In this article, we study the relationship between solutions and their arbitrary-order derivatives of the higher order non-homogeneous linear differential equation
f(k)+Ak−1(z)f(k−1)+⋯+A1(z)f′+A0(z)f=F(z)
in the unit disc △ with analytic or meromorphic coefficients of finite [p,q]-order. We obtain some oscillation theorems for f(j)(z)−φ(z), where f is a solution and φ(z) is a small function.
Citation: Pan Gong, Hong Yan Xu. Oscillation of arbitrary-order derivatives of solutions to the higher order non-homogeneous linear differential equations taking small functions in the unit disc[J]. AIMS Mathematics, 2021, 6(12): 13746-13757. doi: 10.3934/math.2021798
[1] | Yu Chen, Guantie Deng . Fast growth and fixed points of solutions of higher-order linear differential equations in the unit disc. AIMS Mathematics, 2021, 6(10): 10833-10845. doi: 10.3934/math.2021629 |
[2] | Hongyan Qin, Jianren Long, Mingjin Li . On [p, q]-order of growth of solutions of linear differential equations in the unit disc. AIMS Mathematics, 2021, 6(11): 12878-12893. doi: 10.3934/math.2021743 |
[3] | J.-C. Cortés, A. Navarro-Quiles, J.-V. Romero, M.-D. Roselló . First-order linear differential equations whose data are complex random variables: Probabilistic solution and stability analysis via densities. AIMS Mathematics, 2022, 7(1): 1486-1506. doi: 10.3934/math.2022088 |
[4] | Devendra Kumar . On the generalized proximate order of functions analytic on the unit disc. AIMS Mathematics, 2024, 9(1): 1116-1127. doi: 10.3934/math.2024055 |
[5] | Yanyan Cui, Chaojun Wang . Dirichlet and Neumann boundary value problems for bi-polyanalytic functions on the bicylinder. AIMS Mathematics, 2025, 10(3): 4792-4818. doi: 10.3934/math.2025220 |
[6] | Jianren Long, Pengcheng Wu, Sangui Zeng . On properties of solutions of complex differential equations in the unit disc. AIMS Mathematics, 2021, 6(8): 8256-8275. doi: 10.3934/math.2021478 |
[7] | Gunduz Caginalp . Surface tension, higher order phase field equations, dimensional analysis and Clairaut’s equation. AIMS Mathematics, 2017, 2(2): 207-214. doi: 10.3934/Math.2017.2.207 |
[8] | Nurain Zulaikha Husin, Muhammad Zaini Ahmad . Hybridization of the shooting and Runge-Kutta Cash-Karp methods for solving Fuzzy Boundary Value Problems. AIMS Mathematics, 2024, 9(11): 31806-31847. doi: 10.3934/math.20241529 |
[9] | Ahmed SM Alzaidi, Ali M Mubaraki, Rahmatullah Ibrahim Nuruddeen . Effect of fractional temporal variation on the vibration of waves on elastic substrates with spatial non-homogeneity. AIMS Mathematics, 2022, 7(8): 13746-13762. doi: 10.3934/math.2022757 |
[10] | Alina Alb Lupaş, Shujaat Ali Shah, Loredana Florentina Iambor . Fuzzy differential subordination and superordination results for q -analogue of multiplier transformation. AIMS Mathematics, 2023, 8(7): 15569-15584. doi: 10.3934/math.2023794 |
In this article, we study the relationship between solutions and their arbitrary-order derivatives of the higher order non-homogeneous linear differential equation
f(k)+Ak−1(z)f(k−1)+⋯+A1(z)f′+A0(z)f=F(z)
in the unit disc △ with analytic or meromorphic coefficients of finite [p,q]-order. We obtain some oscillation theorems for f(j)(z)−φ(z), where f is a solution and φ(z) is a small function.
In this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory on the complex plane C and in the unit disc △={z∈C:|z|<1} (see [1,2,3,4]). In addition, we need to give some definitions and discussions. Firstly, let us give two definitions about the degree of small growth order of functions in △ as polynomials on the complex plane C. There are many types of definitions of small growth order of functions in △ (see [5,6]).
Definition 1.1. (see [5,6]). Let f be a meromorphic function in △, and
D(f)=¯limr→1−T(r,f)log11−r=b. |
If b<∞, then we say that f is of finite b degree (or is non-admissible). If b=∞, then we say that f is of infinite (or is admissible), both defined by characteristic function T(r,f).
Definition 1.2. (see [5,6]). Let f be an analytic function in △, and
DM(f)=¯limr→1−log+M(r,f)log11−r=a(or a=∞). |
Then we say that f is a function of finite a degree (or of infinite degree) defined by maximum modulus function M(r,f)=max∣z∣=r∣f(z)∣.
Moreover, for F⊂[0,1), the upper and lower densities of F are defined by
¯dens△F=¯limr→1−m(F∩[0,r))m([0,r)),dens_△F=lim_r→1−m(F∩[0,r))m([0,r)) |
respectively, where m(G)=∫Gdt1−t for G⊂[0,1).
Now we give the definition of iterated order and growth index to classify generally the functions of fast growth in △ as those in C, see [3,7,8]. Let us define inductively, for r∈[0,1),exp1r=er and expp+1r=exp(exppr),p∈N. We also define for all r sufficiently large in (0,1), log1r=logr and logp+1r=log(logpr),p∈N. Moreover, we denote by exp0r=r,log0r=r,exp−1r=log1r,log−1r=exp1r.
Definition 1.3. (see [9]). The iterated p-order of a meromorphic function f in △ is defined by
ρp(f)=¯limr→1−log+pT(r,f)log11−r(p≥1). |
For an analytic function f in △, we also define
ρM,p(f)=¯limr→1−log+p+1M(r,f)log11−r(p≥1). |
Remark 1.4. It follows by M. Tsuji in ([4]) that if f is an analytic function in △, then
ρ1(f)≤ρM,1(f)≤ρ1(f)+1. |
However it follows by (Proposition 2.2.2 in [3]) that
ρM,p(f)=ρp(f)(p≥2). |
Definition 1.5. (see [9]). The growth index of the iterated order of a meromorphic function f in △ is defined by
i(f)={0,if f is non-admissible;min{p∈N,ρp(f)<∞},if f is admissible;∞,if ρp(f)=∞ for all p∈N. |
For an analytic function f in △, we also define
iM(f)={0,if f is non-admissible;min{p∈N,ρM,p(f)<∞},if f is admissible;∞,if ρM,p(f)=∞ for all p∈N. |
Definition 1.6. (see [10,11]). Let f be a meromorphic function in △. Then the iterated p-exponent of convergence of the sequence of zeros of f is defined by
λp(f)=¯limr→1−log+pN(r,1f)log11−r, |
where N(r,1f) is the integrated counting function of zeros of f(z) in {z∈C:∣z∣<r}. Similarly, the iterated p-exponent of convergence of the sequence of distinct zeros of f is defined by
¯λp(f)=¯limr→1−log+p¯N(r,1f)log11−r, |
where ¯N(r,1f) is the integrated counting function of distinct zeros of f in {z∈C:∣z∣<r}.
Definition 1.7. (see [12]). Let p≥q≥1 be integers. Let f be meromorphic function in △, the [p,q]-order of f is defined by
ρ[p,q](f)=¯limr→1−log+pT(r,f)logq11−r. |
For an analytic function f in △, we also define
ρM,[p,q](f)=¯limr→1−log+p+1M(r,f)logq11−r. |
Remark 1.8. It is easy to see that 0≤ρ[p,q](f)≤∞. If f is non-admissible, then ρ[p,q]=0 for any p≥q≥1. By Definition 1.7, we have that ρ[1,1](f)=ρ1(f)=ρ(f), $ \rho_{[2,1]}(f) = \rho_{2}(f) and \rho_{[p+1, 1]}(f) = \rho_{p+1}(f) $.
Proposition 1.9. (see [12]). Let p≥q≥1 be integers. Let f be analytic function in △ of [p,q]-order. The following two statements hold:
(i) If p=q, then
ρ[p,q](f)≤ρM,[p,q](f)≤ρ[p,q](f)+1. |
(ii) If p>q, then
ρ[p,q](f)=ρM,[p,q](f). |
Definition 1.10. (see [13]). Let p≥q≥1 be integers. The [p,q]-exponent of convergence of the zero sequence of a meromorphic function f in △ is defined by
λ[p,q](f)=¯limr→1−log+pN(r,1f)logq11−r. |
Similarly, the [p,q]-exponent of convergence of the sequence of distinct zeros of f is defined by
¯λ[p,q](f)=¯limr→1−log+p¯N(r,1f)logq11−r. |
Definition 1.11. (see [1]). For a∈¯C=C∪{∞}, the deficiency of f is defined by
δ(a,f)=1−¯limr→1−N(r,1f−a)T(r,f), |
provided f has unbounded characteristic.
The complex oscillation theory of solutions of linear differential equations in the complex plane C was started by S. Bank and I. Laine in 1982. Many authors have investigated the growth and oscillation of the solutions of complex linear differential equations in C. In 2000, J. Heittokangas first studied the growth of the solution of linear differential equations in the unit disc △. There already exist many results (see [2,9,10,11,12,13]) in △, but the study is more difficult than that in C, because the efficient tool, Wiman-Valiron theory, doesn't hold in △. In 2015, author and L. P. Xiao (see [14]) studied the relationship between solutions and their derivatives of the differential equation
f″+A(z)f′+B(z)f=F(z), | (1.1) |
where A(z),B(z)≢ and F(z)\not\equiv0 are meromorphic functions of finite iterated p -order in \bigtriangleup . Author obtained some oscillation theorems for f^{(j)}(z)-\varphi(z) , where f is a solution and \varphi(z) is a small function. Before we state author's results we need to define the following:
\begin{equation} A_j(z) = A_{j-1}(z)-\frac{B'_{j-1}(z)}{B_{j-1}(z)}, \quad(j = 1, 2, 3, \cdots), \end{equation} | (1.2) |
\begin{equation} B_j(z) = A'_{j-1}(z)-A_{j-1}(z)\frac{B'_{j-1}(z)}{B_{j-1}(z)}+B_{j-1}(z), \quad(j = 1, 2, 3, \cdots), \end{equation} | (1.3) |
\begin{equation} F_j(z) = F'_{j-1}(z)-F_{j-1}(z)\frac{B'_{j-1}(z)}{B_{j-1}(z)}, \quad(j = 1, 2, 3, \cdots), \end{equation} | (1.4) |
\begin{equation} D_j = F_{j}-(\varphi''+A_{j}\varphi'+B_{j}\varphi), \quad(j = 1, 2, 3, \cdots), \end{equation} | (1.5) |
where A_0(z) = A(z), B_0(z) = B(z) and F_0(z) = F(z) . Author and L. P. Xiao obtained the following results.
Theorem 1.1. (see [14]). Let \varphi(z) be a meromorphic function in \bigtriangleup with \rho_p(\varphi) < \infty. Let A(z) , B(z)\not\equiv0 and F(z)\not\equiv0 be meromorphic functions of finite iterated p-order in \bigtriangleup such that B_j(z)\not\equiv0 and D_j(z)\not\equiv0 (j = 0, 1, 2, \cdots).
(i) If f is a meromorphic solution in \bigtriangleup of (1.1) with \rho_p(f) = \infty and \rho_{p+1}(f) = \rho < \infty , then f satisfies
\begin{equation*} \overline{\lambda}_p(f^{(j)}-\varphi) = \lambda_p(f^{(j)}-\varphi) = \rho_p(f) = \infty\quad (j = 0, 1, 2, \cdots), \end{equation*} |
\begin{equation*} \overline{\lambda}_{p+1}(f^{(j)}-\varphi) = \lambda_{p+1}(f^{(j)}-\varphi) = \rho_{p+1}(f) = \rho\quad (j = 0, 1, 2, \cdots). \end{equation*} |
(ii) If f is a meromorphic solution in \bigtriangleup of (1.1) with
\begin{equation*} \max\{\rho_p(A), \rho_p(B), \rho_p(F), \rho_p(\varphi)\} < \rho_p(f) < \infty, \end{equation*} |
then
\begin{equation*} \overline{\lambda}_{p}(f^{(j)}-\varphi) = \lambda_{p}(f^{(j)}-\varphi) = \rho_{p}(f) \quad (j = 0, 1, 2, \cdots). \end{equation*} |
Theorem 1.2. (see [14]). Let \varphi(z) be an analytic function in \bigtriangleup with \rho_p(\varphi) < \infty and be not a solution of (1.1). Let A(z) , B(z)\not\equiv0 and F(z)\not\equiv0 be analytic functions in \bigtriangleup with finite iterated p-order such that \beta = \rho_p(B) > \max\{\rho_p(A), \rho_p(F), \rho_p(\varphi)\} and \rho_{M, p}(A)\leq\rho_{M, p}(B). Then all nontrivial solutions of (1.1) satisfy
\begin{equation*} \rho_p(B)\leq\overline{\lambda}_{p+1}(f^{(j)}-\varphi) = \lambda_{p+1}(f^{(j)}-\varphi) = \rho_{p+1}(f)\leq\rho_{M, p}(B) \quad (j = 0, 1, 2, \cdots) \end{equation*} |
with at most one possible exceptional solution f_0 such that
\begin{equation*} \rho_{p+1}(f_0) < \rho_p(B). \end{equation*} |
Theorem 1.3. (see [14]). Let \varphi(z) be a meromorphic function in \bigtriangleup with \rho_p(\varphi) < \infty and be not a solution of (1.1). Let A(z) , B(z)\not\equiv0 and F(z)\not\equiv0 be meromorphic functions in \bigtriangleup with finite iterated p-order such that \rho_p(B) > \max\{\rho_p(A), \rho_p(F), \rho_p(\varphi)\} and \delta(\infty, B) > 0. If f is a meromorphic solution in \bigtriangleup of (1.1) with \rho_p(f) = \infty and \rho_{p+1}(f) = \rho , then f satisfies
\begin{equation*} \overline{\lambda}_p(f^{(j)}-\varphi) = \lambda_p(f^{(j)}-\varphi) = \rho_p(f) = \infty \quad (j = 0, 1, 2, \cdots), \end{equation*} |
\begin{equation*} \overline{\lambda}_{p+1}(f^{(j)}-\varphi) = \lambda_{p+1}(f^{(j)}-\varphi) = \rho_{p+1}(f) = \rho \quad (j = 0, 1, 2, \cdots). \end{equation*} |
In 2018, Z. Dahmani and M. A. Abdelaoui (see [15]) studied the higher order non-homogeneous linear differential equation
\begin{equation} f^{(k)}+A_{k-1}(z)f^{(k-1)}+\cdots+A_{1}(z)f'+A_{0}(z)f = F(z), k\geq 2, \end{equation} | (1.6) |
where A_{j}(z)(j = 0, 1, \cdots, k-1) , and F(z)\not\equiv0 are meromorphic functions of finite iterated [p, q] -order in \bigtriangleup . Before we state their results we need to define the following:
\begin{equation} A^{0}_{j} = A_{j}, \quad(j = 0, 1, \cdots, k-1), \end{equation} | (1.7) |
\begin{equation} A^{i}_{k-1} = A^{i-1}_{k-1}-\frac{(A^{i-1}_{0})'}{A^{i-1}_{0}}, \quad(i = 1, 2, 3, \cdots), \end{equation} | (1.8) |
\begin{equation} A^{i}_{j} = A^{i-1}_{j}+A^{i-1}_{j+1}\frac{(\Psi^{i-1}_{j+1})'}{\Psi^{i-1}_{j+1}}, \quad(j = 0, 1, \cdots, k-2, i = 1, 2, 3, \cdots), \end{equation} | (1.9) |
\begin{equation} F_{i} = F'_{i-1}-\frac{(A^{i-1}_{0})'}{A^{i-1}_{0}}F_{i-1}, F_{0} = F, \quad(i = 1, 2, 3, \cdots), \end{equation} | (1.10) |
\begin{equation} D_{i} = F_{i}-(\varphi^{(k)}+A^{i}_{k-1}\varphi^{(k-1)}+\cdots+A^{i}_{0}\varphi), \quad(i = 0, 1, 2, \cdots), \end{equation} | (1.11) |
where \Psi^{i-1}_{j+1} = \frac{A^{i-1}_{j+1}}{A^{i-1}_{0}} . Z. Dahmani and M. A. Abdelaoui obtained the following results.
Theorem 1.4. (see [15]) Let p\geq q\geq1 be integers, and let A_{j}(z)(j = 0, 1, \cdots, k-1), F(z)\not\equiv0 and \varphi(z) be meromorphic functions in \bigtriangleup of finite [p, q] -order such that D_{i}(z)\not\equiv0 (i = 0, 1, 2, \cdots) . If f is a meromorphic solution of the Eq (1.6) of infinite [p, q] -order and \rho_{[p+1, q]}(f) = \rho , then f satisfies
\begin{equation*} \overline{\lambda}_{[p, q]}(f^{(j)}-\varphi) = \lambda_{[p, q]}(f^{(j)}-\varphi) = \rho_{[p, q]}(f) = \infty \quad (j = 0, 1, 2, \cdots), \end{equation*} |
\begin{equation*} \overline{\lambda}_{[p+1, q]}(f^{(j)}-\varphi) = \lambda_{[p+1, q]}(f^{(j)}-\varphi) = \rho_{[p+1, q]}(f) = \rho \quad (j = 0, 1, 2, \cdots). \end{equation*} |
Theorem 1.5. (see [15]). Let p\geq q\geq1 be integers, and let A_{j}(z)(j = 0, 1, \cdots, k-1), F(z)\not\equiv0 and \varphi(z) be meromorphic functions in \bigtriangleup of finite [p, q] -order such that D_{i}(z)\not\equiv0 (i = 0, 1, 2, \cdots) . If f is a meromorphic solution of the Eq (1.6) with
\begin{equation*} \max\{\rho_{[p, q]}(A_{j}) (j = 0, 1, 2, \cdots, k-1), \rho_{[p, q]}(F), \rho_{[p, q]}(\varphi)\} < \rho_{[p, q]}(f) = \rho, \end{equation*} |
then f satisfies
\begin{equation*} \overline{\lambda}_{[p, q]}(f^{(j)}-\varphi) = \lambda_{[p, q]}(f^{(j)}-\varphi) = \rho_{[p, q]}(f) = \rho \quad (j = 0, 1, 2, \cdots). \end{equation*} |
According to the proof process of Theorem 1.4 and Theorem 1.5, we know that it is necessary to increase the condition A^{i}_{0}(z)\not\equiv0 and D_{i}(z)\not\equiv0 (i = 0, 1, 2, \cdots) to ensure that the Theorem 1.4 and the Theorem 1.5 are established, because we need to divide both sides of the higher order non-homogeneous linear differential equations by A^{i}_{0}(z) . Where A^{i}_{0}(z) and D_{i}(z) are defined in (1.7), (1.9) and (1.11). In this article, we give some sufficient conditions on the coefficients which guarantee A^{i}_{0}(z)\not\equiv0 and D_{i}(z)\not\equiv0 (i = 0, 1, 2, \cdots) , and we obtain:
Theorem 2.1. Let p\geq q\geq1 be integers, and let \varphi(z) be an analytic function in \bigtriangleup with \rho_{[p, q]}(\varphi) < \infty and be not a solution of (1.6). Let A_{j}(z)(j = 1, 2, \cdots, k-1) , A_{0}(z)\not\equiv0 and F(z)\not\equiv0 be analytic functions in \bigtriangleup of finite [p, q] -order such that \beta = \rho_{[p, q]}(A_{0}) > \max\{\rho_{[p, q]}(A_{j}) (j = 1, 2, \cdots, k-1), \rho_{[p, q]}(F), \rho_{[p, q]}(\varphi)\} and \rho_{M, [p, q]}(A_{j})\leq \rho_{M, [p, q]}(A_{0}) (j = 1, 2, \cdots, k-1) . Then all nontrivial solutions of (1.6) satisfy
\begin{equation*} \rho_{[p, q]}(A_{0})\leq\overline{\lambda}_{[p+1, q]}(f^{(j)}-\varphi) = \lambda_{[p+1, q]}(f^{(j)}-\varphi) = \rho_{[p+1, q]}(f)\leq\rho_{M, [p, q]}(A_{0}) \quad (j = 0, 1, 2, \cdots), \end{equation*} |
with at most one possible exceptional solution f_0 such that
\begin{equation*} \rho_{[p+1, q]}(f_0) < \rho_{[p, q]}(A_{0}). \end{equation*} |
Theorem 2.2. Let p\geq q\geq1 be integers, and let \varphi(z) be an meromorphic function in \bigtriangleup with \rho_{[p, q]}(\varphi) < \infty and be not a solution of (1.6). Let A_{j}(z)(j = 1, 2, \cdots, k-1) , A_{0}(z)\not\equiv0 and F(z)\not\equiv0 be meromorphic functions in \bigtriangleup of finite [p, q] -order such that \rho_{[p, q]}(A_{0}) > \max\{\rho_{[p, q]}(A_{j}) (j = 1, 2, \cdots, k-1), \rho_{[p, q]}(F), \rho_{[p, q]}(\varphi)\} and \delta(\infty, A_{0}) > 0 . If f is a meromorphic solution in \bigtriangleup of (1.6) with \rho_{[p, q]}(f) = \infty and \rho_{[p+1, q]}(f) = \rho , then f satisfies
\begin{equation*} \overline{\lambda}_{[p, q]}(f^{(j)}-\varphi) = \lambda_{[p, q]}(f^{(j)}-\varphi) = \rho_{[p, q]}(f) = \infty \quad (j = 0, 1, 2, \cdots), \end{equation*} |
\begin{equation*} \overline{\lambda}_{[p+1, q]}(f^{(j)}-\varphi) = \lambda_{[p+1, q]}(f^{(j)}-\varphi) = \rho_{[p+1, q]}(f) = \rho \quad (j = 0, 1, 2, \cdots). \end{equation*} |
To prove our theorems, we require the following lemmas.
Lemma 3.1. (see [13]). Let p\geq q\geq1 be integers, and let A_{0}, A_{1}, \cdots, A_{k-1} be analytic functions in \bigtriangleup satisfying
\begin{equation*} \max \{\rho_{[p, q]}(A_{j}):j = 1, 2, \cdots, k-1\} < \rho_{[p, q]}(A_{0}). \end{equation*} |
If f\not\equiv0 is a solution of (3.1), then \rho_{[p, q]}(f) = \infty and
\begin{equation*} \rho_{[p, q]}(A_{0})\leq \rho_{[p+1, q]}(f)\leq \max \{\rho_{M, [p, q]}(A_{j}):j = 0, 1, \cdots, k-1\}. \end{equation*} |
Furthermore, if p > q , then
\begin{equation*} \rho_{[p+1, q]}(f) = \rho_{[p, q]}(A_{0}). \end{equation*} |
Lemma 3.2. (see [15]). Let p\geq q\geq1 be integers. Let A_{0}, A_{1}, \cdots, A_{k-1} and F\not\equiv0 be meromorphic functions in \bigtriangleup and let f be a meromorphic solution of (1.6) satisfying \max\{\rho_{[p, q]}(A_{j}) (j = 0, 1, 2, \cdots, k-1), \rho_{[p, q]}(F)\} < \rho_{[p, q]}(f)\leq \infty, then we have
\begin{equation*} \overline{\lambda}_{[p, q]}(f) = \lambda_{[p, q]}(f) = \rho_{[p, q]}(f), \end{equation*} |
\begin{equation*} \overline{\lambda}_{[p+1, q]}(f) = \lambda_{[p+1, q]}(f) = \rho_{[p+1, q]}(f). \end{equation*} |
Lemma 3.3. Let p\geq q\geq1 be integers, and assume that coefficients A_{0}, A_{1}, \cdots, A_{k-1} and F\not\equiv0 are analytic in \bigtriangleup and \rho_{[p, q]}(A_{j}) < \rho_{[p, q]}(A_{0}) for all j = 1, 2, \cdots, k-1 . Let \alpha_{M} = \max\{\rho_{M, [p, q]}(A_{j}):j = 0, 1, \cdots, k-1\} . If \rho_{M, [p+1, q]}(F) < \rho_{[p, q]}(A_{0}) , then all solutions f of (1.6) satisfy
\begin{equation*} \rho_{[p, q]}(A_{0})\leq\overline{\lambda}_{[p+1, q]}(f) = \lambda_{[p+1, q]}(f) = \rho_{M, [p+1, q]}(f)\leq \alpha_{M}, \end{equation*} |
with at most one exceptional f_0 satisfying \rho_{M, [p+1, q]}(f_0) < \rho_{[p, q]}(A_{0}) .
Proof . Let f_{1}, f_{2}, \cdots, f_{k} be a solution base of the differential equation
\begin{equation} f^{(k)}+A_{k-1}(z)f^{(k-1)}+\cdots+A_{1}(z)f'+A_{0}(z)f = 0. \end{equation} | (3.1) |
Then by the elementary theory of differential equations (see [3]), any solution of (1.6) can be represented in the form
\begin{equation} f = (B_{1}+C_{1})f_{1}+(B_{2}+C_{2})f_{2}+\cdots+(B_{k}+C_{k})f_{k}, \end{equation} | (3.2) |
where C_{1}, C_{2}, \cdots, C_{k}\in \mathbb{C} and B_{1}, B_{2}, \cdots, B_{k} are analytic in \bigtriangleup given by the system of equations
\begin{equation} \left\{ \begin{array}{lr} B'_{1}f_{1}+B'_{2}f_{2}+\cdots+B'_{k}f_{k} = 0, \\ B'_{1}f'_{1}+B'_{2}f'_{2}+\cdots+B'_{k}f'_{k} = 0, \\ \cdots \\ B'_{1}f^{(k-2)}_{1}+B'_{2}f^{(k-2)}_{2}+\cdots+B'_{k}f^{(k-2)}_{k} = 0, \\ B'_{1}f^{(k-1)}_{1}+B'_{2}f^{(k-1)}_{2}+\cdots+B'_{k}f^{(k-1)}_{k} = F. \\ \end{array} \right. \end{equation} | (3.3) |
Since the Wronskian of f_{1}, f_{2}, \cdots, f_{k} satisfies W(f_{1}, f_{2}, \cdots, f_{k}) = \exp(-\int A_{k-1}dz) , we obtain
\begin{equation} B'_{j} = F\cdot G_{j}(f_{1}, f_{2}, \cdots, f_{k})\cdot \exp\left(\int A_{k-1}dz\right)\quad (j = 1, 2, \cdots, k), \end{equation} | (3.4) |
where G_{j}(f_{1}, f_{2}, \cdots, f_{k}) is a differential polynomial of f_{1}, f_{2}, \cdots, f_{k} and of their derivatives, with constant coefficients. Then by Lemma 3.1, we know that \alpha_{M}\geq \rho_{M, [p+1, q]}(f_{j})\geq \rho_{[p, q]}(A_{0}) . By (3.2)–(3.4), we have
\begin{equation} \rho_{M, [p+1, q]}(f)\leq \max\{\rho_{M, [p+1, q]}(F), \alpha_{M}\}. \end{equation} | (3.5) |
Since \rho_{M, [p+1, q]}(F) < \rho_{[p, q]}(A_{0})\leq \alpha_{M} , it follows from (3.5) and (1.6) that all solutions f of (1.6) satisfy \rho_{M, [p+1, q]}(f)\leq \alpha_{M} .
Now we assert that all solutions f of (1.6) satisfy \rho_{M, [p+1, q]}(f)\geq \rho_{[p, q]}(A_{0}) with at most one exception. In fact, if there exist two distinct solutions g_{1}, g_{2} of (1.6) with \rho_{M, [p+1, q]}(g_{i}) < \rho_{[p, q]}(A_{0}) (i = 1, 2) , then g = g_{1}-g_{2} satisfies \rho_{M, [p+1, q]}(g) = \rho_{M, [p+1, q]}(g_{1}-g_{2}) < \rho_{[p, q]}(A_{0}) . But g is a nonzero solution of (3.1) satisfying \rho_{M, [p+1, q]}(g) = \rho_{M, [p+1, q]}(g_{1}-g_{2})\geq\rho_{[p, q]}(A_{0}) by Lemma 3.1. This is a contradiction.
By Lemma 3.2, all solutions f of (1.6) satisfy \alpha_{M}\geq\rho_{M, [p+1, q]}(f) = \overline{\lambda}_{[p+1, q]}(f) = \lambda_{[p+1, q]}(f)\geq \rho_{[p, q]}(A_{0}) , with at most one exceptional f_0 satisfying \rho_{M, [p+1, q]}(f_0) < \rho_{[p, q]}(A_{0}) .
Lemma 3.4. Let p\geq q\geq1 be integers, \varphi be finite [p, q] -order analytic functions in \bigtriangleup and assume that coefficients A_{0}, A_{1}, \cdots, A_{k-1} , F\not\equiv0 and F-\varphi^{(k)}-A_{k-1}\varphi^{(k-1)}-\cdots-A_{1}\varphi'-A_{0}\varphi \not\equiv 0 are analytic in \bigtriangleup and \rho_{[p, q]}(A_{j}) < \rho_{[p, q]}(A_{0}) for all j = 1, 2, \cdots, k-1 . Let \alpha_{M} = \max\{\rho_{M, [p, q]}(A_{j}):j = 0, 1, \cdots, k-1\} . If \rho_{M, [p+1, q]}(F-\varphi^{(k)}-A_{k-1}\varphi^{(k-1)}-\cdots-A_{1}\varphi'-A_{0}\varphi) < \rho_{[p, q]}(A_{0}) , then all solutions f of (1.6) satisfy
\begin{equation*} \rho_{[p, q]}(A_{0})\leq\overline{\lambda}_{[p+1, q]}(f-\varphi) = \lambda_{[p+1, q]}(f-\varphi) = \rho_{M, [p+1, q]}(f)\leq \alpha_{M}, \end{equation*} |
with at most one exceptional f_0 satisfying \rho_{M, [p+1, q]}(f_0) < \rho_{[p, q]}(A_{0}) .
Proof . Suppose that g = f-\varphi , obtain f = g+\varphi , then from (1.6) we have g^{(k)}+A_{k-1}g^{(k-1)}+\cdots+A_{1}g'+A_{0}g = F-\varphi^{(k)}-A_{k-1}\varphi^{(k-1)}-\cdots-A_{1}\varphi'-A_{0}\varphi . By Lemma 3.3 we obtain all solutions f of (1.6) satisfy
\begin{equation*} \rho_{[p, q]}(A_{0})\leq\overline{\lambda}_{[p+1, q]}(f-\varphi) = \lambda_{[p+1, q]}(f-\varphi) = \rho_{M, [p+1, q]}(f)\leq \alpha_{M}, \end{equation*} |
with at most one exceptional f_0 satisfying \rho_{M, [p+1, q]}(f_0) < \rho_{[p, q]}(A_{0}) .
Lemma 3.5. (see [12]). Let p\geq q\geq1 be integers. Let f be a meromorphic function in \bigtriangleup such that \rho_{[p, q]}(f) = \rho < \infty, and let k\geq1 be an integer. Then for any \varepsilon > 0 ,
\begin{equation*} m\left(r, \frac{f^{(k)}}{f}\right) = O\left(\exp_{p-1}\left\{(\rho+\varepsilon )\log_{q}\left(\frac{1}{1-r}\right)\right\}\right) \end{equation*} |
holds for all r outside a set E_1 \subset[0, 1) with \int_{E_{1}} < /italic > < italic > \frac{dr}{1-r} < \infty.
Since F-(\varphi^{(k)}+A_{k-1}\varphi^{(k-1)}+\cdots+A_{1}\varphi'+A_{0}\varphi)\not\equiv 0 , \rho_{M, [p+1, q]}(F-(\varphi^{(k)}+A_{k-1}\varphi^{(k-1)}+\cdots+A_{1}\varphi'+A_{0}\varphi)) < \rho_{[p, q]}(A_{0}) . By Lemma 3.4, all nontrivial solutions of (1.6) satisfy
\begin{equation*} \rho_{[p, q]}(A_{0})\leq\overline{\lambda}_{[p+1, q]}(f-\varphi) = \lambda_{[p+1, q]}(f-\varphi) = \rho_{[p+1, q]}(f)\leq \rho_{M, [p, q]}(A_{0}), \end{equation*} |
with at most one exceptional f_0 such that \rho_{[p+1, q]}(f_0) < \rho_{[p, q]}(A_{0}) . By using (1.9) we have
\begin{equation} \begin{aligned} A^{i}_{0}& = A^{i-1}_{1}\left(\frac{(A^{i-1}_{1})'}{A^{i-1}_{1}}-\frac{(A^{i-1}_{0})'}{A^{i-1}_{0}}\right)+A^{i-1}_{0}\\ & = A^{i-1}_{1}\left(\frac{(A^{i-1}_{1})'}{A^{i-1}_{1}}-\frac{(A^{i-1}_{0})'}{A^{i-1}_{0}}\right)+A^{i-2}_{1}\left(\frac{(A^{i-2}_{1})'}{A^{i-2}_{1}}-\frac{(A^{i-2}_{0})'}{A^{i-2}_{0}}\right)+A^{i-2}_{0}\\ & = \sum\limits_{k = 0}^{i-1}A^{k}_{1}\left(\frac{(A^{k}_{1})'}{A^{k}_{1}}-\frac{(A^{k}_{0})'}{A^{k}_{0}}\right)+A_{0}. \end{aligned} \end{equation} | (4.1) |
Now we prove that A^{i}_{0}\not\equiv 0 for all i = 1, 2, 3, \cdots . For that we suppose there exists i\in \mathbb{N} such that A^{i}_{0} = 0 . By (4.1) and Lemma 3.5 we have for any \varepsilon > 0 ,
\begin{equation} \begin{aligned} T(r, A_{0}) = m(r, A_{0})&\leq\sum\limits_{k = 0}^{i-1}m(r, A^{k}_{1})+O\left(\exp_{p-1}\left\{(\beta+\varepsilon )\log_{q}\left(\frac{1}{1-r}\right)\right\}\right)\\ & = \sum\limits_{k = 0}^{i-1}T(r, A^{k}_{1})+O\left(\exp_{p-1}\left\{(\beta+\varepsilon )\log_{q}\left(\frac{1}{1-r}\right)\right\}\right), \end{aligned} \end{equation} | (4.2) |
outside a set E_1 \subset[0, 1) with \int_{E_{1}} \frac{dr}{1-r} < \infty, for all i = 1, 2, 3, \cdots , \beta = \rho_{[p, q]}(A_{0}) . Which implies the contradiction
\begin{equation*} \rho_{[p, q]}(A_{0})\leq\max\{\rho_{[p, q]}(A_{j}) (j = 1, 2, \cdots, k-1)\}. \end{equation*} |
Hence A^{i}_{0}\not\equiv 0 for all i = 1, 2, 3, \cdots . We prove that D_{i}\not\equiv 0 for all i = 1, 2, 3, \cdots . For that we suppose there exists i\in \mathbb{N} such that D_{i} = 0 . We have F_{i}-(\varphi^{(k)}+A^{i}_{k-1}\varphi^{(k-1)}+\cdots+A^{i}_{0}\varphi) = 0 from (1.11), which implies
\begin{equation*} \begin{aligned} F_{i}& = \varphi\left(\frac{\varphi^{(k)}}{\varphi}+A^{i}_{k-1}\frac{\varphi^{(k-1)}}{\varphi}+\cdots+A^{i}_{1}\frac{\varphi'}{\varphi}+A^{i}_{0}\right)\\ & = \varphi\left[\frac{\varphi^{(k)}}{\varphi}+A^{i}_{k-1}\frac{\varphi^{(k-1)}}{\varphi}+\cdots+A^{i}_{1}\frac{\varphi'}{\varphi}+\sum\limits_{k = 0}^{i-1}A^{k}_{1}\left(\frac{(A^{k}_{1})'}{A^{k}_{1}}-\frac{(A^{k}_{0})'}{A^{k}_{0}}\right)+A_{0}\right]. \end{aligned} \end{equation*} |
Here we suppose that \varphi(z)\not\equiv 0 ,
\begin{equation} A_{0} = \frac{F_{i}}{\varphi}-\left[\frac{\varphi^{(k)}}{\varphi}+A^{i}_{k-1}\frac{\varphi^{(k-1)}}{\varphi}+\cdots+A^{i}_{1}\frac{\varphi'}{\varphi}+\sum\limits_{k = 0}^{i-1}A^{k}_{1}\left(\frac{(A^{k}_{1})'}{A^{k}_{1}}-\frac{(A^{k}_{0})'}{A^{k}_{0}}\right)\right]. \end{equation} | (4.3) |
On the other hand, from (1.10),
\begin{equation} m(r, F_{i})\leq m(r, F)+O\left(\exp_{p-1}\left\{(\beta+\varepsilon )\log_{q}\left(\frac{1}{1-r}\right)\right\}\right). \end{equation} | (4.4) |
By (4.3), (4.4) and Lemma 3.5 we have
\begin{equation} \begin{aligned} T(r, A_{0}) = &m(r, A_{0})\leq m(r, F)+m(r, \frac{1}{\varphi})+\sum\limits_{k = 0}^{i-1}m(r, A^{k}_{1})\\ &+\sum\limits_{j = 1}^{k-1}m(r, A^{i}_{j})+O\left(\exp_{p-1}\left\{(\beta+\varepsilon )\log_{q}\left(\frac{1}{1-r}\right)\right\}\right), \end{aligned} \end{equation} | (4.5) |
which implies the contradiction
\begin{equation*} \rho_{[p, q]}(A_{0})\leq\max\{\rho_{[p, q]}(A_{j}) (j = 1, 2, \cdots, k-1), \rho_{[p, q]}(F), \rho_{[p, q]}(\varphi)\}. \end{equation*} |
If \varphi(z)\equiv 0 , then from (1.10) and (1.11)
\begin{equation} F'_{i-1}-\frac{(A^{i-1}_{0})'}{A^{i-1}_{0}}F_{i-1} = 0, \end{equation} | (4.6) |
which implies F_{i-1}(z) = cA^{i-1}_{0}(z) , where c is some constant. By (4.1) and (4.6), we have
\begin{equation} \frac{1}{c}F_{i-1} = \sum\limits_{k = 0}^{i-2}A^{k}_{1}\left(\frac{(A^{k}_{1})'}{A^{k}_{1}}-\frac{(A^{k}_{0})'}{A^{k}_{0}}\right)+A_{0}. \end{equation} | (4.7) |
By (4.4), (4.7) and Lemma 3.5 we have
\begin{equation*} \label{C8} \begin{aligned} T(r, A_{0}) = m(r, A_{0})\leq m(r, F)+\sum\limits_{k = 0}^{i-2}m(r, A^{k}_{1})+O\left(\exp_{p-1}\left\{(\beta+\varepsilon )\log_{q}\left(\frac{1}{1-r}\right)\right\}\right), \end{aligned} \end{equation*} |
which implies the contradiction
\begin{equation*} \rho_{[p, q]}(A_{0})\leq\max\{\rho_{[p, q]}(A_{j}) (j = 1, 2, \cdots, k-1), \rho_{[p, q]}(F)\}. \end{equation*} |
Hence D_{i}\not\equiv 0 for all i = 1, 2, 3, \cdots . Since A^{i}_{0}\not \equiv0 , D_{i}\not\equiv0 (i = 1, 2, 3, \cdots) , then by Theorem 1.4 and Lemma 3.4 we have
\begin{equation*} \rho_{[p, q]}(A_{0})\leq\overline{\lambda}_{[p+1, q]}(f^{(j)}-\varphi) = \lambda_{[p+1, q]}(f^{(j)}-\varphi) = \rho_{[p+1, q]}(f)\leq\rho_{M, [p, q]}(A_{0}) \quad (j = 0, 1, 2, \cdots) \end{equation*} |
with at most one possible exceptional solution f_0 such that
\begin{equation*} \rho_{[p+1, q]}(f_0) < \rho_{[p, q]}(A_{0}). \end{equation*} |
Therefore, the proof of Theorem 2.1 is completely.
We need only to prove that A^{i}_{0}\not\equiv0 and D_{i}\not\equiv0 for all j = 1, 2, 3, \cdots . Then by Theorem 1.4 we can obtain Theorem 2.2. Consider the assumption \delta(\infty, A_{0}) = \delta > 0 . Then for r\rightarrow1^- we have
\begin{equation} T(r, A_{0})\leq \frac{2}{\delta} m(r, A_{0}). \end{equation} | (4.8) |
Now we prove that A^{i}_{0}\not\equiv 0 for all i = 1, 2, 3, \cdots . For that we suppose there exists i\in \mathbb{N} such that A^{i}_{0} = 0 . By (4.1) and (4.8) we obtain
\begin{equation} \begin{aligned} T(r, A_{0})\leq \frac{2}{\delta} m(r, A_{0})&\leq \frac{2}{\delta}\sum\limits_{k = 0}^{i-1}m(r, A^{k}_{1})+\frac{2}{\delta}O\left(\exp_{p-1}\left\{(\beta+\varepsilon )\log_{q}\left(\frac{1}{1-r}\right)\right\}\right)\\ &\leq \frac{2}{\delta}\sum\limits_{k = 0}^{i-1}T(r, A^{k}_{1})+\frac{2}{\delta}O\left(\exp_{p-1}\left\{(\beta+\varepsilon )\log_{q}\left(\frac{1}{1-r}\right)\right\}\right), \end{aligned} \end{equation} | (4.9) |
which implies the contradiction
\begin{equation*} \rho_{[p, q]}(A_{0})\leq\max\{\rho_{[p, q]}(A_{j}) (j = 1, 2, \cdots, k-1)\}. \end{equation*} |
Hence A^{i}_{0}\not\equiv 0 for all i = 1, 2, 3, \cdots . We prove that D_{i}\not\equiv 0 for all i = 1, 2, 3, \cdots . For that we suppose there exists i\in \mathbb{N} such that D_{i} = 0 . If \varphi(z)\not\equiv 0 , then by (4.3), (4.4), (4.8) and Lemma 3.5 we have
\begin{equation} \begin{aligned} T(r, A_{0})\leq \frac{2}{\delta} m(r, A_{0})\leq &\frac{2}{\delta}\left [m(r, F)+m(r, \frac{1}{\varphi})+\sum\limits_{k = 0}^{i-1}m(r, A^{k}_{1})+\sum\limits_{j = 1}^{k-1}m(r, A^{i}_{j})\right ]\\ &+\frac{2}{\delta}\left[ O\left(\exp_{p-1}\left\{(\beta+\varepsilon )\log_{q}\left(\frac{1}{1-r}\right)\right\}\right) \right], \end{aligned} \end{equation} | (4.10) |
which implies the contradiction
\begin{equation*} \rho_{[p, q]}(A_{0})\leq\max\{\rho_{[p, q]}(A_{j}) (j = 1, 2, \cdots, k-1), \rho_{[p, q]}(F), \rho_{[p, q]}(\varphi)\}. \end{equation*} |
If \varphi(z)\equiv 0 , then by (4.4), (4.7) and Lemma 3.5 we have
\begin{equation} \begin{aligned} T(r, A_{0})&\leq \frac{2}{\delta} m(r, A_{0})\\ &\leq \frac{2}{\delta}m(r, F)+\frac{2}{\delta}\sum\limits_{k = 0}^{i-2}m(r, A^{k}_{1}) +O\left(\exp_{p-1}\left\{(\beta+\varepsilon )\log_{q}\left(\frac{1}{1-r}\right)\right\}\right)\\ &\leq\frac{2}{\delta}T(r, F)+\frac{2}{\delta}\sum\limits_{k = 0}^{i-2}T(r, A^{k}_{1}) +O\left(\exp_{p-1}\left\{(\beta+\varepsilon )\log_{q}\left(\frac{1}{1-r}\right)\right\}\right), \end{aligned} \end{equation} | (4.11) |
which implies the contradiction
\begin{equation*} \rho_{[p, q]}(A_{0})\leq\max\{\rho_{[p, q]}(A_{j}) (j = 1, 2, \cdots, k-1), \rho_{[p, q]}(F)\}. \end{equation*} |
Hence D_{i}\not\equiv 0 for all i = 1, 2, 3, \cdots . By Theorem 1.4, we have Theorem 2.2.
Therefore, this completes the proof of Theorem 2.2.
We first obtained some oscillation theorems (see [14]) which consider the distribution of meromorphic solutions and their arbitrary-order derivatives taking small function values instead of taking zeros. Moreover, Z. Dahmani and M. A. Abdelaoui (see [15]) investigated the higher order non-homogeneous linear differential equation which can be seen as an improvement of [14]. By using those theorems, we obtain some oscillation theorems for f^{(j)}(z)-\varphi(z) , where f is a solution and \varphi(z) is a small function. We believe our results will attract the attentions of the related readers.
The authors would like to thank the anonymous referee for making valuable suggestions and comments to improve this article.
This work was supported by the National Natural Science Foundation of China (12161074), the Natural Science Foundation of Jiangxi Province in China (20181BAB201001), and the Foundation of Education Department of Jiangxi (GJJ190895, GJJ190876) of China.
The authors declare that none of the authors have any competing interests in the manuscript.
[1] | W. K. Hayman, Meromorphic functions, Oxford: The Clarendon Press, 1964. |
[2] | J. Heittokangas, On complex differential equations in the unit disc, Ann. Acad. Sci. Fenn. Math. Diss., 122 (2000), 1–54. |
[3] | I. Laine, Nevanlinna theory and complex differential equations, Berlin: Walter de Gruyter, 1993. |
[4] | M. Tsuji, Potential theory in modern function theory, New York: Chelsea, 1975. |
[5] |
Z. X. Chen, K. H. Shon, The growth of solutions of differential equations with coefficients of small growth in the disc, J. Math. Anal. Appl., 297 (2004), 285–304. doi: 10.1016/j.jmaa.2004.05.007
![]() |
[6] |
I. E. Chyzhykov, G. G. Gundersen, J. Heittokangas, Linear differential equations and logarithmic derivative estimates, Proc. London Math. Soc., 86 (2003), 735–754. doi: 10.1112/S0024611502013965
![]() |
[7] | L. G. Bernal, On growth k-order of solutions of a complex homogeneous linear differential equation, Proc. Am. Math. Soc., 101 (1987), 317–322. |
[8] | L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math., 22 (1998), 385–406. |
[9] |
T. B. Cao, H. Y. Yi, The growth of solutions of linear differential equations with coefficients of iterated order in the unit disc, J. Math. Anal. Appl., 319 (2006), 278–294. doi: 10.1016/j.jmaa.2005.09.050
![]() |
[10] |
T. B. Cao, The growth, oscillation and fixed points of solutions of complex linear differential equations in the unit disc, J. Math. Anal. Appl., 352 (2009), 739–748. doi: 10.1016/j.jmaa.2008.11.033
![]() |
[11] |
T. B. Cao, Z. S. Deng, Solutions of non-homogeneous linear differential equations in the unit disc, Ann. Pol. Math., 97 (2010), 51–61. doi: 10.4064/ap97-1-4
![]() |
[12] | B. Belaïdi, Growth of solutions to linear differential equations with analytic coefficients of [p, q]-order in the unit disc, Electron. J. Differ. Equ., 2011 (2011), 1–11. |
[13] |
Z. Latreuch, B. Belaïdi, Linear differential equations with analytic coefficients of [p, q]-order in the unit disc, Sarajevo J. Math., 9 (2013), 71–84. doi: 10.5644/SJM.09.1.06
![]() |
[14] |
P. Gong, L. P. Xiao, Oscillation of arbitrary-order derivatives of solutions to linear differential equations taking small funcions in the unit disc, Electron. J. Differ. Equ., 2015 (2015), 1–12. doi: 10.1186/s13662-014-0331-4
![]() |
[15] |
Z. Dahmani, M. A. Abdelaoui, A unit disc study for [p, q]-order meromorphic solutions of complex differential equations, J. Interdiscip. Math., 21 (2018), 595–609. doi: 10.1080/09720502.2017.1390849
![]() |