Mathematics

Research article

Oscillation of arbitrary-order derivatives of solutions to the higher order non-homogeneous linear differential equations taking small functions in the unit dise

Pan Gong* and Hong Yan Xu

School of Mathematics and Computer Science, Shangrao Normal University, Shangrao Jiangxi 334001, China

* Correspondence: Email: gongpan12@163.com; Tel: +15387828853;

Fax: +15387828853.

Abstract

In this article, we study the relationship between solutions and their arbitrary-order derivatives of the higher order non-homogeneous linear differential equation $$
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=F(z)
$$ in the unit disc Δ with analytic or meromorphic coefficients of finite $[p, q]$-order. We obtain some oscillation theorems for $f^{(j)}(z)-\varphi(z)$, where f is a solution and $\varphi(z)$ is a small function.

Keywords: unit disc; non-homogeneous linear differential equation; arbitrary-order derivative; small function
Mathematics Subject Classification: 30D35, 34M10

1. Introduction

In this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory on the complex plane \mathbb{C} and in the unit disc $\Delta=\{z \in \mathbb{C}:|z|<1\}$ (see [1-4]). In addition, we need to give some definitions and discussions. Firstly, let us give two definitions about the degree of small growth order of functions in Δ as polynomials on the complex plane \mathbb{C}. There are many types of definitions of small growth order of functions in Δ (see [5, 6]).
Definition 1.1. (see [5, 6]). Let f be a meromorphic function in Δ, and

$$
D(f)=\varlimsup_{r \rightarrow 1^{-}} \frac{T(r, f)}{\log \frac{1}{1-r}}=b .
$$

If $b<\infty$, then we say that f is of finite b degree (or is non-admissible). If $b=\infty$, then we say that f is of infinite (or is admissible), both defined by characteristic function $T(r, f)$.
Definition 1.2. (see [5,6]). Let f be an analytic function in Δ, and

$$
D_{M}(f)=\varlimsup_{r \rightarrow 1^{-}} \frac{\log ^{+} M(r, f)}{\log \frac{1}{1-r}}=a \quad(\text { or } a=\infty) .
$$

Then we say that f is a function of finite a degree (or of infinite degree) defined by maximum modulus function $M(r, f)=\max _{|z|=r}|f(z)|$.

Moreover, for $F \subset[0,1)$, the upper and lower densities of F are defined by

$$
\overline{\operatorname{dens}}_{\Delta} F=\varlimsup_{r \rightarrow 1^{-}} \frac{m(F \cap[0, r))}{m([0, r))}, \quad \underline{\text { dens }}_{\Delta} F={\underset{r \rightarrow 1^{-}}{ } \frac{m(F \cap[0, r))}{m([0, r))}, ~}_{\text {lim }}
$$

respectively, where $m(G)=\int_{G} \frac{d t}{1-t}$ for $G \subset[0,1)$.
Now we give the definition of iterated order and growth index to classify generally the functions of fast growth in Δ as those in \mathbb{C}, see $[3,7,8]$. Let us define inductively, for $r \in[0,1), \exp _{1} r=e^{r}$ and $\exp _{p+1} r=\exp \left(\exp _{p} r\right), p \in \mathbb{N}$. We also define for all r sufficiently large in $(0,1), \log _{1} r=\log r$ and $\log _{p+1} r=\log \left(\log _{p} r\right), p \in \mathbb{N}$. Moreover, we denote by $\exp _{0} r=r, \log _{0} r=r, \exp _{-1} r=\log _{1} r, \log _{-1} r=$ $\exp _{1} r$.
Definition 1.3. (see [9]). The iterated p-order of a meromorphic function f in Δ is defined by

$$
\rho_{p}(f)=\varlimsup_{r \rightarrow 1^{-}} \frac{\log _{p}^{+} T(r, f)}{\log \frac{1}{1-r}} \quad(p \geq 1) .
$$

For an analytic function f in Δ, we also define

$$
\rho_{M, p}(f)=\varlimsup_{r \rightarrow 1^{-}} \frac{\log _{p+1}^{+} M(r, f)}{\log \frac{1}{1-r}} \quad(p \geq 1)
$$

Remark 1.4. It follows by M. Tsuji in ([4]) that if f is an analytic function in Δ, then

$$
\rho_{1}(f) \leq \rho_{M, 1}(f) \leq \rho_{1}(f)+1 .
$$

However it follows by (Proposition 2.2.2 in [3]) that

$$
\rho_{M, p}(f)=\rho_{p}(f) \quad(p \geq 2)
$$

Definition 1.5. (see [9]). The growth index of the iterated order of a meromorphic function f in Δ is defined by

$$
i(f)=\left\{\begin{array}{lr}
0, & \text { if } f \text { is non-admissible } ; \\
\min \left\{p \in \mathbb{N}, \rho_{p}(f)<\infty\right\}, & \text { if } f \text { is admissible } ; \\
\infty, & \text { if } \rho_{p}(f)=\infty \text { for all } p \in \mathbb{N}
\end{array}\right.
$$

For an analytic function f in Δ, we also define

$$
i_{M}(f)=\left\{\begin{array}{lr}
0, & \text { if } f \text { is non-admissible } ; \\
\min \left\{p \in \mathbb{N}, \rho_{M, p}(f)<\infty\right\}, & \text { if } f \text { is admissible } ; \\
\infty, & \text { if } \rho_{M, p}(f)=\infty \text { for all } p \in \mathbb{N}
\end{array}\right.
$$

Definition 1.6. (see $[10,11])$. Let f be a meromorphic function in Δ. Then the iterated p-exponent of convergence of the sequence of zeros of f is defined by

$$
\lambda_{p}(f)=\varlimsup_{r \rightarrow 1^{-}} \frac{\log _{p}^{+} N\left(r, \frac{1}{f}\right)}{\log \frac{1}{1-r}},
$$

where $N\left(r, \frac{1}{f}\right)$ is the integrated counting function of zeros of $f(z)$ in $\{z \in \mathbb{C}:|z|<r\}$. Similarly, the iterated p-exponent of convergence of the sequence of distinct zeros of f is defined by

$$
\bar{\lambda}_{p}(f)=\varlimsup_{r \rightarrow 1^{-}} \frac{\log _{p}^{+} \bar{N}\left(r, \frac{1}{f}\right)}{\log \frac{1}{1-r}}
$$

where $\bar{N}\left(r, \frac{1}{f}\right)$ is the integrated counting function of distinct zeros of f in $\{z \in \mathbb{C}:|z|<r\}$.
Definition 1.7. (see [12]). Let $p \geq q \geq 1$ be integers. Let f be meromorphic function in Δ, the [$p, q]$-order of f is defined by

$$
\rho_{[p, q]}(f)=\varlimsup_{r \rightarrow 1^{-}} \frac{\log _{p}^{+} T(r, f)}{\log _{q} \frac{1}{1-r}}
$$

For an analytic function f in Δ, we also define

$$
\rho_{M,[p, q]}(f)=\varlimsup_{r \rightarrow 1^{-}} \frac{\log _{p+1}^{+} M(r, f)}{\log _{q} \frac{1}{1-r}}
$$

Remark 1.8. It is easy to see that $0 \leq \rho_{[p, q]}(f) \leq \infty$. If f is non-admissible, then $\rho_{[p, q]}=0$ for any $p \geq q \geq 1$. By Definition 1.7, we have that $\rho_{[1,1]}(f)=\rho_{1}(f)=\rho(f), \rho_{[2,1]}(f)=\rho_{2}(f)$ and $\rho_{[p+1,1]}(f)=\rho_{p+1}(f)$.
Proposition 1.9. (see [12]). Let $p \geq q \geq 1$ be integers. Let f be analytic function in Δ of [$p, q]$-order. The following two statements hold:
(i) If $p=q$, then

$$
\rho_{[p, q]}(f) \leq \rho_{M,[p, q]}(f) \leq \rho_{[p, q]}(f)+1
$$

(ii) If $p>q$, then

$$
\rho_{[p, q]}(f)=\rho_{M,[p, q]}(f)
$$

Definition 1.10. (see [13]). Let $p \geq q \geq 1$ be integers. The [$p, q]$-exponent of convergence of the zero sequence of a meromorphic function f in Δ is defined by

$$
\lambda_{[p, q]}(f)=\varlimsup_{r \rightarrow 1^{-}} \frac{\log _{p}^{+} N\left(r, \frac{1}{f}\right)}{\log _{q} \frac{1}{1-r}} .
$$

Similarly, the $[p, q]$-exponent of convergence of the sequence of distinct zeros of f is defined by

$$
\bar{\lambda}_{[p, q]}(f)=\varlimsup_{r \rightarrow 1^{-}} \frac{\log _{p}^{+} \bar{N}\left(r, \frac{1}{f}\right)}{\log _{q} \frac{1}{1-r}} .
$$

Definition 1.11. (see [1]). For $a \in \overline{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$, the deficiency of f is defined by

$$
\delta(a, f)=1-\varlimsup_{r \rightarrow 1^{-}} \frac{N\left(r, \frac{1}{f-a}\right)}{T(r, f)},
$$

provided f has unbounded characteristic.
The complex oscillation theory of solutions of linear differential equations in the complex plane \mathbb{C} was started by S. Bank and I. Laine in 1982. Many authors have investigated the growth and oscillation of the solutions of complex linear differential equations in \mathbb{C}. In 2000, J. Heittokangas first studied the growth of the solution of linear differential equations in the unit disc Δ. There already exist many results (see [2, 9-13]) in Δ, but the study is more difficult than that in \mathbb{C}, because the efficient tool, Wiman-Valiron theory, doesn't hold in Δ. In 2015, author and L. P. Xiao (see [14]) studied the relationship between solutions and their derivatives of the differential equation

$$
\begin{equation*}
f^{\prime \prime}+A(z) f^{\prime}+B(z) f=F(z) \tag{1.1}
\end{equation*}
$$

where $A(z), B(z) \not \equiv 0$ and $F(z) \not \equiv 0$ are meromorphic functions of finite iterated p-order in Δ. Author obtained some oscillation theorems for $f^{(j)}(z)-\varphi(z)$, where f is a solution and $\varphi(z)$ is a small function. Before we state author's results we need to define the following:

$$
\begin{gather*}
A_{j}(z)=A_{j-1}(z)-\frac{B_{j-1}^{\prime}(z)}{B_{j-1}(z)}, \quad(j=1,2,3, \cdots), \tag{1.2}\\
B_{j}(z)=A_{j-1}^{\prime}(z)-A_{j-1}(z) \frac{B_{j-1}^{\prime}(z)}{B_{j-1}(z)}+B_{j-1}(z), \quad(j=1,2,3, \cdots), \tag{1.3}\\
F_{j}(z)=F_{j-1}^{\prime}(z)-F_{j-1}(z) \frac{B_{j-1}^{\prime}(z)}{B_{j-1}(z)}, \quad(j=1,2,3, \cdots), \tag{1.4}\\
D_{j}=F_{j}-\left(\varphi^{\prime \prime}+A_{j} \varphi^{\prime}+B_{j} \varphi\right), \quad(j=1,2,3, \cdots), \tag{1.5}
\end{gather*}
$$

where $A_{0}(z)=A(z), B_{0}(z)=B(z)$ and $F_{0}(z)=F(z)$. Author and L. P. Xiao obtained the following results.

Theorem 1.1. (see [14]). Let $\varphi(z)$ be a meromorphic function in Δ with $\rho_{p}(\varphi)<\infty$. Let $A(z), B(z) \not \equiv 0$ and $F(z) \not \equiv 0$ be meromorphic functions of finite iterated p-order in \triangle such that $B_{j}(z) \not \equiv 0$ and $D_{j}(z) \not \equiv 0$ $(j=0,1,2, \cdots)$.
(i) If f is a meromorphic solution in Δ of (1.1) with $\rho_{p}(f)=\infty$ and $\rho_{p+1}(f)=\rho<\infty$, then f satisfies

$$
\begin{aligned}
\bar{\lambda}_{p}\left(f^{(j)}-\varphi\right) & =\lambda_{p}\left(f^{(j)}-\varphi\right)=\rho_{p}(f)=\infty \quad(j=0,1,2, \cdots), \\
\bar{\lambda}_{p+1}\left(f^{(j)}-\varphi\right) & =\lambda_{p+1}\left(f^{(j)}-\varphi\right)=\rho_{p+1}(f)=\rho \quad(j=0,1,2, \cdots) .
\end{aligned}
$$

(ii) If f is a meromorphic solution in Δ of (1.1) with

$$
\max \left\{\rho_{p}(A), \rho_{p}(B), \rho_{p}(F), \rho_{p}(\varphi)\right\}<\rho_{p}(f)<\infty,
$$

then

$$
\bar{\lambda}_{p}\left(f^{(j)}-\varphi\right)=\lambda_{p}\left(f^{(j)}-\varphi\right)=\rho_{p}(f) \quad(j=0,1,2, \cdots) .
$$

Theorem 1.2. (see [14]). Let $\varphi(z)$ be an analytic function in Δ with $\rho_{p}(\varphi)<\infty$ and be not a solution of (1.1). Let $A(z), B(z) \not \equiv 0$ and $F(z) \not \equiv 0$ be analytic functions in Δ with finite iterated p-order such that $\beta=\rho_{p}(B)>\max \left\{\rho_{p}(A), \rho_{p}(F), \rho_{p}(\varphi)\right\}$ and $\rho_{M, p}(A) \leq \rho_{M, p}(B)$. Then all nontrivial solutions of (1.1) satisfy

$$
\rho_{p}(B) \leq \bar{\lambda}_{p+1}\left(f^{(j)}-\varphi\right)=\lambda_{p+1}\left(f^{(j)}-\varphi\right)=\rho_{p+1}(f) \leq \rho_{M, p}(B) \quad(j=0,1,2, \cdots)
$$

with at most one possible exceptional solution f_{0} such that

$$
\rho_{p+1}\left(f_{0}\right)<\rho_{p}(B)
$$

Theorem 1.3. (see [14]). Let $\varphi(z)$ be a meromorphic function in Δ with $\rho_{p}(\varphi)<\infty$ and be not a solution of (1.1). Let $A(z), B(z) \not \equiv 0$ and $F(z) \not \equiv 0$ be meromorphic functions in Δ with finite iterated p-order such that $\rho_{p}(B)>\max \left\{\rho_{p}(A), \rho_{p}(F), \rho_{p}(\varphi)\right\}$ and $\delta(\infty, B)>0$. If f is a meromorphic solution in Δ of (1.1) with $\rho_{p}(f)=\infty$ and $\rho_{p+1}(f)=\rho$, then f satisfies

$$
\begin{aligned}
\bar{\lambda}_{p}\left(f^{(j)}-\varphi\right) & =\lambda_{p}\left(f^{(j)}-\varphi\right)=\rho_{p}(f)=\infty \quad(j=0,1,2, \cdots), \\
\bar{\lambda}_{p+1}\left(f^{(j)}-\varphi\right) & =\lambda_{p+1}\left(f^{(j)}-\varphi\right)=\rho_{p+1}(f)=\rho \quad(j=0,1,2, \cdots) .
\end{aligned}
$$

In 2018, Z. Dahmani and M. A. Abdelaoui (see [15]) studied the higher order non-homogeneous linear differential equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=F(z), k \geq 2 \tag{1.6}
\end{equation*}
$$

where $A_{j}(z)(j=0,1, \cdots, k-1)$, and $F(z) \not \equiv 0$ are meromorphic functions of finite iterated $[p, q]$-order in Δ. Before we state their results we need to define the following:

$$
\begin{gather*}
A_{j}^{0}=A_{j}, \quad(j=0,1, \cdots, k-1), \tag{1.7}\\
A_{k-1}^{i}=A_{k-1}^{i-1}-\frac{\left(A_{0}^{i-1}\right)^{\prime}}{A_{0}^{i-1}}, \quad(i=1,2,3, \cdots), \tag{1.8}\\
A_{j}^{i}=A_{j}^{i-1}+A_{j+1}^{i-1} \frac{\left(\Psi_{j+1}^{i-1}\right)^{\prime}}{\Psi_{j+1}^{i-1}}, \quad(j=0,1, \cdots, k-2, i=1,2,3, \cdots), \tag{1.9}\\
F_{i}=F_{i-1}^{\prime}-\frac{\left(A_{0}^{i-1}\right)^{\prime}}{A_{0}^{i-1}} F_{i-1}, F_{0}=F, \quad(i=1,2,3, \cdots), \tag{1.10}\\
D_{i}=F_{i}-\left(\varphi^{(k)}+A_{k-1}^{i} \varphi^{(k-1)}+\cdots+A_{0}^{i} \varphi\right), \quad(i=0,1,2, \cdots), \tag{1.11}
\end{gather*}
$$

where $\Psi_{j+1}^{i-1}=\frac{A_{j+1}^{i-1}}{A_{0}^{i-1}}$. Z. Dahmani and M. A. Abdelaoui obtained the following results.
Theorem 1.4. (see [15]) Let $p \geq q \geq 1$ be integers, and let $A_{j}(z)(j=0,1, \cdots, k-1), F(z) \not \equiv 0$ and $\varphi(z)$ be meromorphic functions in Δ of finite $[p, q]$-order such that $D_{i}(z) \not \equiv 0(i=0,1,2, \cdots)$. If f is a meromorphic solution of the Eq(1.6) of infinite $[p, q]$-order and $\rho_{[p+1, q]}(f)=\rho$, then f satisfies

$$
\begin{gathered}
\bar{\lambda}_{[p, q]}\left(f^{(j)}-\varphi\right)=\lambda_{[p, q]}\left(f^{(j)}-\varphi\right)=\rho_{[p, q]}(f)=\infty \quad(j=0,1,2, \cdots), \\
\bar{\lambda}_{[p+1, q]}\left(f^{(j)}-\varphi\right)=\lambda_{[p+1, q]}\left(f^{(j)}-\varphi\right)=\rho_{[p+1, q]}(f)=\rho \quad(j=0,1,2, \cdots) .
\end{gathered}
$$

Theorem 1.5. (see [15]). Let $p \geq q \geq 1$ be integers, and let $A_{j}(z)(j=0,1, \cdots, k-1), F(z) \neq 0$ and $\varphi(z)$ be meromorphic functions in \triangle of finite $[p, q]$-order such that $D_{i}(z) \not \equiv 0(i=0,1,2, \cdots)$. If f is a meromorphic solution of the Eq (1.6) with

$$
\max \left\{\rho_{[p, q]}\left(A_{j}\right)(j=0,1,2, \cdots, k-1), \rho_{[p, q]}(F), \rho_{[p, q]}(\varphi)\right\}<\rho_{[p, q]}(f)=\rho,
$$

then f satisfies

$$
\bar{\lambda}_{[p, q]}\left(f^{(j)}-\varphi\right)=\lambda_{[p, q]}\left(f^{(j)}-\varphi\right)=\rho_{[p, q]}(f)=\rho \quad(j=0,1,2, \cdots) .
$$

2. Main results

According to the proof process of Theorem 1.4 and Theorem 1.5, we know that it is necessary to increase the condition $A_{0}^{i}(z) \not \equiv 0$ and $D_{i}(z) \not \equiv 0(i=0,1,2, \cdots)$ to ensure that the Theorem 1.4 and the Theorem 1.5 are established, because we need to divide both sides of the higher order nonhomogeneous linear differential equations by $A_{0}^{i}(z)$. Where $A_{0}^{i}(z)$ and $D_{i}(z)$ are defined in (1.7), (1.9) and (1.11). In this article, we give some sufficient conditions on the coefficients which guarantee $A_{0}^{i}(z) \not \equiv 0$ and $D_{i}(z) \not \equiv 0(i=0,1,2, \cdots)$, and we obtain:
Theorem 2.1. Let $p \geq q \geq 1$ be integers, and let $\varphi(z)$ be an analytic function in Δ with $\rho_{[p, q]}(\varphi)<\infty$ and be not a solution of (1.6). Let $A_{j}(z)(j=1,2, \cdots, k-1), A_{0}(z) \not \equiv 0$ and $F(z) \not \equiv 0$ be analytic functions in Δ of finite $[p, q]$-order such that $\beta=\rho_{[p, q]}\left(A_{0}\right)>\max \left\{\rho_{[p, q]}\left(A_{j}\right)(j=1,2, \cdots, k-1), \rho_{[p, q]}(F), \rho_{[p, q]}(\varphi)\right\}$ and $\rho_{M,[p, q]}\left(A_{j}\right) \leq \rho_{M,[p, q]}\left(A_{0}\right)(j=1,2, \cdots, k-1)$. Then all nontrivial solutions of (1.6) satisfy

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \bar{\lambda}_{[p+1, q]}\left(f^{(j)}-\varphi\right)=\lambda_{[p+1, q]}\left(f^{(j)}-\varphi\right)=\rho_{[p+1, q]}(f) \leq \rho_{M,[p, q]}\left(A_{0}\right) \quad(j=0,1,2, \cdots),
$$

with at most one possible exceptional solution f_{0} such that

$$
\rho_{[p+1, q]}\left(f_{0}\right)<\rho_{[p, q]}\left(A_{0}\right) .
$$

Theorem 2.2. Let $p \geq q \geq 1$ be integers, and let $\varphi(z)$ be an meromorphic function in Δ with $\rho_{[p, q]}(\varphi)<\infty$ and be not a solution of (1.6). Let $A_{j}(z)(j=1,2, \cdots, k-1), A_{0}(z) \not \equiv 0$ and $F(z) \not \equiv 0$ be meromorphic functions in Δ of finite $[p, q]$-order such that $\rho_{[p, q]}\left(A_{0}\right)>\max \left\{\rho_{[p, q]}\left(A_{j}\right)(j=1,2, \cdots, k-1), \rho_{[p, q]}(F), \rho_{[p, q]}(\varphi)\right\}$ and $\delta\left(\infty, A_{0}\right)>0$. If f is a meromorphic solution in Δ of (1.6) with $\rho_{[p, q]}(f)=\infty$ and $\rho_{[p+1, q]}(f)=\rho$, then f satisfies

$$
\begin{aligned}
\bar{\lambda}_{[p, q]}\left(f^{(j)}-\varphi\right) & =\lambda_{[p, q]}\left(f^{(j)}-\varphi\right)=\rho_{[p, q]}(f)=\infty \quad(j=0,1,2, \cdots), \\
\bar{\lambda}_{[p+1, q]}\left(f^{(j)}-\varphi\right) & =\lambda_{[p+1, q]}\left(f^{(j)}-\varphi\right)=\rho_{[p+1, q]}(f)=\rho \quad(j=0,1,2, \cdots) .
\end{aligned}
$$

3. Some lemmas

To prove our theorems, we require the following lemmas.
Lemma 3.1. (see [13]). Let $p \geq q \geq 1$ be integers, and let $A_{0}, A_{1}, \cdots, A_{k-1}$ be analytic functions in \triangle satisfying

$$
\max \left\{\rho_{[p, q]}\left(A_{j}\right): j=1,2, \cdots, k-1\right\}<\rho_{[p, q]}\left(A_{0}\right)
$$

If $f \not \equiv 0$ is a solution of (3.1), then $\rho_{[p, q]}(f)=\infty$ and

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \rho_{[p+1, q]}(f) \leq \max \left\{\rho_{M,[p, q]}\left(A_{j}\right): j=0,1, \cdots, k-1\right\} .
$$

Furthermore, if $p>q$, then

$$
\rho_{[p+1, q]}(f)=\rho_{[p, q]}\left(A_{0}\right)
$$

Lemma 3.2. (see [15]). Let $p \geq q \geq 1$ be integers. Let $A_{0}, A_{1}, \cdots, A_{k-1}$ and $F \not \equiv 0$ be meromorphic functions in \triangle and let f be a meromorphic solution of (1.6) satisfying $\max \left\{\rho_{[p, q]}\left(A_{j}\right)(j=0,1,2, \cdots, k-\right.$ 1), $\left.\rho_{[p, q]}(F)\right\}<\rho_{[p, q]}(f) \leq \infty$, then we have

$$
\begin{gathered}
\bar{\lambda}_{[p, q]}(f)=\lambda_{[p, q]}(f)=\rho_{[p, q]}(f), \\
\bar{\lambda}_{[p+1, q]}(f)=\lambda_{[p+1, q]}(f)=\rho_{[p+1, q]}(f) .
\end{gathered}
$$

Lemma 3.3. Let $p \geq q \geq 1$ be integers, and assume that coefficients $A_{0}, A_{1}, \cdots, A_{k-1}$ and $F \not \equiv 0$ are analytic in Δ and $\rho_{[p, q]}\left(A_{j}\right)<\rho_{[p, q]}\left(A_{0}\right)$ for all $j=1,2, \cdots, k-1$. Let $\alpha_{M}=\max \left\{\rho_{M,[p, q]}\left(A_{j}\right): j=\right.$ $0,1, \cdots, k-1\}$. If $\rho_{M,[p+1, q]}(F)<\rho_{[p, q]}\left(A_{0}\right)$, then all solutions f of (1.6) satisfy

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \bar{\lambda}_{[p+1, q]}(f)=\lambda_{[p+1, q]}(f)=\rho_{M,[p+1, q]}(f) \leq \alpha_{M},
$$

with at most one exceptional f_{0} satisfying $\rho_{M,[p+1, q]}\left(f_{0}\right)<\rho_{[p, q]}\left(A_{0}\right)$.
Proof. Let $f_{1}, f_{2}, \cdots, f_{k}$ be a solution base of the differential equation

$$
\begin{equation*}
f^{(k)}+A_{k-1}(z) f^{(k-1)}+\cdots+A_{1}(z) f^{\prime}+A_{0}(z) f=0 \tag{3.1}
\end{equation*}
$$

Then by the elementary theory of differential equations (see [3]), any solution of (1.6) can be represented in the form

$$
\begin{equation*}
f=\left(B_{1}+C_{1}\right) f_{1}+\left(B_{2}+C_{2}\right) f_{2}+\cdots+\left(B_{k}+C_{k}\right) f_{k}, \tag{3.2}
\end{equation*}
$$

where $C_{1}, C_{2}, \cdots, C_{k} \in \mathbb{C}$ and $B_{1}, B_{2}, \cdots, B_{k}$ are analytic in Δ given by the system of equations

$$
\left\{\begin{array}{l}
B_{1}^{\prime} f_{1}+B_{2}^{\prime} f_{2}+\cdots+B_{k}^{\prime} f_{k}=0 \tag{3.3}\\
B_{1}^{\prime} f_{1}^{\prime}+B_{2}^{\prime} f_{2}^{\prime}+\cdots+B_{k}^{\prime} f_{k}^{\prime}=0 \\
\cdots \\
B_{1}^{\prime} f_{1}^{(k-2)}+B_{2}^{\prime} f_{2}^{(k-2)}+\cdots+B_{k}^{\prime} f_{k}^{(k-2)}=0 \\
B_{1}^{\prime} f_{1}^{(k-1)}+B_{2}^{\prime} f_{2}^{(k-1)}+\cdots+B_{k}^{\prime} f_{k}^{(k-1)}=F
\end{array}\right.
$$

Since the Wronskian of $f_{1}, f_{2}, \cdots, f_{k}$ satisfies $W\left(f_{1}, f_{2}, \cdots, f_{k}\right)=\exp \left(-\int A_{k-1} d z\right)$, we obtain

$$
\begin{equation*}
B_{j}^{\prime}=F \cdot G_{j}\left(f_{1}, f_{2}, \cdots, f_{k}\right) \cdot \exp \left(\int A_{k-1} d z\right) \quad(j=1,2, \cdots, k) \tag{3.4}
\end{equation*}
$$

where $G_{j}\left(f_{1}, f_{2}, \cdots, f_{k}\right)$ is a differential polynomial of $f_{1}, f_{2}, \cdots, f_{k}$ and of their derivatives, with constant coefficients. Then by Lemma 3.1, we know that $\alpha_{M} \geq \rho_{M,[p+1, q]}\left(f_{j}\right) \geq \rho_{[p, q]}\left(A_{0}\right)$. By (3.2)-(3.4), we have

$$
\begin{equation*}
\rho_{M,[p+1, q]}(f) \leq \max \left\{\rho_{M,[p+1, q]}(F), \alpha_{M}\right\} . \tag{3.5}
\end{equation*}
$$

Since $\rho_{M,[p+1, q]}(F)<\rho_{[p, q]}\left(A_{0}\right) \leq \alpha_{M}$, it follows from (3.5) and (1.6) that all solutions f of (1.6) satisfy $\rho_{M,[p+1, q]}(f) \leq \alpha_{M}$.

Now we assert that all solutions f of (1.6) satisfy $\rho_{M,[p+1, q]}(f) \geq \rho_{[p, q]}\left(A_{0}\right)$ with at most one exception. In fact, if there exist two distinct solutions g_{1}, g_{2} of (1.6) with $\rho_{M,[p+1, q]}\left(g_{i}\right)<\rho_{[p, q]}\left(A_{0}\right)$ $(i=1,2)$, then $g=g_{1}-g_{2}$ satisfies $\rho_{M,[p+1, q]}(g)=\rho_{M,[p+1, q]}\left(g_{1}-g_{2}\right)<\rho_{[p, q]}\left(A_{0}\right)$. But g is a nonzero solution of (3.1) satisfying $\rho_{M,[p+1, q]}(g)=\rho_{M,[p+1, q]}\left(g_{1}-g_{2}\right) \geq \rho_{[p, q]}\left(A_{0}\right)$ by Lemma 3.1. This is a contradiction.

By Lemma 3.2, all solutions f of (1.6) satisfy $\alpha_{M} \geq \rho_{M,[p+1, q]}(f)=\bar{\lambda}_{[p+1, q]}(f)=\lambda_{[p+1, q]}(f) \geq$ $\rho_{[p, q]}\left(A_{0}\right)$, with at most one exceptional f_{0} satisfying $\rho_{M,[p+1, q]}\left(f_{0}\right)<\rho_{[p, q]}\left(A_{0}\right)$.

Lemma 3.4. Let $p \geq q \geq 1$ be integers, φ be finite $[p, q]$-order analytic functions in \triangle and assume that coefficients $A_{0}, A_{1}, \cdots, A_{k-1}, F \not \equiv 0$ and $F-\varphi^{(k)}-A_{k-1} \varphi^{(k-1)}-\cdots-A_{1} \varphi^{\prime}-A_{0} \varphi \not \equiv 0$ are analytic in Δ and $\rho_{[p, q]}\left(A_{j}\right)<\rho_{[p, q]}\left(A_{0}\right)$ for all $j=1,2, \cdots, k-1$. Let $\alpha_{M}=\max \left\{\rho_{M,[p, q]}\left(A_{j}\right): j=0,1, \cdots, k-1\right\}$. If $\rho_{M,[p+1, q]}\left(F-\varphi^{(k)}-A_{k-1} \varphi^{(k-1)}-\cdots-A_{1} \varphi^{\prime}-A_{0} \varphi\right)<\rho_{[p, q]}\left(A_{0}\right)$, then all solutions f of (1.6) satisfy

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \bar{\lambda}_{[p+1, q]}(f-\varphi)=\lambda_{[p+1, q]}(f-\varphi)=\rho_{M,[p+1, q]}(f) \leq \alpha_{M},
$$

with at most one exceptional f_{0} satisfying $\rho_{M,[p+1, q]}\left(f_{0}\right)<\rho_{[p, q]}\left(A_{0}\right)$.
Proof. Suppose that $g=f-\varphi$, obtain $f=g+\varphi$, then from (1.6) we have $g^{(k)}+A_{k-1} g^{(k-1)}+\cdots+$ $A_{1} g^{\prime}+A_{0} g=F-\varphi^{(k)}-A_{k-1} \varphi^{(k-1)}-\cdots-A_{1} \varphi^{\prime}-A_{0} \varphi$. By Lemma 3.3 we obtain all solutions f of (1.6) satisfy

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \bar{\lambda}_{[p+1, q]}(f-\varphi)=\lambda_{[p+1, q]}(f-\varphi)=\rho_{M,[p+1, q]}(f) \leq \alpha_{M},
$$

with at most one exceptional f_{0} satisfying $\rho_{M,[p+1, q]}\left(f_{0}\right)<\rho_{[p, q]}\left(A_{0}\right)$.
Lemma 3.5. (see [12]). Let $p \geq q \geq 1$ be integers. Let f be a meromorphic function in Δ such that $\rho_{[p, q]}(f)=\rho<\infty$, and let $k \geq 1$ be an integer. Then for any $\varepsilon>0$,

$$
m\left(r, \frac{f^{(k)}}{f}\right)=O\left(\exp _{p-1}\left\{(\rho+\varepsilon) \log _{q}\left(\frac{1}{1-r}\right)\right\}\right)
$$

holds for all r outside a set $E_{1} \subset[0,1)$ with $\int_{E_{1}} \frac{d r}{1-r}<\infty$.

4. Proofs of Theorems 2.1 and 2.2

4.1. The proof of Theorem 2.1

Since $F-\left(\varphi^{(k)}+A_{k-1} \varphi^{(k-1)}+\cdots+A_{1} \varphi^{\prime}+A_{0} \varphi\right) \not \equiv 0, \rho_{M,[p+1, q]}\left(F-\left(\varphi^{(k)}+A_{k-1} \varphi^{(k-1)}+\cdots+A_{1} \varphi^{\prime}+A_{0} \varphi\right)\right)<$ $\rho_{[p, q]}\left(A_{0}\right)$. By Lemma 3.4, all nontrivial solutions of (1.6) satisfy

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \bar{\lambda}_{[p+1, q]}(f-\varphi)=\lambda_{[p+1, q]}(f-\varphi)=\rho_{[p+1, q]}(f) \leq \rho_{M,[p, q]}\left(A_{0}\right),
$$

with at most one exceptional f_{0} such that $\rho_{[p+1, q]}\left(f_{0}\right)<\rho_{[p, q]}\left(A_{0}\right)$. By using (1.9) we have

$$
\begin{align*}
A_{0}^{i} & =A_{1}^{i-1}\left(\frac{\left(A_{1}^{i-1}\right)^{\prime}}{A_{1}^{i-1}}-\frac{\left(A_{0}^{i-1}\right)^{\prime}}{A_{0}^{i-1}}\right)+A_{0}^{i-1} \\
& =A_{1}^{i-1}\left(\frac{\left(A_{1}^{i-1}\right)^{\prime}}{A_{1}^{i-1}}-\frac{\left(A_{0}^{i-1}\right)^{\prime}}{A_{0}^{i-1}}\right)+A_{1}^{i-2}\left(\frac{\left(A_{1}^{i-2}\right)^{\prime}}{A_{1}^{i-2}}-\frac{\left(A_{0}^{i-2}\right)^{\prime}}{A_{0}^{i-2}}\right)+A_{0}^{i-2} \tag{4.1}\\
& =\sum_{k=0}^{i-1} A_{1}^{k}\left(\frac{\left(A_{1}^{k}\right)^{\prime}}{A_{1}^{k}}-\frac{\left(A_{0}^{k}\right)^{\prime}}{A_{0}^{k}}\right)+A_{0} .
\end{align*}
$$

Now we prove that $A_{0}^{i} \not \equiv 0$ for all $i=1,2,3, \cdots$. For that we suppose there exists $i \in \mathbb{N}$ such that $A_{0}^{i}=0$. By (4.1) and Lemma 3.5 we have for any $\varepsilon>0$,

$$
\begin{align*}
T\left(r, A_{0}\right)=m\left(r, A_{0}\right) & \leq \sum_{k=0}^{i-1} m\left(r, A_{1}^{k}\right)+O\left(\exp _{p-1}\left\{(\beta+\varepsilon) \log _{q}\left(\frac{1}{1-r}\right)\right\}\right) \\
& =\sum_{k=0}^{i-1} T\left(r, A_{1}^{k}\right)+O\left(\exp _{p-1}\left\{(\beta+\varepsilon) \log _{q}\left(\frac{1}{1-r}\right)\right\}\right) \tag{4.2}
\end{align*}
$$

outside a set $E_{1} \subset[0,1)$ with $\int_{E_{1}} \frac{d r}{1-r}<\infty$, for all $i=1,2,3, \cdots, \beta=\rho_{[p, q]}\left(A_{0}\right)$. Which implies the contradiction

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \max \left\{\rho_{[p, q]}\left(A_{j}\right)(j=1,2, \cdots, k-1)\right\} .
$$

Hence $A_{0}^{i} \not \equiv 0$ for all $i=1,2,3, \cdots$. We prove that $D_{i} \not \equiv 0$ for all $i=1,2,3, \cdots$. For that we suppose there exists $i \in \mathbb{N}$ such that $D_{i}=0$. We have $F_{i}-\left(\varphi^{(k)}+A_{k-1}^{i} \varphi^{(k-1)}+\cdots+A_{0}^{i} \varphi\right)=0$ from (1.11), which implies

$$
\begin{aligned}
F_{i} & =\varphi\left(\frac{\varphi^{(k)}}{\varphi}+A_{k-1}^{i} \frac{\varphi^{(k-1)}}{\varphi}+\cdots+A_{1}^{i} \frac{\varphi^{\prime}}{\varphi}+A_{0}^{i}\right) \\
& =\varphi\left[\frac{\varphi^{(k)}}{\varphi}+A_{k-1}^{i} \frac{\varphi^{(k-1)}}{\varphi}+\cdots+A_{1}^{i} \frac{\varphi^{\prime}}{\varphi}+\sum_{k=0}^{i-1} A_{1}^{k}\left(\frac{\left(A_{1}^{k}\right)^{\prime}}{A_{1}^{k}}-\frac{\left(A_{0}^{k}\right)^{\prime}}{A_{0}^{k}}\right)+A_{0}\right] .
\end{aligned}
$$

Here we suppose that $\varphi(z) \not \equiv 0$,

$$
\begin{equation*}
A_{0}=\frac{F_{i}}{\varphi}-\left[\frac{\varphi^{(k)}}{\varphi}+A_{k-1}^{i} \frac{\varphi^{(k-1)}}{\varphi}+\cdots+A_{1}^{i} \frac{\varphi^{\prime}}{\varphi}+\sum_{k=0}^{i-1} A_{1}^{k}\left(\frac{\left(A_{1}^{k}\right)^{\prime}}{A_{1}^{k}}-\frac{\left(A_{0}^{k}\right)^{\prime}}{A_{0}^{k}}\right)\right] . \tag{4.3}
\end{equation*}
$$

On the other hand, from (1.10),

$$
\begin{equation*}
m\left(r, F_{i}\right) \leq m(r, F)+O\left(\exp _{p-1}\left\{(\beta+\varepsilon) \log _{q}\left(\frac{1}{1-r}\right)\right\}\right) \tag{4.4}
\end{equation*}
$$

By (4.3), (4.4) and Lemma 3.5 we have

$$
\begin{align*}
T\left(r, A_{0}\right)= & m\left(r, A_{0}\right) \leq m(r, F)+m\left(r, \frac{1}{\varphi}\right)+\sum_{k=0}^{i-1} m\left(r, A_{1}^{k}\right) \\
& +\sum_{j=1}^{k-1} m\left(r, A_{j}^{i}\right)+O\left(\exp _{p-1}\left\{(\beta+\varepsilon) \log _{q}\left(\frac{1}{1-r}\right)\right\}\right), \tag{4.5}
\end{align*}
$$

which implies the contradiction

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \max \left\{\rho_{[p, q]}\left(A_{j}\right)(j=1,2, \cdots, k-1), \rho_{[p, q]}(F), \rho_{[p, q]}(\varphi)\right\} .
$$

If $\varphi(z) \equiv 0$, then from (1.10) and (1.11)

$$
\begin{equation*}
F_{i-1}^{\prime}-\frac{\left(A_{0}^{i-1}\right)^{\prime}}{A_{0}^{i-1}} F_{i-1}=0 \tag{4.6}
\end{equation*}
$$

which implies $F_{i-1}(z)=c A_{0}^{i-1}(z)$, where c is some constant. By (4.1) and (4.6), we have

$$
\begin{equation*}
\frac{1}{c} F_{i-1}=\sum_{k=0}^{i-2} A_{1}^{k}\left(\frac{\left(A_{1}^{k}\right)^{\prime}}{A_{1}^{k}}-\frac{\left(A_{0}^{k}\right)^{\prime}}{A_{0}^{k}}\right)+A_{0} \tag{4.7}
\end{equation*}
$$

By (4.4), (4.7) and Lemma 3.5 we have

$$
T\left(r, A_{0}\right)=m\left(r, A_{0}\right) \leq m(r, F)+\sum_{k=0}^{i-2} m\left(r, A_{1}^{k}\right)+O\left(\exp _{p-1}\left\{(\beta+\varepsilon) \log _{q}\left(\frac{1}{1-r}\right)\right\}\right),
$$

which implies the contradiction

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \max \left\{\rho_{[p, q]}\left(A_{j}\right)(j=1,2, \cdots, k-1), \rho_{[p, q]}(F)\right\} .
$$

Hence $D_{i} \not \equiv 0$ for all $i=1,2,3, \cdots$. Since $A_{0}^{i} \not \equiv 0, D_{i} \not \equiv 0(i=1,2,3, \cdots)$, then by Theorem 1.4 and Lemma 3.4 we have

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \bar{\lambda}_{[p+1, q]}\left(f^{(j)}-\varphi\right)=\lambda_{[p+1, q]}\left(f^{(j)}-\varphi\right)=\rho_{[p+1, q]}(f) \leq \rho_{M,[p, q]}\left(A_{0}\right) \quad(j=0,1,2, \cdots)
$$

with at most one possible exceptional solution f_{0} such that

$$
\rho_{[p+1, q]}\left(f_{0}\right)<\rho_{[p, q]}\left(A_{0}\right) .
$$

Therefore, the proof of Theorem 2.1 is completely.

4.2. The proof of Theorem 2.2

We need only to prove that $A_{0}^{i} \not \equiv 0$ and $D_{i} \not \equiv 0$ for all $j=1,2,3, \cdots$. Then by Theorem 1.4 we can obtain Theorem 2.2. Consider the assumption $\delta\left(\infty, A_{0}\right)=\delta>0$. Then for $r \rightarrow 1^{-}$we have

$$
\begin{equation*}
T\left(r, A_{0}\right) \leq \frac{2}{\delta} m\left(r, A_{0}\right) \tag{4.8}
\end{equation*}
$$

Now we prove that $A_{0}^{i} \not \equiv 0$ for all $i=1,2,3, \cdots$. For that we suppose there exists $i \in \mathbb{N}$ such that $A_{0}^{i}=0$. By (4.1) and (4.8) we obtain

$$
\begin{align*}
T\left(r, A_{0}\right) \leq \frac{2}{\delta} m\left(r, A_{0}\right) & \leq \frac{2}{\delta} \sum_{k=0}^{i-1} m\left(r, A_{1}^{k}\right)+\frac{2}{\delta} O\left(\exp _{p-1}\left\{(\beta+\varepsilon) \log _{q}\left(\frac{1}{1-r}\right)\right\}\right) \\
& \leq \frac{2}{\delta} \sum_{k=0}^{i-1} T\left(r, A_{1}^{k}\right)+\frac{2}{\delta} O\left(\exp _{p-1}\left\{(\beta+\varepsilon) \log _{q}\left(\frac{1}{1-r}\right)\right\}\right) \tag{4.9}
\end{align*}
$$

which implies the contradiction

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \max \left\{\rho_{[p, q]}\left(A_{j}\right)(j=1,2, \cdots, k-1)\right\} .
$$

Hence $A_{0}^{i} \not \equiv 0$ for all $i=1,2,3, \cdots$. We prove that $D_{i} \not \equiv 0$ for all $i=1,2,3, \cdots$. For that we suppose there exists $i \in \mathbb{N}$ such that $D_{i}=0$. If $\varphi(z) \not \equiv 0$, then by (4.3), (4.4), (4.8) and Lemma 3.5 we have

$$
\begin{align*}
T\left(r, A_{0}\right) \leq \frac{2}{\delta} m\left(r, A_{0}\right) \leq & \frac{2}{\delta}\left[m(r, F)+m\left(r, \frac{1}{\varphi}\right)+\sum_{k=0}^{i-1} m\left(r, A_{1}^{k}\right)+\sum_{j=1}^{k-1} m\left(r, A_{j}^{i}\right)\right] \tag{4.10}\\
& +\frac{2}{\delta}\left[O\left(\exp _{p-1}\left\{(\beta+\varepsilon) \log _{q}\left(\frac{1}{1-r}\right)\right\}\right)\right],
\end{align*}
$$

which implies the contradiction

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \max \left\{\rho_{[p, q]}\left(A_{j}\right)(j=1,2, \cdots, k-1), \rho_{[p, q]}(F), \rho_{[p, q]}(\varphi)\right\} .
$$

If $\varphi(z) \equiv 0$, then by (4.4), (4.7) and Lemma 3.5 we have

$$
\begin{align*}
T\left(r, A_{0}\right) & \leq \frac{2}{\delta} m\left(r, A_{0}\right) \\
& \leq \frac{2}{\delta} m(r, F)+\frac{2}{\delta} \sum_{k=0}^{i-2} m\left(r, A_{1}^{k}\right)+O\left(\exp _{p-1}\left\{(\beta+\varepsilon) \log _{q}\left(\frac{1}{1-r}\right)\right\}\right) \tag{4.11}\\
& \leq \frac{2}{\delta} T(r, F)+\frac{2}{\delta} \sum_{k=0}^{i-2} T\left(r, A_{1}^{k}\right)+O\left(\exp _{p-1}\left\{(\beta+\varepsilon) \log _{q}\left(\frac{1}{1-r}\right)\right\}\right)
\end{align*}
$$

which implies the contradiction

$$
\rho_{[p, q]}\left(A_{0}\right) \leq \max \left\{\rho_{[p, q]}\left(A_{j}\right)(j=1,2, \cdots, k-1), \rho_{[p, q]}(F)\right\} .
$$

Hence $D_{i} \not \equiv 0$ for all $i=1,2,3, \cdots$. By Theorem 1.4, we have Theorem 2.2.
Therefore, this completes the proof of Theorem 2.2.

5. Conclusions

We first obtained some oscillation theorems (see [14]) which consider the distribution of meromorphic solutions and their arbitrary-order derivatives taking small function values instead of taking zeros. Moreover, Z. Dahmani and M. A. Abdelaoui (see [15]) investigated the higher order non-homogeneous linear differential equation which can be seen as an improvement of [14]. By using those theorems, we obtain some oscillation theorems for $f^{(j)}(z)-\varphi(z)$, where f is a solution and $\varphi(z)$ is a small function. We believe our results will attract the attentions of the related readers.

Acknowledgments

The authors would like to thank the anonymous referee for making valuable suggestions and comments to improve this article.

This work was supported by the National Natural Science Foundation of China (12161074), the Natural Science Foundation of Jiangxi Province in China (20181BAB201001), and the Foundation of Education Department of Jiangxi (GJJ190895, GJJ190876) of China.

Conflict of interest

The authors declare that none of the authors have any competing interests in the manuscript.

References

1. W. K. Hayman, Meromorphic functions, Oxford: The Clarendon Press, 1964.
2. J. Heittokangas, On complex differential equations in the unit disc, Ann. Acad. Sci. Fenn. Math. Diss., 122 (2000), 1-54.
3. I. Laine, Nevanlinna theory and complex differential equations, Berlin: Walter de Gruyter, 1993.
4. M. Tsuji, Potential theory in modern function theory, New York: Chelsea, 1975.
5. Z. X. Chen, K. H. Shon, The growth of solutions of differential equations with coefficients of small growth in the disc, J. Math. Anal. Appl., 297 (2004), 285-304.
6. I. E. Chyzhykov, G. G. Gundersen, J. Heittokangas, Linear differential equations and logarithmic derivative estimates, Proc. London Math. Soc., 86 (2003), 735-754.
7. L. G. Bernal, On growth k-order of solutions of a complex homogeneous linear differential equation, Proc. Am. Math. Soc., 101 (1987), 317-322.
8. L. Kinnunen, Linear differential equations with solutions of finite iterated order, Southeast Asian Bull. Math., 22 (1998), 385-406.
9. T. B. Cao, H. Y. Yi, The growth of solutions of linear differential equations with coefficients of iterated order in the unit disc, J. Math. Anal. Appl., 319 (2006), 278-294.
10. T. B. Cao, The growth, oscillation and fixed points of solutions of complex linear differential equations in the unit disc, J. Math. Anal. Appl., 352 (2009), 739-748.
11. T. B. Cao, Z. S. Deng, Solutions of non-homogeneous linear differential equations in the unit disc, Ann. Pol. Math., 97 (2010), 51-61.
12. B. Belaïdi, Growth of solutions to linear differential equations with analytic coefficients of $[p, q]-$ order in the unit disc, Electron. J. Differ. Equ., 2011 (2011), 1-11.
13. Z. Latreuch, B. Belaïdi, Linear differential equations with analytic coefficients of $[p, q]$-order in the unit disc, Sarajevo J. Math., 9 (2013), 71-84.
14. P. Gong, L. P. Xiao, Oscillation of arbitrary-order derivatives of solutions to linear differential equations taking small funcions in the unit disc, Electron. J. Differ. Equ., 2015 (2015), 1-12.
15. Z. Dahmani, M. A. Abdelaoui, A unit disc study for $[p, q]$-order meromorphic solutions of complex differential equations, J. Interdiscip. Math., 21 (2018), 595-609.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
