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1. Introduction

In this paper, we assume that the reader is familiar with the fundamental results and the standard
notations of the Nevanlinna’s value distribution theory on the complex plane C and in the unit disc
△ = {z ∈ C : |z| < 1} (see [1–4]). In addition, we need to give some definitions and discussions. Firstly,
let us give two definitions about the degree of small growth order of functions in △ as polynomials
on the complex plane C. There are many types of definitions of small growth order of functions in
△ (see [5, 6]).
Definition 1.1. (see [5, 6]). Let f be a meromorphic function in △ , and

D( f ) = lim
r→1−

T (r, f )
log 1

1−r

= b.
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If b < ∞, then we say that f is of finite b degree (or is non-admissible). If b = ∞ , then we say that f
is of infinite (or is admissible), both defined by characteristic function T (r, f ).
Definition 1.2. (see [5, 6]). Let f be an analytic function in △ , and

DM( f ) = lim
r→1−

log+ M(r, f )
log 1

1−r

= a (or a = ∞).

Then we say that f is a function of finite a degree (or of infinite degree) defined by maximum modulus
function M(r, f ) = max

|z|=r
| f (z) |.

Moreover, for F ⊂ [0, 1), the upper and lower densities of F are defined by

dens△F = lim
r→1−

m(F ∩ [0, r))
m([0, r))

, dens
△
F = lim

r→1−

m(F ∩ [0, r))
m([0, r))

respectively, where m(G) =
∫

G
dt

1−t for G ⊂ [0, 1).
Now we give the definition of iterated order and growth index to classify generally the functions of

fast growth in △ as those in C, see [3, 7, 8]. Let us define inductively, for r ∈ [0, 1), exp1 r = er and
expp+1 r = exp(expp r), p ∈ N. We also define for all r sufficiently large in (0, 1), log1 r = log r and
logp+1 r = log(logp r), p ∈ N. Moreover, we denote by exp0 r = r, log0 r = r, exp−1 r = log1 r, log−1 r =
exp1 r.
Definition 1.3. (see [9]). The iterated p-order of a meromorphic function f in △ is defined by

ρp( f ) = lim
r→1−

log+p T (r, f )

log 1
1−r

(p ≥ 1).

For an analytic function f in △, we also define

ρM,p( f ) = lim
r→1−

log+p+1 M(r, f )

log 1
1−r

(p ≥ 1).

Remark 1.4. It follows by M. Tsuji in ( [4]) that if f is an analytic function in △, then

ρ1( f ) ≤ ρM,1( f ) ≤ ρ1( f ) + 1.

However it follows by (Proposition 2.2.2 in [3]) that

ρM,p( f ) = ρp( f ) (p ≥ 2).

Definition 1.5. (see [9]). The growth index of the iterated order of a meromorphic function f in △ is
defined by

i( f ) =


0, if f is non-admissible;
min{p ∈ N, ρp( f ) < ∞}, if f is admissible;
∞, if ρp( f ) = ∞ for all p ∈ N.

For an analytic function f in △, we also define

iM( f ) =


0, if f is non-admissible;
min{p ∈ N, ρM,p( f ) < ∞}, if f is admissible;
∞, if ρM,p( f ) = ∞ for all p ∈ N.
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Definition 1.6. (see [10, 11]). Let f be a meromorphic function in △. Then the iterated p-exponent of
convergence of the sequence of zeros of f is defined by

λp( f ) = lim
r→1−

log+p N(r, 1
f )

log 1
1−r

,

where N(r, 1
f ) is the integrated counting function of zeros of f (z) in {z ∈ C :| z |< r}. Similarly, the

iterated p-exponent of convergence of the sequence of distinct zeros of f is defined by

λp( f ) = lim
r→1−

log+p N(r, 1
f )

log 1
1−r

,

where N(r, 1
f ) is the integrated counting function of distinct zeros of f in {z ∈ C :| z |< r}.

Definition 1.7. (see [12]). Let p ≥ q ≥ 1 be integers. Let f be meromorphic function in △, the
[p, q]-order of f is defined by

ρ[p,q]( f ) = lim
r→1−

log+p T (r, f )

logq
1

1−r

.

For an analytic function f in △, we also define

ρM,[p,q]( f ) = lim
r→1−

log+p+1 M(r, f )

logq
1

1−r

.

Remark 1.8. It is easy to see that 0 ≤ ρ[p,q]( f ) ≤ ∞. If f is non-admissible, then ρ[p,q] = 0 for
any p ≥ q ≥ 1. By Definition 1.7, we have that ρ[1,1]( f ) = ρ1( f ) = ρ( f ), ρ[2,1]( f ) = ρ2( f ) and
ρ[p+1,1]( f ) = ρp+1( f ).
Proposition 1.9. (see [12]). Let p ≥ q ≥ 1 be integers. Let f be analytic function in △ of [p, q]-order.
The following two statements hold:

(i) If p = q, then
ρ[p,q]( f ) ≤ ρM,[p,q]( f ) ≤ ρ[p,q]( f ) + 1.

(ii) If p > q, then
ρ[p,q]( f ) = ρM,[p,q]( f ).

Definition 1.10. (see [13]). Let p ≥ q ≥ 1 be integers. The [p, q]-exponent of convergence of the zero
sequence of a meromorphic function f in △ is defined by

λ[p,q]( f ) = lim
r→1−

log+p N(r, 1
f )

logq
1

1−r

.

Similarly, the [p, q]-exponent of convergence of the sequence of distinct zeros of f is defined by

λ[p,q]( f ) = lim
r→1−

log+p N(r, 1
f )

logq
1

1−r

.
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Definition 1.11. (see [1]). For a ∈ C = C ∪ {∞}, the deficiency of f is defined by

δ(a, f ) = 1 − lim
r→1−

N(r, 1
f−a )

T (r, f )
,

provided f has unbounded characteristic.
The complex oscillation theory of solutions of linear differential equations in the complex plane C

was started by S. Bank and I. Laine in 1982. Many authors have investigated the growth and
oscillation of the solutions of complex linear differential equations in C. In 2000, J. Heittokangas first
studied the growth of the solution of linear differential equations in the unit disc △. There already
exist many results (see [2, 9–13]) in △, but the study is more difficult than that in C, because the
efficient tool, Wiman-Valiron theory, doesn’t hold in △. In 2015, author and L. P. Xiao (see [14])
studied the relationship between solutions and their derivatives of the differential equation

f ′′ + A(z) f ′ + B(z) f = F(z), (1.1)

where A(z), B(z) . 0 and F(z) . 0 are meromorphic functions of finite iterated p-order in △. Author
obtained some oscillation theorems for f ( j)(z)−φ(z), where f is a solution and φ(z) is a small function.
Before we state author’s results we need to define the following:

A j(z) = A j−1(z) −
B′j−1(z)

B j−1(z)
, ( j = 1, 2, 3, · · · ), (1.2)

B j(z) = A′j−1(z) − A j−1(z)
B′j−1(z)

B j−1(z)
+ B j−1(z), ( j = 1, 2, 3, · · · ), (1.3)

F j(z) = F′j−1(z) − F j−1(z)
B′j−1(z)

B j−1(z)
, ( j = 1, 2, 3, · · · ), (1.4)

D j = F j − (φ′′ + A jφ
′ + B jφ), ( j = 1, 2, 3, · · · ), (1.5)

where A0(z) = A(z), B0(z) = B(z) and F0(z) = F(z). Author and L. P. Xiao obtained the following
results.

Theorem 1.1. (see [14]). Let φ(z) be a meromorphic function in △ with ρp(φ) < ∞. Let A(z), B(z) . 0
and F(z) . 0 be meromorphic functions of finite iterated p-order in △ such that B j(z) . 0 and D j(z) . 0
( j = 0, 1, 2, · · · ).

(i) If f is a meromorphic solution in △ of (1.1) with ρp( f ) = ∞ and ρp+1( f ) = ρ < ∞, then f satisfies

λp( f ( j) − φ) = λp( f ( j) − φ) = ρp( f ) = ∞ ( j = 0, 1, 2, · · · ),

λp+1( f ( j) − φ) = λp+1( f ( j) − φ) = ρp+1( f ) = ρ ( j = 0, 1, 2, · · · ).

(ii) If f is a meromorphic solution in △ of (1.1) with

max{ρp(A), ρp(B), ρp(F), ρp(φ)} < ρp( f ) < ∞,

then
λp( f ( j) − φ) = λp( f ( j) − φ) = ρp( f ) ( j = 0, 1, 2, · · · ).
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Theorem 1.2. (see [14]). Let φ(z) be an analytic function in △ with ρp(φ) < ∞ and be not a solution
of (1.1). Let A(z), B(z) . 0 and F(z) . 0 be analytic functions in △ with finite iterated p-order such
that β = ρp(B) > max{ρp(A), ρp(F), ρp(φ)} and ρM,p(A) ≤ ρM,p(B). Then all nontrivial solutions of (1.1)
satisfy

ρp(B) ≤ λp+1( f ( j) − φ) = λp+1( f ( j) − φ) = ρp+1( f ) ≤ ρM,p(B) ( j = 0, 1, 2, · · · )

with at most one possible exceptional solution f0 such that

ρp+1( f0) < ρp(B).

Theorem 1.3. (see [14]). Let φ(z) be a meromorphic function in △ with ρp(φ) < ∞ and be not a
solution of (1.1). Let A(z), B(z) . 0 and F(z) . 0 be meromorphic functions in △ with finite iterated
p-order such that ρp(B) > max{ρp(A), ρp(F), ρp(φ)} and δ(∞, B) > 0. If f is a meromorphic solution in
△ of (1.1) with ρp( f ) = ∞ and ρp+1( f ) = ρ, then f satisfies

λp( f ( j) − φ) = λp( f ( j) − φ) = ρp( f ) = ∞ ( j = 0, 1, 2, · · · ),

λp+1( f ( j) − φ) = λp+1( f ( j) − φ) = ρp+1( f ) = ρ ( j = 0, 1, 2, · · · ).

In 2018, Z. Dahmani and M. A. Abdelaoui (see [15]) studied the higher order non-homogeneous
linear differential equation

f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f = F(z), k ≥ 2, (1.6)

where A j(z)( j = 0, 1, · · · , k − 1), and F(z) . 0 are meromorphic functions of finite iterated [p, q]-order
in △. Before we state their results we need to define the following:

A0
j = A j, ( j = 0, 1, · · · , k − 1), (1.7)

Ai
k−1 = Ai−1

k−1 −
(Ai−1

0 )′

Ai−1
0

, (i = 1, 2, 3, · · · ), (1.8)

Ai
j = Ai−1

j + Ai−1
j+1

(Ψi−1
j+1)′

Ψi−1
j+1

, ( j = 0, 1, · · · , k − 2, i = 1, 2, 3, · · · ), (1.9)

Fi = F′i−1 −
(Ai−1

0 )′

Ai−1
0

Fi−1, F0 = F, (i = 1, 2, 3, · · · ), (1.10)

Di = Fi − (φ(k) + Ai
k−1φ

(k−1) + · · · + Ai
0φ), (i = 0, 1, 2, · · · ), (1.11)

where Ψi−1
j+1 =

Ai−1
j+1

Ai−1
0

. Z. Dahmani and M. A. Abdelaoui obtained the following results.

Theorem 1.4. (see [15]) Let p ≥ q ≥ 1 be integers, and let A j(z)( j = 0, 1, · · · , k − 1), F(z) . 0 and
φ(z) be meromorphic functions in △ of finite [p, q]-order such that Di(z) . 0 (i = 0, 1, 2, · · · ). If f is a
meromorphic solution of the Eq (1.6) of infinite [p, q]-order and ρ[p+1,q]( f ) = ρ, then f satisfies

λ[p,q]( f ( j) − φ) = λ[p,q]( f ( j) − φ) = ρ[p,q]( f ) = ∞ ( j = 0, 1, 2, · · · ),

λ[p+1,q]( f ( j) − φ) = λ[p+1,q]( f ( j) − φ) = ρ[p+1,q]( f ) = ρ ( j = 0, 1, 2, · · · ).
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Theorem 1.5. (see [15]). Let p ≥ q ≥ 1 be integers, and let A j(z)( j = 0, 1, · · · , k − 1), F(z) . 0 and
φ(z) be meromorphic functions in △ of finite [p, q]-order such that Di(z) . 0 (i = 0, 1, 2, · · · ). If f is a
meromorphic solution of the Eq (1.6) with

max{ρ[p,q](A j)( j = 0, 1, 2, · · · , k − 1), ρ[p,q](F), ρ[p,q](φ)} < ρ[p,q]( f ) = ρ,

then f satisfies

λ[p,q]( f ( j) − φ) = λ[p,q]( f ( j) − φ) = ρ[p,q]( f ) = ρ ( j = 0, 1, 2, · · · ).

2. Main results

According to the proof process of Theorem 1.4 and Theorem 1.5, we know that it is necessary
to increase the condition Ai

0(z) . 0 and Di(z) . 0 (i = 0, 1, 2, · · · ) to ensure that the Theorem 1.4
and the Theorem 1.5 are established, because we need to divide both sides of the higher order non-
homogeneous linear differential equations by Ai

0(z). Where Ai
0(z) and Di(z) are defined in (1.7), (1.9)

and (1.11). In this article, we give some sufficient conditions on the coefficients which guarantee
Ai

0(z) . 0 and Di(z) . 0 (i = 0, 1, 2, · · · ), and we obtain:

Theorem 2.1. Let p ≥ q ≥ 1 be integers, and let φ(z) be an analytic function in △with ρ[p,q](φ) < ∞ and
be not a solution of (1.6). Let A j(z)( j = 1, 2, · · · , k−1), A0(z) . 0 and F(z) . 0 be analytic functions in
△ of finite [p, q]-order such that β = ρ[p,q](A0) > max{ρ[p,q](A j)( j = 1, 2, · · · , k − 1), ρ[p,q](F), ρ[p,q](φ)}
and ρM,[p,q](A j) ≤ ρM,[p,q](A0) ( j = 1, 2, · · · , k − 1). Then all nontrivial solutions of (1.6) satisfy

ρ[p,q](A0) ≤ λ[p+1,q]( f ( j) − φ) = λ[p+1,q]( f ( j) − φ) = ρ[p+1,q]( f ) ≤ ρM,[p,q](A0) ( j = 0, 1, 2, · · · ),

with at most one possible exceptional solution f0 such that

ρ[p+1,q]( f0) < ρ[p,q](A0).

Theorem 2.2. Let p ≥ q ≥ 1 be integers, and let φ(z) be an meromorphic function in △ with
ρ[p,q](φ) < ∞ and be not a solution of (1.6). Let A j(z)( j = 1, 2, · · · , k − 1), A0(z) . 0 and F(z) . 0 be
meromorphic functions in △ of finite [p, q]-order such that
ρ[p,q](A0) > max{ρ[p,q](A j)( j = 1, 2, · · · , k − 1), ρ[p,q](F), ρ[p,q](φ)} and δ(∞, A0) > 0. If f is a
meromorphic solution in △ of (1.6) with ρ[p,q]( f ) = ∞ and ρ[p+1,q]( f ) = ρ, then f satisfies

λ[p,q]( f ( j) − φ) = λ[p,q]( f ( j) − φ) = ρ[p,q]( f ) = ∞ ( j = 0, 1, 2, · · · ),

λ[p+1,q]( f ( j) − φ) = λ[p+1,q]( f ( j) − φ) = ρ[p+1,q]( f ) = ρ ( j = 0, 1, 2, · · · ).

3. Some lemmas

To prove our theorems, we require the following lemmas.

Lemma 3.1. (see [13]). Let p ≥ q ≥ 1 be integers, and let A0, A1, · · · , Ak−1 be analytic functions in △
satisfying

max{ρ[p,q](A j) : j = 1, 2, · · · , k − 1} < ρ[p,q](A0).
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If f . 0 is a solution of (3.1), then ρ[p,q]( f ) = ∞ and

ρ[p,q](A0) ≤ ρ[p+1,q]( f ) ≤ max{ρM,[p,q](A j) : j = 0, 1, · · · , k − 1}.

Furthermore, if p > q, then
ρ[p+1,q]( f ) = ρ[p,q](A0).

Lemma 3.2. (see [15]). Let p ≥ q ≥ 1 be integers. Let A0, A1, · · · , Ak−1 and F . 0 be meromorphic
functions in △ and let f be a meromorphic solution of (1.6) satisfying max{ρ[p,q](A j)( j = 0, 1, 2, · · · , k−
1), ρ[p,q](F)} < ρ[p,q]( f ) ≤ ∞, then we have

λ[p,q]( f ) = λ[p,q]( f ) = ρ[p,q]( f ),

λ[p+1,q]( f ) = λ[p+1,q]( f ) = ρ[p+1,q]( f ).

Lemma 3.3. Let p ≥ q ≥ 1 be integers, and assume that coefficients A0, A1, · · · , Ak−1 and F . 0 are
analytic in △ and ρ[p,q](A j) < ρ[p,q](A0) for all j = 1, 2, · · · , k − 1. Let αM = max{ρM,[p,q](A j) : j =
0, 1, · · · , k − 1}. If ρM,[p+1,q](F) < ρ[p,q](A0), then all solutions f of (1.6) satisfy

ρ[p,q](A0) ≤ λ[p+1,q]( f ) = λ[p+1,q]( f ) = ρM,[p+1,q]( f ) ≤ αM,

with at most one exceptional f0 satisfying ρM,[p+1,q]( f0) < ρ[p,q](A0).

Proo f . Let f1, f2, · · · , fk be a solution base of the differential equation

f (k) + Ak−1(z) f (k−1) + · · · + A1(z) f ′ + A0(z) f = 0. (3.1)

Then by the elementary theory of differential equations (see [3]), any solution of (1.6) can be
represented in the form

f = (B1 +C1) f1 + (B2 +C2) f2 + · · · + (Bk +Ck) fk, (3.2)

where C1,C2, · · · ,Ck ∈ C and B1, B2, · · · , Bk are analytic in △ given by the system of equations

B′1 f1 + B′2 f2 + · · · + B′k fk = 0,
B′1 f ′1 + B′2 f ′2 + · · · + B′k f ′k = 0,
· · ·

B′1 f (k−2)
1 + B′2 f (k−2)

2 + · · · + B′k f (k−2)
k = 0,

B′1 f (k−1)
1 + B′2 f (k−1)

2 + · · · + B′k f (k−1)
k = F.

(3.3)

Since the Wronskian of f1, f2, · · · , fk satisfies W( f1, f2, · · · , fk) = exp(−
∫

Ak−1dz), we obtain

B′j = F ·G j( f1, f2, · · · , fk) · exp
(∫

Ak−1dz
)

( j = 1, 2, · · · , k), (3.4)

where G j( f1, f2, · · · , fk) is a differential polynomial of f1, f2, · · · , fk and of their derivatives, with
constant coefficients. Then by Lemma 3.1, we know that αM ≥ ρM,[p+1,q]( f j) ≥ ρ[p,q](A0). By
(3.2)–(3.4), we have

ρM,[p+1,q]( f ) ≤ max{ρM,[p+1,q](F), αM}. (3.5)
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Since ρM,[p+1,q](F) < ρ[p,q](A0) ≤ αM, it follows from (3.5) and (1.6) that all solutions f of (1.6) satisfy
ρM,[p+1,q]( f ) ≤ αM.

Now we assert that all solutions f of (1.6) satisfy ρM,[p+1,q]( f ) ≥ ρ[p,q](A0) with at most one
exception. In fact, if there exist two distinct solutions g1, g2 of (1.6) with ρM,[p+1,q](gi) < ρ[p,q](A0)
(i = 1, 2), then g = g1 − g2 satisfies ρM,[p+1,q](g) = ρM,[p+1,q](g1 − g2) < ρ[p,q](A0). But g is a nonzero
solution of (3.1) satisfying ρM,[p+1,q](g) = ρM,[p+1,q](g1 − g2) ≥ ρ[p,q](A0) by Lemma 3.1. This is a
contradiction.

By Lemma 3.2, all solutions f of (1.6) satisfy αM ≥ ρM,[p+1,q]( f ) = λ[p+1,q]( f ) = λ[p+1,q]( f ) ≥
ρ[p,q](A0), with at most one exceptional f0 satisfying ρM,[p+1,q]( f0) < ρ[p,q](A0).

Lemma 3.4. Let p ≥ q ≥ 1 be integers, φ be finite [p, q]-order analytic functions in △ and assume that
coefficients A0, A1, · · · , Ak−1, F . 0 and F − φ(k) − Ak−1φ

(k−1) − · · · − A1φ
′ − A0φ . 0 are analytic in △

and ρ[p,q](A j) < ρ[p,q](A0) for all j = 1, 2, · · · , k − 1. Let αM = max{ρM,[p,q](A j) : j = 0, 1, · · · , k − 1}. If
ρM,[p+1,q](F − φ(k) − Ak−1φ

(k−1) − · · · − A1φ
′ − A0φ) < ρ[p,q](A0), then all solutions f of (1.6) satisfy

ρ[p,q](A0) ≤ λ[p+1,q]( f − φ) = λ[p+1,q]( f − φ) = ρM,[p+1,q]( f ) ≤ αM,

with at most one exceptional f0 satisfying ρM,[p+1,q]( f0) < ρ[p,q](A0).

Proo f . Suppose that g = f − φ, obtain f = g + φ, then from (1.6) we have g(k) + Ak−1g(k−1) + · · · +

A1g′ + A0g = F − φ(k) − Ak−1φ
(k−1) − · · · − A1φ

′ − A0φ. By Lemma 3.3 we obtain all solutions f of (1.6)
satisfy

ρ[p,q](A0) ≤ λ[p+1,q]( f − φ) = λ[p+1,q]( f − φ) = ρM,[p+1,q]( f ) ≤ αM,

with at most one exceptional f0 satisfying ρM,[p+1,q]( f0) < ρ[p,q](A0).

Lemma 3.5. (see [12]). Let p ≥ q ≥ 1 be integers. Let f be a meromorphic function in △ such that
ρ[p,q]( f ) = ρ < ∞, and let k ≥ 1 be an integer. Then for any ε > 0,

m
(
r,

f (k)

f

)
= O

(
expp−1

{
(ρ + ε) logq

(
1

1 − r

)})

holds for all r outside a set E1 ⊂ [0, 1) with
∫

E1

dr
1−r < ∞.

4. Proofs of Theorems 2.1 and 2.2

4.1. The proof of Theorem 2.1

Since F−(φ(k)+Ak−1φ
(k−1)+· · ·+A1φ

′+A0φ) . 0, ρM,[p+1,q](F−(φ(k)+Ak−1φ
(k−1)+· · ·+A1φ

′+A0φ)) <
ρ[p,q](A0). By Lemma 3.4, all nontrivial solutions of (1.6) satisfy

ρ[p,q](A0) ≤ λ[p+1,q]( f − φ) = λ[p+1,q]( f − φ) = ρ[p+1,q]( f ) ≤ ρM,[p,q](A0),
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with at most one exceptional f0 such that ρ[p+1,q]( f0) < ρ[p,q](A0). By using (1.9) we have

Ai
0 = Ai−1

1

(
(Ai−1

1 )′

Ai−1
1

−
(Ai−1

0 )′

Ai−1
0

)
+ Ai−1

0

= Ai−1
1

(
(Ai−1

1 )′

Ai−1
1

−
(Ai−1

0 )′

Ai−1
0

)
+ Ai−2

1

(
(Ai−2

1 )′

Ai−2
1

−
(Ai−2

0 )′

Ai−2
0

)
+ Ai−2

0

=

i−1∑
k=0

Ak
1

(
(Ak

1)′

Ak
1

−
(Ak

0)′

Ak
0

)
+ A0.

(4.1)

Now we prove that Ai
0 . 0 for all i = 1, 2, 3, · · · . For that we suppose there exists i ∈ N such that

Ai
0 = 0. By (4.1) and Lemma 3.5 we have for any ε > 0,

T (r, A0) = m(r, A0) ≤
i−1∑
k=0

m(r, Ak
1) + O

(
expp−1

{
(β + ε) logq

(
1

1 − r

)})

=

i−1∑
k=0

T (r, Ak
1) + O

(
expp−1

{
(β + ε) logq

(
1

1 − r

)})
,

(4.2)

outside a set E1 ⊂ [0, 1) with
∫

E1

dr
1−r < ∞, for all i = 1, 2, 3, · · · , β = ρ[p,q](A0). Which implies the

contradiction
ρ[p,q](A0) ≤ max{ρ[p,q](A j)( j = 1, 2, · · · , k − 1)}.

Hence Ai
0 . 0 for all i = 1, 2, 3, · · · . We prove that Di . 0 for all i = 1, 2, 3, · · · . For that we suppose

there exists i ∈ N such that Di = 0. We have Fi − (φ(k) + Ai
k−1φ

(k−1) + · · · + Ai
0φ) = 0 from (1.11), which

implies

Fi = φ

(
φ(k)

φ
+ Ai

k−1
φ(k−1)

φ
+ · · · + Ai

1
φ′

φ
+ Ai

0

)
= φ

φ(k)

φ
+ Ai

k−1
φ(k−1)

φ
+ · · · + Ai

1
φ′

φ
+

i−1∑
k=0

Ak
1

(
(Ak

1)′

Ak
1

−
(Ak

0)′

Ak
0

)
+ A0

 .
Here we suppose that φ(z) . 0,

A0 =
Fi

φ
−

φ(k)

φ
+ Ai

k−1
φ(k−1)

φ
+ · · · + Ai

1
φ′

φ
+

i−1∑
k=0

Ak
1

(
(Ak

1)′

Ak
1

−
(Ak

0)′

Ak
0

) . (4.3)

On the other hand, from (1.10),

m(r, Fi) ≤ m(r, F) + O
(
expp−1

{
(β + ε) logq

(
1

1 − r

)})
. (4.4)

By (4.3), (4.4) and Lemma 3.5 we have

T (r, A0) =m(r, A0) ≤ m(r, F) + m(r,
1
φ

) +
i−1∑
k=0

m(r, Ak
1)

+

k−1∑
j=1

m(r, Ai
j) + O

(
expp−1

{
(β + ε) logq

(
1

1 − r

)})
,

(4.5)
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which implies the contradiction

ρ[p,q](A0) ≤ max{ρ[p,q](A j)( j = 1, 2, · · · , k − 1), ρ[p,q](F), ρ[p,q](φ)}.

If φ(z) ≡ 0, then from (1.10) and (1.11)

F′i−1 −
(Ai−1

0 )′

Ai−1
0

Fi−1 = 0, (4.6)

which implies Fi−1(z) = cAi−1
0 (z), where c is some constant. By (4.1) and (4.6), we have

1
c

Fi−1 =

i−2∑
k=0

Ak
1

(
(Ak

1)′

Ak
1

−
(Ak

0)′

Ak
0

)
+ A0. (4.7)

By (4.4), (4.7) and Lemma 3.5 we have

T (r, A0) = m(r, A0) ≤ m(r, F) +
i−2∑
k=0

m(r, Ak
1) + O

(
expp−1

{
(β + ε) logq

(
1

1 − r

)})
,

which implies the contradiction

ρ[p,q](A0) ≤ max{ρ[p,q](A j)( j = 1, 2, · · · , k − 1), ρ[p,q](F)}.

Hence Di . 0 for all i = 1, 2, 3, · · · . Since Ai
0 . 0, Di . 0 (i = 1, 2, 3, · · · ), then by Theorem 1.4 and

Lemma 3.4 we have

ρ[p,q](A0) ≤ λ[p+1,q]( f ( j) − φ) = λ[p+1,q]( f ( j) − φ) = ρ[p+1,q]( f ) ≤ ρM,[p,q](A0) ( j = 0, 1, 2, · · · )

with at most one possible exceptional solution f0 such that

ρ[p+1,q]( f0) < ρ[p,q](A0).

Therefore, the proof of Theorem 2.1 is completely.

4.2. The proof of Theorem 2.2

We need only to prove that Ai
0 . 0 and Di . 0 for all j = 1, 2, 3, · · · . Then by Theorem 1.4 we can

obtain Theorem 2.2. Consider the assumption δ(∞, A0) = δ > 0. Then for r → 1− we have

T (r, A0) ≤
2
δ

m(r, A0). (4.8)

Now we prove that Ai
0 . 0 for all i = 1, 2, 3, · · · . For that we suppose there exists i ∈ N such that

Ai
0 = 0. By (4.1) and (4.8) we obtain

T (r, A0) ≤
2
δ

m(r, A0) ≤
2
δ

i−1∑
k=0

m(r, Ak
1) +

2
δ

O
(
expp−1

{
(β + ε) logq

(
1

1 − r

)})

≤
2
δ

i−1∑
k=0

T (r, Ak
1) +

2
δ

O
(
expp−1

{
(β + ε) logq

(
1

1 − r

)})
,

(4.9)
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which implies the contradiction

ρ[p,q](A0) ≤ max{ρ[p,q](A j)( j = 1, 2, · · · , k − 1)}.

Hence Ai
0 . 0 for all i = 1, 2, 3, · · · . We prove that Di . 0 for all i = 1, 2, 3, · · · . For that we suppose

there exists i ∈ N such that Di = 0. If φ(z) . 0, then by (4.3), (4.4), (4.8) and Lemma 3.5 we have

T (r, A0) ≤
2
δ

m(r, A0) ≤
2
δ

m(r, F) + m(r,
1
φ

) +
i−1∑
k=0

m(r, Ak
1) +

k−1∑
j=1

m(r, Ai
j)


+

2
δ

[
O

(
expp−1

{
(β + ε) logq

(
1

1 − r

)})]
,

(4.10)

which implies the contradiction

ρ[p,q](A0) ≤ max{ρ[p,q](A j)( j = 1, 2, · · · , k − 1), ρ[p,q](F), ρ[p,q](φ)}.

If φ(z) ≡ 0, then by (4.4), (4.7) and Lemma 3.5 we have

T (r, A0) ≤
2
δ

m(r, A0)

≤
2
δ

m(r, F) +
2
δ

i−2∑
k=0

m(r, Ak
1) + O

(
expp−1

{
(β + ε) logq

(
1

1 − r

)})

≤
2
δ

T (r, F) +
2
δ

i−2∑
k=0

T (r, Ak
1) + O

(
expp−1

{
(β + ε) logq

(
1

1 − r

)})
,

(4.11)

which implies the contradiction

ρ[p,q](A0) ≤ max{ρ[p,q](A j)( j = 1, 2, · · · , k − 1), ρ[p,q](F)}.

Hence Di . 0 for all i = 1, 2, 3, · · · . By Theorem 1.4, we have Theorem 2.2.
Therefore, this completes the proof of Theorem 2.2.

5. Conclusions

We first obtained some oscillation theorems (see [14]) which consider the distribution of
meromorphic solutions and their arbitrary-order derivatives taking small function values instead of
taking zeros. Moreover, Z. Dahmani and M. A. Abdelaoui (see [15]) investigated the higher order
non-homogeneous linear differential equation which can be seen as an improvement of [14]. By using
those theorems, we obtain some oscillation theorems for f ( j)(z) − φ(z), where f is a solution and φ(z)
is a small function. We believe our results will attract the attentions of the related readers.
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