Research article

Global regularity for the tropical climate model with fractional diffusion

  • Received: 27 April 2021 Accepted: 06 July 2021 Published: 16 July 2021
  • MSC : 35Q35, 76B03

  • In this paper, we investigate the following tropical climate model with fractional diffusion

    $ \begin{eqnarray} \left\{\begin{array}{ll} u_t+u\cdot\nabla u+\nabla p+\Lambda^{2\alpha}u+{\rm div}(v\otimes v) = 0,\\[1ex] v_t+u\cdot\nabla v+\nabla\theta+\Lambda^{2\beta}v+v\cdot\nabla u = 0,\\[1ex] \theta_t+u\cdot\nabla\theta+\Lambda^{2\gamma}\theta+{\rm div} v = 0,\\[1ex] {\rm div} u = 0,\\[1ex] ( u, v, \theta)(x,0) = ( u_0, v_0, \theta_0), \end{array} \right. \end{eqnarray} $

    where $ (u_0, v_0, \theta_0) \in H^s(R^n) $ with $ s\geq 1, n\geq 3 $ and $ {\rm div} u_0 = 0 $. When the nonnegative constants $ \alpha, \beta $ and $ \gamma $ satisfy $ \alpha\geq\frac{1}{2}+\frac{n}{4}, \ \alpha+\beta\geq 1+\frac{n}{2}, \ \alpha+\gamma\geq1+\frac{n}{2} $, by using the energy methods, we obtain the global existence and uniqueness of solution for the system. In the special case $ \theta = 0 $, we could obtain the global solution provide that $ \alpha\geq\frac{1}{2}+\frac{n}{4}, \alpha+\beta\geq1+\frac{n}{2} $ and $ (u_0, v_0)\in H^s(s\geq1) $, which generalizes the existing result.

    Citation: Jing Yang, Xuemei Deng, Qunyi Bie. Global regularity for the tropical climate model with fractional diffusion[J]. AIMS Mathematics, 2021, 6(10): 10369-10382. doi: 10.3934/math.2021601

    Related Papers:

  • In this paper, we investigate the following tropical climate model with fractional diffusion

    $ \begin{eqnarray} \left\{\begin{array}{ll} u_t+u\cdot\nabla u+\nabla p+\Lambda^{2\alpha}u+{\rm div}(v\otimes v) = 0,\\[1ex] v_t+u\cdot\nabla v+\nabla\theta+\Lambda^{2\beta}v+v\cdot\nabla u = 0,\\[1ex] \theta_t+u\cdot\nabla\theta+\Lambda^{2\gamma}\theta+{\rm div} v = 0,\\[1ex] {\rm div} u = 0,\\[1ex] ( u, v, \theta)(x,0) = ( u_0, v_0, \theta_0), \end{array} \right. \end{eqnarray} $

    where $ (u_0, v_0, \theta_0) \in H^s(R^n) $ with $ s\geq 1, n\geq 3 $ and $ {\rm div} u_0 = 0 $. When the nonnegative constants $ \alpha, \beta $ and $ \gamma $ satisfy $ \alpha\geq\frac{1}{2}+\frac{n}{4}, \ \alpha+\beta\geq 1+\frac{n}{2}, \ \alpha+\gamma\geq1+\frac{n}{2} $, by using the energy methods, we obtain the global existence and uniqueness of solution for the system. In the special case $ \theta = 0 $, we could obtain the global solution provide that $ \alpha\geq\frac{1}{2}+\frac{n}{4}, \alpha+\beta\geq1+\frac{n}{2} $ and $ (u_0, v_0)\in H^s(s\geq1) $, which generalizes the existing result.



    加载中


    [1] D. M. W. Frierson, A. J. Majda, O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: A novel relaxation limit, Commun. Math. Sci., 2 (2004), 591–626. doi: 10.4310/CMS.2004.v2.n4.a3
    [2] C. C. Ma, Z. H. Jiang, R. H. Wan, Local well-posedness for the tropical climate model with fractional velocity diffusion, Kinet. Relat. Mod., 9 (2016), 551–570. doi: 10.3934/krm.2016006
    [3] J. K. Li, E. Titi, Global well-posedness of strong solutions to a tropical climate model, DCDS, 36 (2016), 4495–4516. doi: 10.3934/dcds.2016.36.4495
    [4] B. Q. Dong, W. J. Wang, J. H. Wu, H. Zhang, Global regularity results for the climate model with fractional dissipation, DCDS-B, 24 (2019), 211–229. doi: 10.3934/dcdsb.2018102
    [5] Z. Ye, Global regularity for a class of 2D tropical climate model, J. Math. Anal. Appl., 446 (2017), 307–321. doi: 10.1016/j.jmaa.2016.08.053
    [6] R. H. Wan, Global small solutions to a tropical climate model without thermal diffusion, J. Math. Phys., 57 (2016), 021507. doi: 10.1063/1.4941039
    [7] C. C. Ma, R. H. Wan, Spectral analysis and global well-posedness for a viscous tropical climate model with only a damp term, Nonlinear Anal.-Real., 39 (2018), 554–567. doi: 10.1016/j.nonrwa.2017.08.004
    [8] B. Q. Dong, J. H. Wu, Z. Ye, 2D tropical climate model with fractional dissipation and without thermal diffusion, Commun. Math. Sci., 18 (2020), 259–292. doi: 10.4310/CMS.2020.v18.n1.a11
    [9] X. Ye, M. X. Zhu, Global strong solutions of the tropical climate model with temperature-dependent diffusion on the barotropic mode, Appl. Math. Lett., 89 (2019), 8–14. doi: 10.1016/j.aml.2018.09.009
    [10] X. Ye, M. X. Zhu, Global strong solutions of the 2D tropical climate system with temperature-dependent viscosity, Z. Angew. Math. Phys., 71 (2020), 97. doi: 10.1007/s00033-020-01321-9
    [11] F. Wu, Regularity criteria for the 3D tropical climate model in Morrey-Campanato space, Electron. J. Qual. Theo., 48 (2019), 1–11.
    [12] Y. Wang, S. Zhang, N. Pan, Regularity and global existence on the 3D tropical climate model, Bull. Malays. Math. Sci. Soc., 43 (2020), 641–650. doi: 10.1007/s40840-018-00707-3
    [13] M. X. Zhu, Global regularity for the tropical climate model with fractional diffusion on barotropic mode, Appl. Math. Lett., 81 (2018), 99–104. doi: 10.1016/j.aml.2018.02.003
    [14] Z. Ye, Global regularity of 2D tropical climate model with zero thermal diffusion, Z. Angew. Math. Mech. 100 (2020), e201900132.
    [15] Z. X. Li, L. H. Deng, H. F. Shang, Global well-posedness and large time decay for the d-dimensional tropical climate model, AIMS Mathematics, 6 (2021), 5581–5595. doi: 10.3934/math.2021330
    [16] C. V. Tran, X. W. Yu, Z. C. Zhai, On global regularity of 2D generalized magnetohydrodynamic equation, J. Differ. Equ., 254 (2013), 4194–4216. doi: 10.1016/j.jde.2013.02.016
    [17] Q. S. Jiu, D. J. Niu, Mathematical results related to a two-dimensional magneto-hydrodynamic equations, Acta Math. Sci., 26 (2006), 744–756. doi: 10.1016/S0252-9602(06)60101-X
    [18] Y. Zhou, J. S. Fan, A regularity criterion for the 2D MHD system with zero magnetic diffusivity, J. Math. Anal. Appl., 378 (2011), 169–172. doi: 10.1016/j.jmaa.2011.01.014
    [19] Z. H. Jiang, Y. N. Wang, Y. Zhou, On regularity criteria for the 2D generalized MHD system, J. Math. Fluid Mech., 18 (2016), 331–341. doi: 10.1007/s00021-015-0235-4
    [20] W. H. Wang, T. G. Qin, Q. Y. Bie, Global well-posedness and analyticity results to 3-D generalized magnetohydrodynamic equations, Appl. Math. Lett., 59 (2016), 65–70. doi: 10.1016/j.aml.2016.03.009
    [21] Y. Z. Wang, K. Y. Wang, Global well-posedness of the three dimensional magnetohydrodynamics equations, Nonlinear Anal.-Real., 17 (2014), 245–251. doi: 10.1016/j.nonrwa.2013.12.002
    [22] Q. Y. Bie, Q. R. Wang, Z. A. Yao, Regularity criteria for the 3D MHD equations in term of velocity, Math. Methods Appl. Sci., 38 (2015), 2506–2516. doi: 10.1002/mma.3237
    [23] K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity, Appl. Math. Lett., 29 (2014), 46–51. doi: 10.1016/j.aml.2013.10.014
    [24] J. H. Wu, Global regularity for a class of generalized Magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295–305. doi: 10.1007/s00021-009-0017-y
    [25] J. H. Wu, Generalized MHD equations, J. Differ. Equ., 195 (2003), 284–312.
    [26] J. Singh, D. Kumar, D. Baleanu, A new analysis of fractional fish farm model associated with Mittag-Leffler-type kernel, Int. J. Biomath., 13 (2020), 2050010. doi: 10.1142/S1793524520500102
    [27] J. Singh, Analysis of fractional blood alcohol model with composite fractional derivative, Chaos Soliton. Fract., 140 (2020), 110127. doi: 10.1016/j.chaos.2020.110127
    [28] H. Singh, D. Baleanu, J. Singh, H. Dutta, Computational study of fractional order smoking model, Chaos Soliton. Fract., 142 (2021), 110440. doi: 10.1016/j.chaos.2020.110440
    [29] F. Souna, S. Djilali, A. Lakmeche, Spatiotemporal behavior in a predator-prey model with herd behavior and cross-diffusion and fear effect, Eur. Phys. J. Plus, 136 (2021), 474. doi: 10.1140/epjp/s13360-021-01489-7
    [30] S. Djilali, S. Bentout, B. Ghanbari, S. Kumar, Spatial patterns in a vegetation model with internal competition and feedback regulation, Eur. Phys. J. Plus, 136 (2021), 256. doi: 10.1140/epjp/s13360-021-01251-z
    [31] L. Guin, S. Pal, S. Chakravarty, S. Djilali, Pattern dynamics of a reaction-diffusion predator-prey system with both refuge and harvesting, Int. J. Biomath., 14 (2021), 2050084. doi: 10.1142/S1793524520500849
    [32] C. E. Kenig, G. Ponce, L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc., 4 (1991), 323–347. doi: 10.1090/S0894-0347-1991-1086966-0
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2200) PDF downloads(144) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog