 + 72 c4
2l + 120 c3

2c3l + 24 c2
2c2

3l − 24 c2c3
3l)c1 + 9 c6

2kl2 − 6 c5
2c3kl2

− 17 c4
2c2

3kl2 + 12 c3
2c3

3kl2 + 7 c2
2c4

3kl2 − 6 c2c5
3kl2 + c6

3kl2 − 9 c5
2l2 − 21 c4

2c3l2 − 10 c3
2c2

3l2
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+ 6 c2
2c3

3l2 + 3 c2c4
3l2 − c5

3l2,

NS LNB = 4 k2c6
3 + (−8 c1k2 + 4 k)c5

3 + (−4 c2
1k2 + 16 c1c2k2 − 72 c2

2k2 − 12 c1k + 1)c4
3 + (16 c3

1k2

− 32 c2
1c2k2 + 112 c1c2

2k2 + 128 c3
2k2 − 8 c2

1k + 8 c1c2k + 48 c2
2k − 4 c1 + 4 c2)c3

3 + (−4 c4
1k2

− 16 c2
1c2

2k2 − 144 c1c3
2k2 − 60 c4

2k2 + 24 c3
1k − 56 c2

1c2k + 136 c1c2
2k − 8 c3

2k − 2 c2
1 + 4 c1c2

− 10 c2
2)c2

3 + (−8 c5
1k2 + 32 c4

1c2k2 − 16 c3
1c2

2k2 − 32 c2
1c3

2k2 + 24 c1c4
2k2 + 4 c4

1k − 8 c3
1c2k

− 80 c2
1c2

2k − 248 c1c3
2k − 52 c4

2k + 12 c3
1 − 36 c2

1c2 − 76 c2
2c1 − 28 c3

2)c3 + 4 c6
1k2 − 16 c5

1c2k2

− 8 c4
1c2

2k2 + 48 c3
1c3

2k2 + 36 c2
1c4

2k2 − 12 c5
1k + 56 c4

1c2k + 24 c3
1c2

2k − 32 c2
1c3

2k + 20 c1c4
2k

+ 8 c5
2k + 9 c4

1 − 36 c3
1c2 − 114 c2

1c2
2 − 84 c1c3

2 − 15 c4
2,

NT k
LNB = 2 kc5

1 + (−10 c2k − 2 c3k − 3)c4
1 + (6 c2

2k + 8 c2c3k − 4 c2
3k + 17 c2 − 2 c3)c3

1 + (18 c3
2k

− 10 c2
2c3k + 12 c2c2

3k + 4 kc3
3 − 11 c2

2 + 17 c3c2 + 4 c2
3)c2

1 + (12 c3
2c3k − 30 c2

2c2
3k − 8 c2c3

3k

+ 2 c4
3k + 3 c3

2 − 48 c2
2c3 − c2c2

3 + 2 c3
3)c1 − 30 c3

2c2
3k + 34 c2

2c3
3k − 2 c2c4

3k − 2 c5
3k + 2 c4

2

− 11 c3
2c3 − 13 c2

2c2
3 − c2 c3

3 − c4
3,

NT c1
LNB = 2 k2c5

1 + (−8 k2c2 − 2 k2c3 − 7 k)c4
1 + (−4 c2

2k2 + 16 k2c3 c2 − 4 k2c2
3 + 28 kc2 − 2 c3k + 6)c3

1

+ (24 c3
2k2 − 20 c2

2c3k2 + 4 c3
3k2 + 14 c2

2k − 6 kc3c2 + 12 c2
3k − 18 c2 + 10 c3)c2

1 + (18 c4
2k2

− 32 c3
2c3k2 + 28 c2

2c2
3k2 − 16 c2c3

3k2 + 2 c4
3k2 − 20 c3

2k + 26 c2
2c3k − 32 c2c2

3k + 2 kc3
3 − 38 c2

2

− 20 c3c2 + 2 c2
3)c1 + 6 c4

2c3k2 − 8 c3
2c2

3k2 − 4 c2
2c3

3k2 + 8 c2c4
3k2 − 2 c5

3k2 + c4
2k − 34 c3

2c3k

+ 36 c2
2c2

3k + 2 c2c3
3k − 5 c4

3k − 14 c3
2 − 14 c2

2c3 − 2 c2c2
3 − 2 c3

3,

NT c2
LNB = 4 k2c5

1 + (−4 c2k2 − 12 c3k2 − 12 k)c4
1 + (−20c2

2k2 + 16 c2c3k2 + 8 c2
3k2 + 24 kc2 + 16 c3k

+ 9)c3
1 + (−12 c3

2k2 + 36 c2
2c3k2 − 24 c2c2

3k2 + 8 c3
3k2 + 32 c2

2k − 32 c2c3k + 8 c2
3k − 21 c2

+ 3 c3)c2
1 + (8 c3

2c3k2 − 12c2
2c2

3k2 + 16 c2c3
3k2 − 12 c4

3k2 − 8 c3
2k + 8 c2c2

3k − 16 kc3
3 + 3 c2

2

− 2 c3c2 − 5 c2
3)c1 + 4 c3

2c2
3k2 − 4 c2

2c3
3k2 − 4 c2c4

3k2 + 4 c5
3k2 − 4 c4

2k + 4 c4
3k + c3

2 + 3 c2
2c3

+ 3 c2c2
3 + c3

3,

NT c3
LNB = 6 kc5

1 + (−40 c2k − 2 kc3 − 9)c4
1 + (36 c2

2k + 28 c2c3k − 12 c2
3k + 72 c2 − 12 c3)c3

1 + (88 c3
2k

− 96 c2
2c3k + 44 c2c2

3k + 4 kc3
3 − 90 c2

2 + 72 c3c2 + 2 c2
3)c2

1 + (6 c4
2k − 28 c3

2c3k − 4 c2
2c2

3k

− 28 c2 c3
3k + 6 c4

3k − 48 c3
2 − 60 c2

2c3 − 8 c2 c2
3 + 4 c3

3)c1 − 30 c4
2c3k + 4 c3

2c2
3k + 32 c2

2c3
3k

− 4 c2c4
3k − 2 c5

3k − 5 c4
2 − 16 c3

2c3 − 18 c2
2c2

3 − 8 c2c3
3 − c4

3.
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