Research article Special Issues

Global bifurcation result and nodal solutions for Kirchhoff-type equation

  • Received: 30 March 2021 Accepted: 17 May 2021 Published: 28 May 2021
  • MSC : 34C10, 34C23, 47J10

  • We investigate the global structure of nodal solutions for the Kirchhoff-type problem

    $ \left\{\begin{array}{ll} -(a+b\int_{0}^{1}|u'|^2dx)u'' = \lambda f(u),\ x\in (0,1),\\[2ex] u(0) = u(1) = 0, \end{array} \right. $

    where $ a > 0, b > 0 $ are real constants, $ \lambda $ is a real parameter. $ f\in C(\mathbb{R}, \mathbb{R}) $ and there exist four constants $ s_1\leq s_2 < 0 < s_3\leq s_4 $ such that $ f(0) = f(s_i) = 0, i = 1, 2, 3, 4 $, $ f(s) > 0 $ for $ s\in(s_1, s_2)\cup(0, s_3)\cup(s_4, +\infty), f(s) < 0 $ for $ s\in(-\infty, s_1)\cup(s_2, 0)\cup(s_3, s_4) $. Under some suitable assumptions on nonlinear terms, we prove the existence of unbounded continua of nodal solutions of this problem which bifurcate from the line of trivial solutions or from infinity, respectively.

    Citation: Fumei Ye, Xiaoling Han. Global bifurcation result and nodal solutions for Kirchhoff-type equation[J]. AIMS Mathematics, 2021, 6(8): 8331-8341. doi: 10.3934/math.2021482

    Related Papers:

  • We investigate the global structure of nodal solutions for the Kirchhoff-type problem

    $ \left\{\begin{array}{ll} -(a+b\int_{0}^{1}|u'|^2dx)u'' = \lambda f(u),\ x\in (0,1),\\[2ex] u(0) = u(1) = 0, \end{array} \right. $

    where $ a > 0, b > 0 $ are real constants, $ \lambda $ is a real parameter. $ f\in C(\mathbb{R}, \mathbb{R}) $ and there exist four constants $ s_1\leq s_2 < 0 < s_3\leq s_4 $ such that $ f(0) = f(s_i) = 0, i = 1, 2, 3, 4 $, $ f(s) > 0 $ for $ s\in(s_1, s_2)\cup(0, s_3)\cup(s_4, +\infty), f(s) < 0 $ for $ s\in(-\infty, s_1)\cup(s_2, 0)\cup(s_3, s_4) $. Under some suitable assumptions on nonlinear terms, we prove the existence of unbounded continua of nodal solutions of this problem which bifurcate from the line of trivial solutions or from infinity, respectively.



    加载中


    [1] X. Cao, G. Dai, Spectrum global bifurcation and nodal solutions to Kirchhoff–type equations, Electron. J. Differential Equations, 2018 (2018), 1–10.
    [2] G. Dai, R. Hao, Existence of solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 275–284. doi: 10.1016/j.jmaa.2009.05.031
    [3] G. Dai, R. Ma, Solutions for a $p(x)$–Kirchhoff type equation with Neumann boundary data, Nonlinear Anal-Real, 12 (2011), 2666–2680. doi: 10.1016/j.nonrwa.2011.03.013
    [4] G. Dai, J. Wei, Infinitely many non–negative solutions for a $p(x)$–Kirchhoff–type problem with Dirichlet boundary condition, Nonlinear Anal., 73 (2010), 3420–3430. doi: 10.1016/j.na.2010.07.029
    [5] X. Han, G. Dai, On the sub–supersolution method for $p(x)$–Kirchhoff type equations, J. Inequal. Appl., 2012 (2012), 1–11. doi: 10.1186/1029-242X-2012-1
    [6] Z. Liang, F. Li, J. Shi, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. I. H. Poincaré–AN, 31 (2014), 155–167. doi: 10.1016/j.anihpc.2013.01.006
    [7] J. Liao, P. Zhang, J. Liu, C. Tang, Existence and multiplicity of positive solutions for a class of Kirchhoff type problems at resonance, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 1959–1974. doi: 10.3934/dcdss.2016080
    [8] F. Liu, H. Luo, G. Dai, Global bifurcation and nodal solutions for homogeneous Kirchhoff type equations, Electron. J. Qual. Theory Differ. Equ., 29 (2020), 1–13.
    [9] J. Sun, C. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal., 74 (2011), 1212–1222. doi: 10.1016/j.na.2010.09.061
    [10] R. Ma, Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems, Appl. Math. Lett., 21 (2008), 754–760. doi: 10.1016/j.aml.2007.07.029
    [11] R. Ma, Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal., 71 (2009), 4364–4376. doi: 10.1016/j.na.2009.02.113
    [12] R. Ma, X. Han, Existence and multiplicity of positive solutions of a nonlinear eigenvalue problem with indefinite weight function, Appl. Math. Comput., 215 (2009), 1077–1083. doi: 10.1016/j.amc.2009.06.042
    [13] R. Ma, X. Han, Existence of nodal solutions of a nonlinear eigenvalue problem with indefinite weight function, Nonlinear Anal., 71 (2009), 2119–2125. doi: 10.1016/j.na.2009.01.046
    [14] R. Ma, B. Thompson, Nodal solutions for nonlinear eigenvalue problems, Nonlinear Anal., 59 (2004), 707–718. doi: 10.1016/j.na.2004.07.030
    [15] J. T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach, New York, 1969.
    [16] M. H. Protter, H. F. Weinberger, Maximum Principles in Differential Equations, corrected reprint of the 1967 original, Springer-Verlag, New York, 1984.
    [17] P. H. Rabinowitz, On bifurcation from infinity, J. Differ. Equations, 14 (1973), 462–475. doi: 10.1016/0022-0396(73)90061-2
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1981) PDF downloads(118) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog