Research article

Observability estimate for the parabolic equations with inverse square potential

  • Received: 13 July 2021 Accepted: 13 September 2021 Published: 22 September 2021
  • MSC : 35K10, 93B07

  • This paper investigates an observability estimate for the parabolic equations with inverse square potential in a $ C^2 $ bounded domain $ \Omega\subset\mathbb{R}^d $, which contains $ 0 $. The observation region is a product set of a subset $ E\subset(0, T] $ with positive measure and a non-empty open subset $ \omega\subset\Omega $ with $ 0\notin\omega $. We build up this estimate by a delicate result in measure theory in [7] and the Lebeau-Robbiano strategy.

    Citation: Guojie Zheng, Baolin Ma. Observability estimate for the parabolic equations with inverse square potential[J]. AIMS Mathematics, 2021, 6(12): 13525-13532. doi: 10.3934/math.2021785

    Related Papers:

  • This paper investigates an observability estimate for the parabolic equations with inverse square potential in a $ C^2 $ bounded domain $ \Omega\subset\mathbb{R}^d $, which contains $ 0 $. The observation region is a product set of a subset $ E\subset(0, T] $ with positive measure and a non-empty open subset $ \omega\subset\Omega $ with $ 0\notin\omega $. We build up this estimate by a delicate result in measure theory in [7] and the Lebeau-Robbiano strategy.



    加载中


    [1] J. Apraiz, L. Escauriaza, G. Wang, C. Zhang, Observability inequalities and measurable sets, J. Eur. Math. Soc., 16 (2014), 2433–2475. doi: 10.4171/JEMS/490
    [2] P. Baras, J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121–139. doi: 10.1090/S0002-9947-1984-0742415-3
    [3] S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse square potential, Commun. Part. Diff. Eq., 33 (2008), 1996–2019. doi: 10.1080/03605300802402633
    [4] J. A. Goldstein, Q. S. Zhang, Linear parabolic equations with strong singular potentials, Trans. Amer. Math. Soc., 355 (2003), 197–211.
    [5] J. L. Lions, Exact controllability, stabilization and perturbations for distributed system, SIAM Rev., 30 (1988), 1–68. doi: 10.1137/1030001
    [6] K. D. Phung, Carleman commutator approach in logarithmic convexity for parabolic equations, Math. Control Relat. F., 8 (2018), 899–933. doi: 10.3934/mcrf.2018040
    [7] K. D. Phung, G. Wang, An observability estimate for the parabolic equations from a measurable set in time and its applications, J. Eur. Math. Soc., 15 (2013), 681–703. doi: 10.4171/JEMS/371
    [8] K. D. Phung, L. Wang, C. Zhang, Bang-bang property for time optimal control of semilinear heat equation, Ann. I. H. Poincare-An., 31 (2014), 477–499. doi: 10.1016/j.anihpc.2013.04.005
    [9] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.
    [10] I. Peral, J. L. Vazquez, On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term, Arch. Ration. Mech. An., 129 (1995), 201–224. doi: 10.1007/BF00383673
    [11] J. L. Vazquez, E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103–153. doi: 10.1006/jfan.1999.3556
    [12] J. Vancostenoble, E. Zuazua, Null controllability for the heat equation with singular inverse square potentials, J. Funct. Anal., 254 (2008), 1864–1902. doi: 10.1016/j.jfa.2007.12.015
    [13] G. Wang, $L^\infty$-null controllability for the heat equation and its consequences for the time optimal control problem, SIAM J. Control Optim., 47 (2008), 1701–1720. doi: 10.1137/060678191
    [14] G. Wang, L. Wang, The Carleman inequality and its application to periodic optimal control governed by semilinear parabolic differential equations, J. Optimz. Theory App., 118 (2003), 429–461. doi: 10.1023/A:1025459624398
    [15] C. Zhang, An observability estimate for the heat equation from a product of two measurable sets, J. Math. Anal. Appl., 396 (2012), 7–12. doi: 10.1016/j.jmaa.2012.05.082
    [16] G. Zheng, K. Li, Y. Zhang, Quantitative unique continuation for the heat equations with inverse square potential, J. Inequal. Appl., 1 (2018), 1–17.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1342) PDF downloads(82) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog