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Abstract: We investigate the global structure of nodal solutions for the Kirchhoff-type problem −(a + b
∫ 1

0
|u′|2dx)u′′ = λ f (u), x ∈ (0, 1),

u(0) = u(1) = 0,

where a > 0, b > 0 are real constants, λ is a real parameter. f ∈ C(R,R) and there exist four constants
s1 ≤ s2 < 0 < s3 ≤ s4 such that f (0) = f (si) = 0, i = 1, 2, 3, 4, f (s) > 0 for s ∈ (s1, s2) ∪ (0, s3) ∪
(s4,+∞), f (s) < 0 for s ∈ (−∞, s1) ∪ (s2, 0) ∪ (s3, s4). Under some suitable assumptions on nonlinear
terms, we prove the existence of unbounded continua of nodal solutions of this problem which bifurcate
from the line of trivial solutions or from infinity, respectively.
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1. Introduction

This paper is devoted to the Kirchhoff-type problem −(a + b
∫ 1

0
|u′|2dx)u′′ = λ f (u), x ∈ (0, 1),

u(0) = u(1) = 0,
(1.1)

where a > 0, b > 0 are real constants, λ is a real parameter. In recent years, a lot of classical results
have been concerned on a bounded domain for Kirchhoff equation. For example, the existence of
solutions can be founded in [1–9] and the references therein.

When a = 1, b = 0 in problem (1.1), it reduces to the classic second-order semilinear problem.
The conclusions of global bifurcation of such problems are well known, see [10–14] for details. In
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particular, Ma [10], Ma and Han [12] discussed the existence of nodal solutions when the nonlinear
term of the problem (1.1) has two non-zero zeros.

In this article, we are interested in studying nodal solutions of problem (1.1) with the nonlinear
term f has some zeros in R \ {0}. This work is motivated by the recent results of Cao and Dai [1] who
concerned with determining values of λ for which there exist nodal solutions of the Kirchhoff-type
problem  −(a + b

∫ 1

0
|u′|2dx)u′′ = λ f (x, u), x ∈ (0, 1),

u(0) = u(1) = 0.
(1.2)

(1.2) is often used to describe the stationary problem of a model introduced by Kirchhoff to describe
the transversal oscillations of a stretched string. Where f satisfies the following assumptions:
(A1) f ∈ C((0, 1) × R,R) with s f (x, s) > 0 for all x ∈ (0, 1) and any s , 0.
(A2) There exist f0, f∞ ∈ (0,∞) such that

f0 = lim
|s|→0

f (s)
as

, f∞ = lim
|s|→∞

f (s)
bs3

uniformly with respect to x ∈ (0, 1).
It is well known that the problem 

−u′′ = λu, x ∈ (0, 1),

u(0) = u(1) = 0

possesses infinitely many eigenvalues 0 < λ1 < λ2 < · · · < λk < · · · → +∞, all of which are simple.
The eigenvalue φk corresponding to λk has exactly k − 1 simple zeros in (0, 1). According to the
Theorem 1.2 of [1], we know that the eigenvalue problem −(

∫ 1

0
|u′|2dx)u′′ = µu3, x ∈ (0, 1),

u(0) = u(1) = 0
(1.3)

possesses infinitely many eigenvalues 0 < µ1 < µ2 < · · · < µk < · · · → +∞. Every µk is simple and
the corresponding one-dimensional space of solutions of the problem (1.3) with µ = µk is spanned by
a function having precisely k bumps in (0, 1). Each k−bump solution is constructed by the reflection
and compression of the eigenfunction ψ1 associated with µ1.

Using the bifurcation results of [1], the authors further established the following result:
Theorem A. ( [1]. Theorem 1.3) Let (A1)-(A2) hold. Then for

λ ∈ (
λk

f0
,
µk

f∞
) ∪ (

µk

f∞
,
λk

f0
),

problem (1.2) possesses at least two solutions u+
k and u−k such that u+

k has exactly k − 1 simple zeros in
(0, 1) and is positive near 0, and u−k has exactly k − 1 simple zeros in (0, 1) and is negative near 0.

Based on the above works, of course the natural question is what would happen if f is allowed to
have some zeros in R \ {0}? In this paper, we will establish the global bifurcation results about the
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components nodal solutions for the Kirchhoff-type problem (1.1). In order to obtain our main results,
let us make the assumptions as follows:

(H1) f ∈ C(R,R) and there exist s1 ≤ s2 < 0 such that f (0) = f (s1) = f (s2) = 0, and f (s) > 0 for
s ∈ (s1, s2), f (s) < 0 for s ∈ (−∞, s1) ∪ (s2, 0).

(H2) f ∈ C(R,R) and there exist 0 < s3 ≤ s4 such that f (0) = f (s3) = f (s4) = 0, and f (s) > 0 for
s ∈ (0, s3) ∪ (s4,+∞), f (s) < 0 for s ∈ (s3, s4).

(H3) There exists f0 ∈ (0,∞) such that f0 = lim
|s|→0

f (s)
s uniformly with respect to all x ∈ (0, 1).

(H4) There exists f∞ ∈ (0,∞) such that f∞ = lim
|s|→+∞

f (s)
s3 uniformly with respect to all x ∈ (0, 1).

(H5) There exist f∞ = +∞ such that f∞ = lim
|s|→+∞

f (s)
s3 uniformly with respect to all x ∈ (0, 1).

The paper is organized as follows. In Section 2, we state some notations and preliminary results.
Sections 3 and 4 are devoted to study the bifurcation from the trivial solution and infinity of problem
(1.1), and we show the optimal intervals of λ for which the nodal solutions exist.

2. Preliminary

In this section, we introduce some lemmas and well-known results which will be used in the
subsequent section.

Definition 2.1. Let X be a Banach space, {Cn|n = 1, 2, 3, · · · } be a family of subsets of X. Then the
superior D of Cn is defined by

D := lim sup
n→∞

Cn = {x ∈ X| ∃ni ⊂ N and xni ∈ Cni , such that xni → x}.

Definition 2.2. The component of M is the largest connected subset in M.

Lemma 2.3. ( [15]) Let X be a Banach space, Cn is a component of X, assume that
(i) There exists zn ∈ Cn(n = 1, 2, · · · ) and z∗ ∈ X, such that zn → z∗;
(ii) lim

n→∞
rn = ∞, where rn = sup{‖x‖ : x ∈ Cn};

(iii) For every R > 0, (
∞⋃

n=1
Cn)

⋂
ΩR is a relative compact set of X, where ΩR = {x ∈ X : ‖x‖ ≤ R}.

Then D := lim sup
n→∞

Cn contains an unbounded component C such that z∗ ∈ C.

Denote Y = C[0, 1], E := {u ∈ C1
0[0, 1] : u(0) = u(1) = 0} with the norm ‖u‖∞ = max

t∈[0,1]
|u(t)| and

‖u‖E = max{‖u‖∞, ‖u′‖∞}, respectively.
Let S +

k denote the set of functions in E which have exactly k− 1 interior nodal (i.e. non-degenerate)
zeros in (0, 1) and are positive near t = 0, and set S −k = −S +

k , S k = S +
k ∪ S −k . Obviously, S +

k and S −k are
disjoint and open in E. Finally, let Φ±k = R × S ±k and Φk = R × S k.

When considering Kirchhoff-type problem, Dancer-type unilateral global bifurcation theorem is
established in [1], which can be applied to similar problems.

Lemma 2.4. ( [1], Theorem 1.1) The pair (aλk, 0) is a bifurcation point of problem −(a + b
∫ 1

0
|u′|2dx)u′′ = λu + h(x, u, λ), x ∈ (0, 1),

u(0) = u(1) = 0,
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where h : (0, 1) × R2 → R is a continuous function satisfying lim
s→0

h(x,s,λ)
s = 0 uniformly for all x ∈ (0, 1)

and λ on bounded sets. Moreover, there are two distinct unbounded continua in R×H1
0(0, 1), C+

k and C−k ,
consisting of the bifurcation branch Ck emanating from (aλk, 0), such that Cv

k ⊂ ({(aλk, 0)} ∪Φv
k), v = +

or −.

Let ξ, η ∈ C(R,R) be such that

f (s) = f0s + ξ(s), f (s) = f∞s3 + η(s).

Obviously,

lim
|s|→0

ξ(s)
s

= 0 and lim
|s|→∞

ξ(s)
s3 = f∞ uniformly on [0, 1],

lim
|s|→0

η(s)
s

= f0 and lim
|s|→∞

η(s)
s3 = 0 uniformly on [0, 1].

Let us consider  −(a + b
∫ 1

0
|u′|2dx)u′′ = λ f0u + λξ(u), in (0, 1),

u(0) = u(1) = 0
(2.1)

as a bifurcation problem from the trivial solution u ≡ 0, and −(a + b
∫ 1

0
|u′|2dx)u′′ = λ f∞u3 + λη(u), in (0, 1),

u(0) = u(1) = 0
(2.2)

as a bifurcation problem from infinity. (2.1) and (2.2) are equivalent to the problem (1.1).

Let us discuss (2.1). According to Lemma 2.4, we can see that for each integer k ≥ 1 and v ∈ {+,−},
there exists a continuum Cv

k of solutions of (2.1) joining (aλk
f0
, 0) to infinity. In addition, Cv

k \ {(
aλk
f0
, 0)} ⊂

R × S v
k.

Let us discuss (2.2). According to the proof of Theorem 1.3 of [1], we can see that for each integer
k ≥ 1 and v ∈ {+,−}, there exists a continuum Dv

k of solutions of (2.2) meeting ( bµk
f∞
,∞). In addition,

Dv
k \ {(

bµk
f∞
,∞)} ⊂ R × S v

k.

Remark 2.5. We note that when λ = 0, (1.1) has only trivial solution. Therefore, C+
k and C−k are

separated by the hyperplane λ = 0. Furthermore, we know that C+
k and C−k are both unbounded.

3. Global bifurcation results for f∞ ∈ (0,∞)

In this section, we will provide more details about the connected components of nodal solutions
under the assumptions that f has some zeros.

Theorem 3.1. Let (H1)-(H4) hold. Then we have the following results:
(i) If (λ, u) ∈ C+

k ∪ C
−
k , then

s2 < u(x) < s3, x ∈ [0, 1];

(ii) If (λ, u) ∈ D+
k ∪D

−
k , then either

max
x∈[0,1]

u(x) > s4 or min
x∈[0,1]

u(x) < s1.
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Proof. (i) For (λ, u) ∈ C+
k,+∪C

+
k,−, we just need to prove that max{u(x)|x ∈ [0, 1]} , s3 and min{u(x)|x ∈

[0, 1]} , s2. Otherwise, there is (λ, u) ∈ C+
k ∪ C

−
k such that

max{u(x)|x ∈ [0, 1]} = s3 (3.1)

or
min{u(x)|x ∈ [0, 1]} = s2. (3.2)

Denote
0 = τ1 < τ2 < · · · < τl = 1

as the zeros of u in [0, 1].
If (3.1) holds, then there exists j ∈ {0, · · · , l − 1} such that

max{u(x)|x ∈ [τ j, τ j+1]} = s3 (3.3)

and
0 ≤ u(x) ≤ s3, x ∈ [τ j, τ j+1].

We consider the boundary value problem −(a + b
∫ 1

0
|u′|2dx)u′′ = λ f (u(x)), x ∈ (τ j, τ j+1),

u(τ j) = u(τ j+1) = 0.

We claim that there exists a constant m > 0 such that

f (u) ≤ m(s3 − u) and 0 ≤ u ≤ s3 for all x ∈ [τ j, τ j+1]. (3.4)

It is seen form (H2) that the claim is true for the case u = 0 or u = s3. Suppose on the contrary that
there exists s′3 ∈ (0, s3) such that f (s′3) > m(s3 − s′3) for any m > 0. This gives that m <

f (s′3)
s3−s′3

, which
contradicts the arbitrariness of m.

Noting (3.4), we obtain that

−(a + b
∫ 1

0
|(s3 − u)′|2dx)(s3 − u)′′ + λm(s3 − u) ≥ λm(s3 − u) − λ f (u) ≥ 0, x ∈ (τ j, τ j+1).

It is straightforward to see from s3 > 0 that

s3 − u(τ j) > 0, s3 − u(τ j+1) > 0.

By virtue of the strong maximum principle [16], we can show that s3 > u(x), x ∈ [τ j, τ j+1]. This
contradicts (3.3).

If (3.2) holds, then there exists j ∈ {0, · · · , l − 1} such that

min{u(x)|x ∈ [τ j, τ j+1]} = s2 (3.5)

and
s2 ≤ u(x) ≤ 0, x ∈ [τ j, τ j+1].
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Similarly, we claim that there exists a constant m > 0 such that

f (u) ≥ m(s2 − u) and s2 ≤ u ≤ 0 for all x ∈ [τ j, τ j+1]. (3.6)

Noting (3.6), we obtain that

−(a + b
∫ 1

0
|(s2 − u)′|2dx)(s2 − u)′′ + λm(s2 − u) ≤ λm(s2 − u) − λ f (u) ≤ 0, x ∈ (τ j, τ j+1).

It is straightforward to see from s2 < 0 that

s2 − u(τ j) < 0, s2 − u(τ j+1) < 0.

By virtue of the strong maximum principle [16], we can show that s2 < u(x), x ∈ [τ j, τ j+1]. This
contradicts (3.5).

The argument of (ii) is similar to that of (i). �

Remark 3.2. From Theorem 3.1, it is easy to see that

‖u‖∞ < max{|s2|, s3} = s∗.

Further,

‖u‖E < max{s∗, λmax
|s|≤s∗
| f (s)|}.

Combining Theorem 3.1 and Remark 3.2, by virtue of the similar argument of [10, Corollaries
2.1–2.2] with obvious changes, we conclude the following results:

Theorem 3.3. Let (H1)-(H4) hold. Assume that aλk
f0
< bµk

f∞
, then

(i) if λ ∈ [ aλk
f0
, bµk

f∞
), then problem (1.1) has at least two solutions u+

k,0 and u−k,0 such that u+
k,0 has

exactly k − 1 zeros in (0,1) and is positive near 0, u−k,0 has exactly k − 1 zeros in (0,1) and is negative
near 0;

(ii) if λ ∈ ( bµk
f∞
,+∞), then problem (1.1) has at least four solutions u+

k,∞, u−k,∞, u+
k,0 and u−k,0 such that

u+
k,∞, u

+
k,0 have exactly k − 1 zeros in (0,1) and are positive near 0; u−k,∞, u

−
k,0 have exactly k − 1 zeros in

(0,1) and are negative near 0.

Theorem 3.4. Let (H1)-(H4) hold. Assume that aλk
f0
> bµk

f∞
, then

(i) if λ ∈ (bµk
f∞
, aλk

f0
], then problem (1.1) has at least two solutions u+

k,∞ and u−k,∞ such that u+
k,∞ has

exactly k − 1 zeros in (0,1) and is positive near 0, u−k,∞ has exactly k − 1 zeros in (0,1) and is negative
near 0;

(ii) if λ ∈ ( aλk
f0
,+∞), then problem (1.1) has at least four solutions u+

k,∞, u−k,∞, u+
k,0 and u−k,0 such that

u+
k,∞, u

+
k,0 have exactly k − 1 zeros in (0,1) and are positive near 0; u−k,∞, u

−
k,0 have exactly k − 1 zeros in

(0,1) and are negative near 0.
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4. Global bifurcation results for f∞ = +∞

Theorem 4.1. Let (H1), (H3) and (H5) hold. Then,
(i) if λ ∈ (0, aλk

f0
), then problem (1.1) has at least two solutions u−k,∞ and u+

k such that u+
k has exactly

k − 1 zeros in (0,1) and is positive near 0, u−k,∞ has exactly k − 1 zeros in (0,1) and is negative near 0;
(ii) if λ = aλk

f0
, then problem (1.1) has at least one solution u−k,∞;

(iii) if λ ∈ ( aλk
f0
,+∞), then problem (1.1) has at least two solutions u−k,∞, u

−
k,0.

Proof. For any n ∈ N+ and n > −s1. Define the function f [n] : R→ R as follows

f [n](s) =


f (s), |s| ≤ n,

1
n3 f (n)s3, |s| > n.

(4.1)

Thus f [n] ∈ C(R,R). Further, f [n](0) = f [n](s1) = f [n](s2) = 0, and

( f [n])∞ =
f (n)
n3 .

We can see from (H5) that lim
n→∞

( f [n])∞ = +∞.
Consider the following auxiliary problem −(a + b

∫ 1

0
|u′|2dx)u′′ = λ f [n](u), x ∈ (0, 1),

u(0) = u(1) = 0.
(4.2)

Let η[n] ∈ C(R,R) be such that
f [n](u) = ( f [n])∞u3 + η[n](u).

Then lim
|u|→∞

η[n](u)
u3 = 0 uniformly on [0, 1].

We consider  −(a + b
∫ 1

0
|u′|2dx)u′′ = λ( f [n])∞u3 + λη[n](u), x ∈ (0, 1),

u(0) = u(1) = 0
(4.3)

as a bifurcation problem from infinity.
It is easy to see from [17, Theorem 1.6 and Corollary 1.8] that for each integer k ≥ 1 and n ∈ N+

with n > −s1, there exists a continuum D[n],−
k,∞ of solutions of (4.2) meeting ( bµk

( f [n])∞
,∞) and D[n],−

k,∞ \

{( bµk
( f [n])∞

,∞)} ⊂ (R × S −k ).
Similar to the proof of Theorem 3.1, for any (λ, u) ∈ D[n],−

k,∞ , we obtain that u(x0) < s1 for some
x0 ∈ (0, 1). Further, it is direct to check that

sup{λ
∣∣∣(λ, u) ∈ D[n],−

k,∞ } = ∞. (4.4)

It remains to be shown that for each n ∈ N+ with n > −s1, there exists a positive constant M such
that

sup{‖u‖∞
∣∣∣(λ, u) ∈ D[n],−

k,∞ and λ ∈ I} ≤ M, (4.5)
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where I ⊂ ( bµk
( f [n])∞

,∞) is a closed and bounded interval.
Suppose on the contrary that there is a sequence {(κl, ul)} ⊂ D

[n],−
k,∞ ∩ (I × E) satisfying

‖ul‖E → ∞ as l→ ∞. (4.6)

We claim that
‖ul‖∞ → ∞ as l→ ∞. (4.7)

In fact, it is straightforward to see that (κl, ul) satisfies −(a + b
∫ 1

0
|u′l |

2dx)u′′l = κl f [n](ul), x ∈ (0, 1),

ul(0) = ul(1) = 0.

Thus, we know that there exists xl ∈ (0, 1) such that u′l(xl) = 0 and

u′l(x) = −

∫ x

xl

κl
1

a + b
∫ 1

0
|ul(τ)′|2dτ

f [n](ul(s))ds.

There is a positive constant N such that ‖ul‖∞ ≤ N for each l. Further, combining the definition of f [n]

and (4.7), gives
‖u′l‖∞ ≤ N′ for some N′ > 0 and all l.

This is a contradiction. Therefore, we complete the proof of (4.7).
Let 0 = τ(0, l) < τ(1, l) < · · · < τ(k, l) = 1 denote the zeros of ul. Taking a subsequence and

relabeling if necessary, we assume that for each i ∈ {0, 1, · · · , k},

lim
l→∞

τ(i, l) = τ(i,∞).

Moreover, it is interesting to see that there exists α ∈ R such that

min{(−1)iul(x) : x ∈ I(i, l)} ≥ αmax{|ul(x)| : x ∈ [τ(i, l), τ(i + 1, l)]}, (4.8)

where I(i, l) = [τ(i, l) +
τ(i+1,l)−τ(i,l)

4 , τ(i + 1, l)− τ(i+1,l)−τ(i,l)
4 ]. By virtue of (4.7) and (4.8), we get that there

is i′ ∈ {0, 1, · · · , k − 1} and a closed interval I1 ⊂ (τ(i′,∞), τ(i′ + 1,∞)) with positive length such that

(−1)i′ul(x)→ ∞ as l→ ∞ uniformly for x ∈ I1. (4.9)

Since {κl} ⊂ I, then there must exist a κ∗ with κ∗ > bµk
( f [n])∞

such that lim
l→∞

κl = κ∗. In view of the above
arguments, we obtain that

lim
l→∞

κl
f [n](ul)

u3
l

= κ∗( f [n])∞ uniformly for x ∈ I1. (4.10)

Since κ∗( f [n])∞ > bµk and −(a + b
∫ 1

0
|u′l |

2dx)u′′l = κl
f (ul)
u3

l
u3

l for x ∈ I1. We conclude that ul must changes
its sign on I1 with l large enough. This is a contradiction. Therefore, we complete the proof of (4.5).
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Next we prove thatD[n],−
k,∞ satisfies all the conditions of Lemma 2.3. Since

lim
n→∞

bµk

( f [n])∞
= lim

n→∞

bµk
f (n)
n3

,

this together with (4.5) gives that there is a closed interval J ⊂ (0,∞) and a positive constant γ. Denote
Σ = {u ∈ E| − s1 < ‖u‖∞ < γ}, thus there must exist un j ∈ D

[n],−
k,∞ ∩ (J ×Σ) such that un j → u∗. Therefore,

condition (i) in Lemma 2.3 is satisfied. It is clear that

rn = sup{λ + ‖u‖E : (λ, u) ∈ D[n],−
k,∞ } → ∞.

Thus, (ii) in Lemma 2.3 holds.
According to the Arzéla-Ascoli Theorem and the definition of f [n], (iii) is obviously valid.

Therefore, with the help of Lemma 2.3, we get that lim sup
n→+∞

D
[n],−
k,∞ contains an unbounded connected

components D̃−k,∞ with
sup{λ |(λ, u) ∈ D̃−k,∞} = ∞.

In view of the similar arguments of the proof of Theorem 3.1, for (λ, u) ∈ D̃−k,∞, one has that
u(x0) < s1 for some x0 ∈ (0, 1).

Next we prove that lim
(λ,u)∈D̃−k,∞,‖u‖E→∞

λ = 0. Suppose on the contrary that there exists {(λn, un)} ⊂ D̃−k,∞

such that ‖un‖E → ∞, λn ≥ δ for some constant δ > 0. Thus, (4.7)-(4.9) hold. We can see from (H5)
and (4.9) that

lim
n→∞

f (un)
u3

n
= ∞ uniformly on x ∈ I1.

This ensures that for all n sufficiently large, the solution un of

−(a + b
∫ 1

0
|u′n|

2dx)u′′n = λn
f (un)
u3

n
u3

n

must change its sign on I1. This contradicts (4.9). Thus, lim
(λ,u)∈D̃−k,∞,‖u‖E→∞

λ = 0. According to the above

arguments, we conclude that
ProjRD

−
k,∞ = (0,∞). (4.11)

Moreover, it is straightforward from Theorem 3.1 to see that for any (λ, u) ∈ C−k,0,

s2 < u(x) < 0.

Remark 3.2 yields that the set {(ρ, z) ∈ C−k,0 | ρ ∈ [0, h]} is bounded for any fixed h ∈ (0,∞). Combining
the above with the fact that C−k,0 joins (aλk

f0
, 0) to infinity gives

ProjRC
−
k,0 ⊃ (

aλk

f0
,+∞). (4.12)

On the other hand, according to the Lemma 2.4, for each integer k ≥ 1, we conclude that there
exists unbounded continuum C+

k joining (aλk
f0
, 0) to infinity such that C+

k \ {(
aλk
f0
, 0)} ⊂ (R × S +

k ). Next,
we prove that C+

k joins (aλk
f0
, 0) to (0,∞).
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Let {(ρl, ul)} ⊂ C+
k be such that |ρl| + ‖ul‖E → ∞ as l → ∞. Suppose that {‖ul‖E} is bounded,

then we can assume that lim
l→∞

ρl = ∞. Since Σk−1
i=0 [τ(i + 1,∞) − τ(i,∞)] = 1, this implies that there is

i0 ∈ {0, · · · , k − 1} such that τ(i0,∞) < τ(i0 + 1,∞). Then there must exist i0 ∈ N and a closed interval
I0 ⊂ (τ(i0,∞), τ(i0 + 1,∞)) with positive length such that I0 ⊂ (τ(i0,m), τ(i0 + 1,m)) for all i ≥ i0.
Further,

(−1)i0+1ul > 0 for all i ≥ i0, x ∈ I0. (4.13)

In view of the relations lim
l→∞

ρl = ∞ and −(a + b
∫ 1

0
|u′l |

2dx)u′′l = ρl f (ul) for x ∈ I0, we get that ul must
change its sign on I0 if l is large enough. This contradicts (4.13). Therefore, {‖ul‖E} is unbounded.
Similarly, we can show that lim

l→∞
ρl = 0 and

ProjRC
+
k ⊃ (0,

aλk

f0
). (4.14)

By virtue of the above arguments, it is easy to get the desired results.
�

As an immediate consequence of Theorem 4.1, we have the second main result in this section read
as follows:

Theorem 4.2. Let (H2), (H3) and (H5) hold. Then,
(i) if λ ∈ (0, aλk

f0
), then problem (1.1) has at least two solutions u+

k,∞ and u−k such that u+
k,∞ has exactly

k − 1 zeros in (0,1) and is positive near 0, u−k has exactly k − 1 zeros in (0,1) and is negative near 0;
(ii) if λ = aλk

f0
, then problem (1.1) has at least one solution u+

k,∞;
(iii) if λ ∈ ( aλk

f0
,+∞), then problem (1.1) has at least two solutions u+

k,∞, u
+
k,0.
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