In this paper, we obtain the E-Bayesian estimation of the parameter and the reliability function of the Burr type-XII distribution under adaptive progressive Type-Ⅱ censoring scheme. The E-Bayesian estimation is investigated using three different prior distributions based on squared error and LINEX loss functions. The properties of the E-Bayesian estimation and the E-posterior risk under squared error and LINEX loss functions are also discussed. An extensive simulation study is conducted to compare the behaviour of the E-Bayesian estimation with the corresponding Bayes and maximum likelihood estimators. We analyze one real data set to show the applicability of the different estimators in practice.
Citation: Hassan Okasha, Mazen Nassar, Saeed A. Dobbah. E-Bayesian estimation of Burr Type XII model based on adaptive Type-Ⅱ progressive hybrid censored data[J]. AIMS Mathematics, 2021, 6(4): 4173-4196. doi: 10.3934/math.2021247
[1] | Yukun Song, Yang Chen, Jun Yan, Shuai Chen . The existence of solutions for a shear thinning compressible non-Newtonian models. Electronic Research Archive, 2020, 28(1): 47-66. doi: 10.3934/era.2020004 |
[2] | Qiu Meng, Yuanyuan Zhao, Wucai Yang, Huifang Xing . Existence and uniqueness of solution for a class of non-Newtonian fluids with non-Newtonian potential and damping. Electronic Research Archive, 2023, 31(5): 2940-2958. doi: 10.3934/era.2023148 |
[3] | Changjia Wang, Yuxi Duan . Well-posedness for heat conducting non-Newtonian micropolar fluid equations. Electronic Research Archive, 2024, 32(2): 897-914. doi: 10.3934/era.2024043 |
[4] | Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324 |
[5] | Yazhou Chen, Dehua Wang, Rongfang Zhang . On mathematical analysis of complex fluids in active hydrodynamics. Electronic Research Archive, 2021, 29(6): 3817-3832. doi: 10.3934/era.2021063 |
[6] | Anna Gołȩbiewska, Marta Kowalczyk, Sławomir Rybicki, Piotr Stefaniak . Periodic solutions to symmetric Newtonian systems in neighborhoods of orbits of equilibria. Electronic Research Archive, 2022, 30(5): 1691-1707. doi: 10.3934/era.2022085 |
[7] | Dandan Song, Xiaokui Zhao . Large time behavior of strong solution to the magnetohydrodynamics system with temperature-dependent viscosity, heat-conductivity, and resistivity. Electronic Research Archive, 2025, 33(2): 938-972. doi: 10.3934/era.2025043 |
[8] | Dingshi Li, Xuemin Wang . Regular random attractors for non-autonomous stochastic reaction-diffusion equations on thin domains. Electronic Research Archive, 2021, 29(2): 1969-1990. doi: 10.3934/era.2020100 |
[9] | Linyan Fan, Yinghui Zhang . Space-time decay rates of a nonconservative compressible two-phase flow model with common pressure. Electronic Research Archive, 2025, 33(2): 667-696. doi: 10.3934/era.2025031 |
[10] | Yue Cao . Blow-up criterion for the 3D viscous polytropic fluids with degenerate viscosities. Electronic Research Archive, 2020, 28(1): 27-46. doi: 10.3934/era.2020003 |
In this paper, we obtain the E-Bayesian estimation of the parameter and the reliability function of the Burr type-XII distribution under adaptive progressive Type-Ⅱ censoring scheme. The E-Bayesian estimation is investigated using three different prior distributions based on squared error and LINEX loss functions. The properties of the E-Bayesian estimation and the E-posterior risk under squared error and LINEX loss functions are also discussed. An extensive simulation study is conducted to compare the behaviour of the E-Bayesian estimation with the corresponding Bayes and maximum likelihood estimators. We analyze one real data set to show the applicability of the different estimators in practice.
Fluid-particle interaction model arises in many practical applications, and is of primary importance in the sedimentation analysis of disperse suspensions of particles in fluids. This model is one of the commonly used models nowadays in biotechnology, medicine, mineral processing and chemical engineering [27]-[25]. Usually, the fluid flow is governed by the Navier-Stokes equations for a compressible fluid while the evolution of the particle densities is given by the Smoluchowski equation [4], the system has the form:
{ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)+∇(P(ρ)+η)−μΔu−λ∇divu=−(η+βρ)∇Φ,ηt+div(η(u−∇Φ))−Δη=0, | (1) |
where
There are many kinds of literatures on the study of the existence and behavior of solutions to Navier-Stokes equations (See [1]-[17]). Taking system (1) as an example, Carrillo
Despite the important progress, there are few results of non-Newtonian fluid-particle interaction model. As we know, the Navier Stokes equations are generally accepted as a right governing equations for the compressible or incompressible motion of viscous fluids, which is usually described as
{ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)−div(Γ)+∇P=ρf, |
where
Eij(∇u)=∂ui∂xj+∂uj∂xi, |
is the rate of strain. If the relation between the stress and rate of strain is linear, namely,
Γ=μ(∂ui∂xj+∂uj∂xi)q, |
for
Γij=(μ0+μ1|E(∇xu)|p−2)Eij(∇xu). |
For
Non-Newtonian fluid flows are frequently encountered in many physical and industrial processes [8,9], such as porous flows of oils and gases [7], biological fluid flows of blood [30], saliva and mucus, penetration grouting of cement mortar and mixing of massive particles and fluids in drug production [13]. The possible appearance of the vacuum is one of the major difficulties when trying to prove the existence and strong regularity results. On the other hand, the constitutive behavior of non-Newtonian fluid flow is usually more complex and highly non-linear, which may bring more difficulties to study such flows.
In recent years, there has been many research in the field of non-Newtonian flows, both theoretically and experimentally (see [14]-[26]). For example, in [14], Guo and Zhu studied the partial regularity of the generalized solutions to an incompressible monopolar non-Newtonian fluids. In [32], the trajectory attractor and global attractor for an autonomous non-Newtonian fluid in dimension two was studied. The existence and uniqueness of solutions for non-Newtonian fluids were established in [29] by applying Ladyzhenskaya's viscous stress tensor model.
In this paper, followed by Ladyzhenskaya's model of non-Newtonian fluid, we consider the following system
{ρt+(ρu)x=0,(ρu)t+(ρu2)x+ρΨx−λ(|ux|p−2ux)x+(P+η)x=−ηΦx,(x,t)∈ΩT(|Ψx|q−2Ψx)x=4πg(ρ−1|Ω|∫Ωρdx),ηt+(η(u−Φx))x=ηxx, | (2) |
with the initial and boundary conditions
{(ρ,u,η)|t=0=(ρ0,u0,η0),x∈Ω,u|∂Ω=Ψ|∂Ω=0,t∈[0,T], | (3) |
and the no-flux condition for the density of particles
(ηx+ηΦx)|∂Ω=0,t∈[0,T], | (4) |
where
The system describes a compressible shear thinning fluid-particle interaction system for the evolution of particles dispersed in a viscous non-Newtonian fluid and the particle is driven by non-Newtonian gravitational potential. To our knowledge, there still no existence results for (2)-(4) when
We state the definition of strong solution as follows:
Definition 1.1. The
(ⅰ)
ρ∈L∞(0,T∗;H1(Ω)),u∈L∞(0,T∗;W1,p0(Ω)∩H2(Ω)),Ψ∈L∞(0,T∗;H2(Ω)),η∈L∞(0,T∗;H2(Ω)),ρt∈L∞(0,T∗;L2(Ω)),ut∈L2(0,T∗;H10(Ω)),Ψt∈L∞(0,T∗;H1(Ω)),ηt∈L∞(0,T∗;L2(Ω)),√ρut∈L∞(0,T∗;L2(Ω)),(|ux|p−2ux)x∈C(0,T∗;L2(Ω)). |
(ⅱ) For all
∫Ωρϕ(x,t)dx−∫t0∫Ω(ρϕt+ρuϕx)(x,s)dxds=∫Ωρ0ϕ(x,0)dx, | (5) |
(ⅲ) For all
∫Ωρuφ(x,t)dx−∫t0∫Ω{ρuφt+ρu2φx−ρΨxφ−λ|ux|p−2uxφx+(P+η)φx−ηΦxφ}(x,s)dxds=∫Ωρ0u0φ(x,0)dx, | (6) |
(ⅳ) For all
−∫t0∫Ω|Ψx|q−2Ψxψx(x,s)dxds=∫t0∫Ω4πg(ρ−1|Ω|∫Ωρdx)ψ(x,0)dxds, | (7) |
(ⅴ) For all
∫Ωηϑ(x,t)dx−∫t0∫Ω[η(u−Φx)−ηx]ϑx(x,s)dxds=∫Ωη0ϑ(x,0)dx. | (8) |
The main result of this paper is stated in the following theorem.
Theorem 1.2. Let
0≤ρ0∈H1(Ω),u0∈H10(Ω)∩H2(Ω),η0∈H2(Ω), |
and the compatibility condition
−(|u0x|p−2u0x)x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx), | (9) |
for some
ρ∈L∞(0,T∗;H1(Ω)),u∈L∞(0,T∗;W1,p0(Ω)∩H2(Ω)),Ψ∈L∞(0,T∗;H2(Ω)),η∈L∞(0,T∗;H2(Ω)),ρt∈L∞(0,T∗;L2(Ω)),ut∈L2(0,T∗;H10(Ω)),Ψt∈L∞(0,T∗;H1(Ω)),ηt∈L∞(0,T∗;L2(Ω)),√ρut∈L∞(0,T∗;L2(Ω)),(|ux|p−2ux)x∈C(0,T∗;L2(Ω)). |
Remark 1. By using exactly the similar argument, we can prove the result also hold for the case
In this section, we will prove the local existence of strong solutions. From the continuity equation
∫Ωρ(t)dx=∫Ωρ0dx:=m0,(t>0,m0>0) |
Because equation
ρt+(ρu)x=0, | (10) |
(ρu)t+(ρu2)x+ρΨx−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x=−ηΦx, | (11) |
[(ϵΨ2x+1Ψ2x+ϵ)2−q2Ψx]x=4πg(ρ−m0), | (12) |
ηt+(η(u−Φx))x=ηxx, | (13) |
with the initial and boundary conditions.
(ρ,u,η)|t=0=(ρ0,u0,η0),x∈Ω, | (14) |
u|∂Ω=Ψ|∂Ω=(ηx+ηΦx)|∂Ω=0,t∈[0,T], | (15) |
and
{−[(εu20x+1u20x+ε)2−p2u0x]x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx),u0|∂Ω=0. | (16) |
Provided that
We first get the estimate of
{−[(εu20x+1u20x+ε)2−p2u0x]x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx),u0|∂Ω=0. | (16) |
Then
|u0xx|L2≤1p−1|(u20x+εεu20x+1)1−p2|L∞|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2≤1p−1(|u0x|2L∞+1)1−p2(|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2)≤1p−1(|u0xx|2L2+1)1−p2(|Px(ρ0)|L2+|η0x|L2+|η0|L∞|Φx|L2+|ρ0|12L∞|g|L2+|ρ0|12L∞|Φx|L2). |
Applying Young's inequality, we have
|u0xx|L2≤C(|Px(ρ0)|L2+|η0x|L2+|η0|L∞|Φx|L2+|ρ0|12L∞|g|L2+|ρ0|12L∞|Φx|L2)1p−1≤C, |
thus
|u0|L∞+|u0x|L∞+|u0xx|L2≤C, | (17) |
where
Next, we introduce an auxiliary function
Z(t)=sup0≤s≤t(1+|ρ(s)|H1+|u(s)|W1,p0+|√ρut(s)|L2+|ηt(s)|L2+|η(s)|H1). |
We will derive some useful estimate to each term of
In order to prove the main Theorem, we first give some useful lemmas for later use.
Lemma 2.1. Let
{−[(ε(uε0x)2+1(uε0x)2+ε)2−p2uε0x]x+(P(ρ0)+η0)x+η0Φx=ρ120(g+Φx),uε0(0)=uε0(1)=0. | (18) |
Then there are a subsequence
uεj0→u0inH10(Ω)∩H2(Ω),[(εj(uεj0x)2+1(uεj0x)2+εj)2−p2uεj0x]x→(|u0x|p−2u0x)xinL2(Ω). |
Proof. According to (18), we have
uεj0→u0inH10(Ω)∩H2(Ω),[(εj(uεj0x)2+1(uεj0x)2+εj)2−p2uεj0x]x→(|u0x|p−2u0x)xinL2(Ω). |
Taking it by the
|uε0xx|L2≤|(ε(uε0x)2+1(uε0x)2+ε)1−p2|L∞|(P(ρ0)+η0)x+η0Φx+ρ120(g+Φx)|L2≤(|uε0x|2L∞+1)1−p2|(P(ρ0)+η0)x+η0Φx+ρ120(g+Φx)|L2, |
then
|uε0xx|L2≤C(1+|(P(ρ0)+η0)x+η0Φx+ρ120(g+Φx)|L2)1p−1≤C. | (19) |
Therefore, by the above inequality, as
uεj0→u0inC32(Ω),uεj0xx→u0xxinL2(Ω)weakly. |
Thus, we can obtain
|uεi0x−uεj0x|L∞(Ω)<α1. |
Now, we prove that
Let
|uεi0x−uεj0x|L∞(Ω)<α1. |
For all
|uεi0xx−uεj0xx|L2(Ω)≤|ϕi−ϕj|L∞(Ω)|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2(Ω). |
With the assumption, we can obtain
|(P(ρ0)+η0)x+η0Φx−ρ120(g+Φx)|L2(Ω)≤C, |
where
|ϕi−ϕj|L∞(Ω)≤|∫10ϕ′(θ(uεi0x)2+(1−θ)(uεj0x)2)dθ((uεi0x)2−(uεj0x)2)|L∞(Ω), | (20) |
where
By the simple calculation, we can get
ϕ′(s)≤2p−1(1+s−p2), |
where
|ϕi−ϕj|L∞(Ω)≤2p−1|(1+∫10(θ(uεi0x)2+(1−θ)(uεj0x)2)dθ)((uεi0x)2−(uεj0x)2)|L∞(Ω)≤2p−1|uεi0x−uεj0x|L∞(Ω)|uεi0x+uεj0x|L∞(Ω)+4(2−p)(p−1)|uεi0x−uεj0x|2−p2L∞(Ω)|uεi0x+uεj0x|2−p2L∞(Ω)≤α. |
Substituting this into (18), we have
|uεi0xx−uεj0xx|L∞(Ω)<α, |
then there is a subsequence
{uεj0xx}→χinL2(Ω). |
By the uniqueness of the weak convergence, we have
χ={uε0xx}. |
Since
[(εj(uεj0x)2+1(uεj0x)2+εj)2−p2uεj0x]x→(|u0x|p−2u0x)xinL2(Ω). |
This completes the proof of Lemma 2.1.
Lemma 2.2.
sup0≤t≤T|ρ(t)|2H1≤Cexp(C∫t0Z6γ(3p−4)(q−1)(s)ds), | (21) |
where
Proof. We estimates for
[(εu2x+1u2x+ε)2−p2ux]x=ρut+ρuux+ρΨx+(P+η)x+ηΦx. |
We note that
|uxx|≤1p−1(u2x+ε)1−p2|ρut+ρuux+ρΨx+(P+η)x+ηΦx|≤1p−1(|ux|2−p+1)|ρut+ρuux+ρΨx+(P+η)x+ηΦx|. |
Taking it by the
|uxx|p−1L2≤C(1+|ρut|L2+|ρuux|L2+|ρΨx|L2+|(P+η)x|L2+|ηΦx|L2)≤C(1+|ρ|12L∞|√ρut|L2+|ρ|L∞|u|L∞|ux|p2Lp|ux|1−p2L∞+|ρ|γ−1L∞|ρx|L2+|ηx|L2+|η|L∞|Φx|L2+|ρ|L2|Ψxx|L2)≤C[1+|ρ|12L∞|√ρut|L2+(|ρ|L∞|u|L∞|ux|p2Lp)2(p−1)3p−4+|ρ|γ−1L∞|ρx|L2+|ηx|L2+|η|L∞|Φx|L2+|ρ|L2|Ψxx|L2]+12|uxx|p−1L2. | (22) |
On the other hand, by
|Ψxx|≤1q−1(|Ψx|2−q+1)|4πg(ρ−m0)|. |
Taking it by
|Ψxx|L2≤CZ1q−1(t). | (23) |
This implies that
|uxx|L2≤CZmax{qq−1,(p−1)(4+p)3p−4γ}(t)≤CZ6γ(3p−4)(q−1)(t). | (24) |
By (13), taking it by the
|ηxx|L2≤|ηt+(η(u−Φx))x|L2≤|ηt|L2+|ηx|L2|u|L∞+|ηx|L2|Φx|L∞+|η|L2|uxx|L2+|η|L∞|Φxx|L2≤CZ6γ+2(3p−4)(q−1)(t). | (25) |
Multiplying (10) by
12ddt∫Ω|ρ|2ds+∫Ω(ρu)xρdx=0. |
Integrating it by parts, using Sobolev inequality, we obtain
ddt|ρ(t)|2L2≤∫Ω|ux||ρ|2dx≤|uxx|L2|ρ|2L2. | (26) |
Differentiating
ddt∫Ω|ρx|2dx=−∫Ω[32ux(ρx)2+ρρxuxx](t)dx≤C[|ux|L∞|ρx|2L2+|ρ|L∞|ρx|L2|uxx|L2]≤C|ρ|2H1|uxx|L2. | (27) |
From (26) and (27) and the Gronwall's inequality, then lemma 2.2 holds.
Lemma 2.3.
|η|2H1+|ηt|2L2+∫t0(|ηx|2L2+|ηt|2L2+|ηxt|2L2)(s)ds≤C(1+∫t0Z4(s)ds), | (28) |
where
Proof. Multiplying
∫t0|ηx(s)|2L2ds+12|η(t)|2L2≤∬ΩT(|ηuηx|+|ηΦxηx|)dxds≤14∫t0|ηx(s)|2L2ds+C∫t0|ux|2Lp|η|2H1ds+C∫t0|η|2H1ds+C≤14∫t0|ηx(s)|2L2ds+C(1+∫t0Z4(t)ds). | (29) |
Multiplying
∫t0|ηt(s)|2L2ds+12|ηx(t)|2L2≤∬ΩT|η(u−Φx)ηxt|dxds≤14∫t0|ηxt(s)|2L2ds+C∫t0|η|2H1|ux|2Lpds+C∫t0|η|2H1ds+C≤14∫t0|ηxt(s)|2L2ds+C(1+∫t0Z4(t)ds). | (30) |
Differentiating
∫t0|ηxt(s)|2L2ds+12|ηt(t)|2L2=∬ΩT(η(u−Φx))tηxtdxds≤C+∬ΩT(|ηtuηxt|+|ηtΦxηxt|+|ηxutηt|+|ηuxtηt|)dxds≤C(1+∫t0(|ηt|2L2||ux|2Lp+|ηt|2L2+|ηx|2L2|ηt|2L2+|η|2H1|ηt|2L2)dx)+12∫t0|ηxt|2L2+12∫t0|uxt|2L2≤C(1+∫t0Z4(s)ds). | (31) |
Combining (29)-(31), we obtain the desired estimate of Lemma 2.3.
Lemma 2.4.
∫t0|√ρut(s)|2L2(s)ds+|ux(t)|pLp≤C(1+∫t0Z10+4γ(3p−4)(q−1)(s)ds), | (32) |
where
Proof. Using (10), we rewritten the (11) as
ρut+(ρu)ux+ρΨx−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x=−ηΦx. | (33) |
Multiplying (33) by
∬ΩTρ|ut|2dxds+∬ΩT(εu2x+1u2x+ε)2−p2uxuxtdxds=−∬ΩT(ρuux+ρΨx+Px+ηx+ηΦx)utdxds. | (34) |
We deal with each term as follows:
∫Ω(εu2x+1u2x+ε)2−p2uxuxtdx=12∫Ω(εu2x+1u2x+ε)2−p2(u2x)tdx=12ddt∫Ω(∫u2x0(εs+1s+ε)2−p2ds)dx, |
∫u2x0(εs+1s+ε)2−p2ds≥∫u2x0(s+1)2−p2ds=2p[(u2x+1)p2−1], |
−∬ΩTPxutdxds=∬ΩTPuxtdxds=ddt∬ΩTPuxdxds−∬ΩTPtuxdxds. |
By virtue of
Pt=−γPux−Pxu,−∬ΩTηxutdxds=∬ΩTηuxtdxds=ddt∬ΩTηuxdxds−∬ΩTηtuxdxds.−∬ΩTηΦxutdxds=−ddt∬ΩTηΦxudxds+∬ΩTηtΦxudxds. | (35) |
Substituting the above into (34), using Sobolev inequality and Young's inequality, we have
∫t0|√ρut(s)|2L2ds+|ux(t)|pLp≤∬ΩT(|ρuuxut|+|ρΨxut|+|γPu2x|+|Pxuux|+|ηtux|+|ηtΦxu|)dxds+∫Ω(|Pux|+|ηux|+|ηΦxu|)dx+C≤C+∫t0(|ρ|12L∞|u|L∞|ux|p2Lp|ux|1−p2L∞|√ρut|L2+|ρ|12L∞|Ψx|L∞|√ρut|L2)ds+∫t0(γ|P|L2|ux|p2Lp|ux|1−p2L∞|uxx|L2+aγ|ρ|γ−1L∞|ρx|L2|u|L∞|ux|L∞+|ηt|L2|ux|p2Lp|ux|1−p2L∞+|ηt|L2|Φx|L2|u|L∞)ds+|P|Lpp−1|ux|Lp+|η|Lpp−1|ux|Lp+|η|Lpp−1|Φx|Lp|u|L∞≤C(1+∫t0(|ρ|L∞|ux|2+pLp|uxx|2−pL2+|ρ|H1|Ψxx|2L2+|P|L∞|ux|p2Lp|uxx|2−p2L2+|ρ|γ−1L∞|ρx|L2|ux|Lp|uxx|L2+|ηt|L2|ux|p2Lp|uxx|1−p2L2+|ηt|L2|ux|Lp)ds)+|P|pp−1Lpp−1+|η|pp−1Lpp−1+12∫t0|√ρut(s)|2L2ds+12|ux(t)|pLp. | (36) |
To estimate (36), combining (35) we have the following estimates
∫Ω|P(t)|pp−1dx=∫Ω|P(0)|pp−1dx+∫t0∂∂s(∫ΩP(s)pp−1dx)ds≤∫Ω|P(0)|pp−1dx+pp−1∫t0∫Ωaγργ−1P(s)1p−1(−ρxu−ρux)dxds≤C+C∫t0|ρ|γ−1L∞|P|1p−1L∞|ρ|H1|ux|Lpds≤C(1+∫t0Zγp−1+γ+1(s)ds), | (37) |
In exactly the same way, we also have
∫Ω|η(t)|pp−1dx≤C(1+∫t0Z1p−1+1(s)ds), | (38) |
which, together with (36) and (37), implies (32) holds.
Lemma 2.5.
|√ρut(t)|2L2+∫t0|uxt|2L2(s)ds≤C(1+∫t0Z26γ(3p−4)(q−1)(s)ds), | (39) |
where
Proof. Differentiating equation
12ddt∫Ωρ|ut|2dx+∫Ω[(εu2x+1u2x+ε)2−p2ux]tuxtdx=∫Ω[(ρu)x(u2t+uuxut+Ψxut)−ρuxu2t+(P+η)tuxt−ηtΦxut−ρΨxtut]dx. | (40) |
Note that
∫Ω[(εu2x+1u2x+ε)2−p2ux]tuxtdx=∫Ω[(εu2x+1u2x+ε)−p2ux](εu2x+1)(u2x+ε)−(2−p)(1−ε2)u2x(u2x+ε)2u2xtdx≥(p−1)∫Ω(u2x+1)p−22|uxt|2dx, | (41) |
Let
ω=(u2x+1)p−24, |
from (24), it follows that
|ω−1|L∞=|(u2x+1)2−p4|L∞≤C(|uxx|2−p2L2+1)≤CZ2γ(3p−4)(q−1)(t). |
Combining (35), (40) can be rewritten into
ddt∫Ω|ρ|ut|2dx+∫Ω|ωuxt|2dx≤2∫Ωρ|u||ut||uxt|dx+∫Ωρ|u||ux|2|ut|dx+∫Ω|ρx||u|2|ux||ut|dx+∫Ω|ρx||u||Ψx||ut|dx+∫Ωρ|ux||Ψx||ut|dx+∫Ωρ|ux||ut|2dx+∫ΩγP|ux||uxt|dx+∫Ω|Px||u||uxt|dx+∫Ω|ηt||uxt|dx+∫Ω|ηt||Φx||ut|dx+∫Ωρ|Ψxt||ut|dx=11∑j=1Ij. | (42) |
Using Sobolev inequality, Young's inequality,
ddt∫Ω|ρ|ut|2dx+∫Ω|ωuxt|2dx≤2∫Ωρ|u||ut||uxt|dx+∫Ωρ|u||ux|2|ut|dx+∫Ω|ρx||u|2|ux||ut|dx+∫Ω|ρx||u||Ψx||ut|dx+∫Ωρ|ux||Ψx||ut|dx+∫Ωρ|ux||ut|2dx+∫ΩγP|ux||uxt|dx+∫Ω|Px||u||uxt|dx+∫Ω|ηt||uxt|dx+∫Ω|ηt||Φx||ut|dx+∫Ωρ|Ψxt||ut|dx=11∑j=1Ij. | (42) |
ddt∫Ω|ρ|ut|2dx+∫Ω|ωuxt|2dx≤2∫Ωρ|u||ut||uxt|dx+∫Ωρ|u||ux|2|ut|dx+∫Ω|ρx||u|2|ux||ut|dx+∫Ω|ρx||u||Ψx||ut|dx+∫Ωρ|ux||Ψx||ut|dx+∫Ωρ|ux||ut|2dx+∫ΩγP|ux||uxt|dx+∫Ω|Px||u||uxt|dx+∫Ω|ηt||uxt|dx+∫Ω|ηt||Φx||ut|dx+∫Ωρ|Ψxt||ut|dx=11∑j=1Ij. | (42) |
In order to estimate
∫Ω[(ϵΨ2x+1Ψ2x+ϵ)2−q2Ψx]tΨxtdx=−4πg∫Ω(ρu)xΨtdx, | (43) |
and
∫Ω[(ϵΨ2x+1Ψ2x+ϵ)2−q2Ψx]tΨxtdx≥(q−1)∫Ω(Ψ2x+1)q−22|Ψxt|2dx. | (44) |
Let
βq=(Ψ2x+1)q−24 |
then
|(βq)−1|L∞=|(Ψ2x+1)2−q4|L∞≤C(|Ψxx|2−q2L2+1)≤CZ2−q2(q−1)(t). |
Then (43) can be rewritten into
∫Ω|βqΨxt|2dx≤C∫Ω(ρu)Ψxtdx≤C|ρ|L2|u|L∞|βqΨxt|L2|(βq)−1|L∞. |
Using Young's inequality, combining the above estimates we deduce that
I11≤|ρ|12L∞|√ρut|L2|βqΨxt|L2|(βq)−1|L∞≤CZ5q−32(q−1)(t). |
Substituting
|√ρut(t)|2L2+∫t0|ωuxt|2L2(s)ds≤|√ρut(τ)|2L2+∫t0Z26γ(3p−4)(q−1)(s)ds. | (45) |
To obtain the estimate of
∫Ωρ|ut|2dx≤2∫Ω(ρ|u|2|ux|2+ρ|Ψx|2+ρ−1|−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x+ηΦx|2)dx. |
According to the smoothness of
limτ→0∫Ω(ρ|u|2|ux|2+ρ|Ψx|2+ρ−1|−[(εu2x+1u2x+ε)2−p2ux]x+(P+η)x+ηΦx|2)dx=∫Ω(ρ0|u0|2|u0x|2+ρ0|Ψx|2+ρ−10|−[(εu20x+1u20x+ε)2−p2u0x]x+(P0+η0)x+η0Φx|2)dx≤|ρ0|L∞|u0|2L∞|u0x|2L2+|ρ0|L∞|Ψx|2+|g|2L2+|Φx|2L2≤C. |
Then, taking a limit on
|√ρut(t)|2L2+∫t0|uxt|2L2(s)ds≤C(1+∫t0Z26γ(3p−4)(q−1)(s)ds), | (46) |
This complete the proof of Lemma 2.5.
With the help of Lemma 2.2 to Lemma 2.5, and the definition of
Z(t)≤Cexp(˜C∫t0Z26γ(3p−4)(q−1)(s)ds), | (47) |
where
esssup0≤t≤T1(|ρ|H1+|u|W1,p0∩H2+|η|H2+|ηt|L2+|√ρut|L2+|ρt|L2)+∫T10(|√ρut|2L2+|uxt|2L2+|ηx|2L2+|ηt|2L2+|ηxt|2L2)ds≤C, | (48) |
where
In this section, the existence of strong solutions can be established by a standard argument. We construct the approximate solutions by using the iterative scheme, derive uniform bounds and thus obtain solutions of the original problem by passing to the limit. Our proof will be based on the usual iteration argument and some ideas developed in [10]. Precisely, we first define
ρkt+ρkxuk−1+ρkuk−1x=0, | (49) |
ρkukt+ρkuk−1ukx+ρkΨkx+Lpuk+Pkx+ηkx=−ηkΦx, | (50) |
LqΨk=4πg(ρk−m0), | (51) |
ηkt+(ηk(uk−1−Φx))x=ηkxx, | (52) |
with the initial and boundary conditions
(ρk,uk,ηk)|t=0=(ρ0,u0,η0), | (53) |
uk|∂Ω=(ηkx+ηkΦx)|∂Ω=0, | (54) |
where
Lpθk=−[(ε(θkx)2+1(θkx)2+ε)2−p2θkx]x. |
With the process, the nonlinear coupled system has been deduced into a sequence of decoupled problems and each problem admits a smooth solution. And the following estimates hold
esssup0≤t≤T1(|ρk|H1+|uk|W1,p0∩H2+|ηk|H2+|ηkt|L2+|√ρkukt|L2+|ρkt|L2)+∫T10(|√ρkukt|2L2+|ukxt|2L2+|ηkx|2L2+|ηkt|2L2+|ηkxt|2L2)ds≤C, | (55) |
where
In addition, we first find
ρkt+uk−1ρkx+uk−1xρk=0, |
ρk|t=0=ρ0, |
with smooth function
ρk(x,t)≥δexp[−∫T10|uk−1x(.,s)|L∞ds]>0,for all t∈(0,T1). |
Next, we will prove the approximate solution
ˉρk+1=ρk+1−ρk,ˉuk+1=uk+1−uk,ˉηk+1=ηk+1−ηk,ˉΨk+1=Ψk+1−Ψk. |
By a direct calculation, we can verify that the functions
ˉρk+1t+(ˉρk+1uk)x+(ρkˉuk)x=0, | (56) |
ρk+1ˉuk+1t+ρk+1ukˉuk+1x+(Lpuk+1−Lpuk)=−ˉρk+1(ukt+ukukx+Ψk+1x)−(Pk+1−Pk)x−ˉηk+1x+ρk(ˉukukx−ˉΨk+1x)−ˉηk+1Φx, | (57) |
LqΨk+1−LqΨk=4πgˉρk+1, | (58) |
ˉηk+1t+(ηkˉuk)x+(ˉηk+1(uk−Φx))x=ˉηk+1xx. | (59) |
Multiplying (56) by
ddt|ˉρk+1|2L2≤C|ˉρk+1|2L2|ukx|L∞+|ρk|H1|ˉukx|L2|ˉρk+1|L2≤C|ukxx|L2|ˉρk+1|2L2+Cξ|ρk|2H1|ˉρk+1|2L2+ξ|ˉukx|2L2≤Cξ|ˉρk+1|2L2+ξ|ˉukx|2L2, | (60) |
where
Multiplying (57) by
12ddt∫Ωρk+1|ˉuk+1|2dx+∫Ω(Lpuk+1−Lpuk)ˉuk+1dx≤C∫Ω[|ˉρk+1|(|ukt|+|ukukx|+|Ψk+1x|)+|Pk+1x−Pkx|+|ˉηk+1x|+|ρk|ˉuk||ukx|+|ρk||ˉΨk+1x|+|ˉηk+1Φx|]|ˉuk+1|dx≤C(|ˉρk+1|L2|ukxt|L2|ˉuk+1x|L2+|ˉρk+1|L2|ukx|Lp|ukxx|L2|ˉuk+1x|L2+|ˉρk+1|L2|Ψk+1x|L2|ˉuk+1x|L2+|Pk+1−Pk|L2|ˉuk+1x|L2+|ˉηk+1|L2|ˉuk+1x|L2+|ρk|12L2|√ρkˉuk|L2|ukxx|L2|ˉuk+1x|L2+|ρk|H1|ˉΨk+1x|L2|ˉuk+1x|L2+|ˉηk+1|L2|ˉuk+1x|L2). | (61) |
Let
σ(s)=(εs2+1s2+ε)2−p2s, |
then
σ′(s)=(εs2+1s2+ε)−p2(εs2+1)(s2+ε)−(2−p)(1−ε2)s2(s2+ε)2≥p−1(s2+ε)2−p2. |
To estimate the second term of (61), we have
∫Ω(Lpuk+1−Lpuk)ˉuk+1dx=∫Ω∫10σ′(θuk+1x+(1−θ)ukx)dθ|ˉuk+1x|2dx≥∫Ω[∫10dθ|θuk+1x+(1−θ)ukx|2−pL∞+1](ˉuk+1x)2≥C−1∫Ω|ˉuk+1x|2dx. | (62) |
On the other hand, multiplying (58) by
∫Ω(LqΨk+1−LqΨk)ˉΨk+1dx=4πg∫Ωˉρk+1ˉΨk+1dx. | (63) |
Since
∫Ω(LqΨk+1−LqΨk)ˉΨk+1xdx=(q−1)∫Ω(∫10|θΨk+1x+(1−θ)Ψkx|q−2dθ)(ˉΨk+1x)2dx, |
and
∫10|θΨk+1x+(1−θ)Ψkx|q−2dθ=∫101|θΨk+1x+(1−θ)Ψkx|2−qdθ≥∫101(|Ψk+1x|+|Ψkx|2−q)dθ=1(|Ψk+1x|+|Ψkx|)2−q, |
then
∫Ω[|Ψk+1x|q−2Ψk+1x−|Ψkx|q−2Ψkx]ˉΨk+1xdx≥1(|Ψk+1x(t)|L∞+|Ψkx(t)|L∞)2−q∫Ω(ˉΨk+1x)2dx, |
which implies
∫Ω(ˉΨk+1x)2dx≤C|ˉρk+1|2L2. | (64) |
From (55), (62) and (64), (61) can be re-written as
ddt∫Ωρk+1|ˉuk+1|2dx+C−1∫Ω|ˉuk+1x|2dx≤Bξ(t)|ˉρk+1|2L2+C(|√ρkˉuk|2L2+|ˉηk+1|2L2)+ξ|ˉuk+1x|2L2, | (65) |
where
∫t0Bξ(s)ds≤C+Ct. |
Multiplying (59) by
12ddt∫Ω|ˉηk+1|2dx+∫Ω|ˉηk+1x|2dx≤∫Ω|ˉηk+1||uk−Φx||ˉηk+1x|dx+∫Ω(|ηk||ˉuk|)x|ˉηk+1|dx≤|ˉηk+1|L2|uk−Φx|L∞|ˉηk+1x|L2+|ηkx|L2|ˉuk|L∞|ˉηk+1|L2+|ηk|L∞|ˉukx|L2|ˉηk+1|L2≤Cξ|ˉηk+1|2L2+ξ|ˉηk+1x|2L2+ξ|ˉukx|2L2. | (66) |
Combining (60), (65) and (66), we have
ddt(|ˉρk+1(t)|2L2+|√ρk+1ˉuk+1(t)|2L2+|ˉηk+1(t)|2L2)+|ˉuk+1x(t)|2L2+|ˉηk+1x|2L2≤Eξ(t)|ˉρk+1(t)|2L2+C|√ρkˉuk|2L2+Cξ|ˉηk+1|2L2+ξ|ˉukx|2L2, | (67) |
where
∫t0Eξ(s)ds≤C+Cξt. |
Integrating (67) over
|ˉρk+1(t)|2L2+|√ρk+1ˉuk+1(t)|2L2+|ˉηk+1(t)|2L2+∫t0|ˉuk+1x(t)|2L2ds+∫t0|ˉηk+1x|2L2ds≤Cexp(Cξt)∫t0(|√ρkˉuk(s)|2L2+|ˉukx(s)|2L2)ds. | (68) |
From the above recursive relation, choose
K∑k=1[sup0≤t≤T∗(|ˉρk+1(t)|2L2+|√ρk+1ˉuk+1(t)|2L2+|ˉηk+1(t)|2L2dt+∫T∗0|ˉuk+1x(t)|2L2+∫T∗0|ˉηk+1x(t)|2L2dt]<C, | (69) |
where
Therefore, as
ρk→ρεin L∞(0,T∗;L2(Ω)), | (70) |
uk→uεin L∞(0,T∗;L2(Ω))∩L2(0,T∗;H10(Ω)), | (71) |
ηk→ηεin L∞(0,T∗;L2(Ω))∩L2(0,T∗;H1(Ω)). | (72) |
By virtue of the lower semi-continuity of various norms, we deduce from the uniform estimate (55) that
esssup0≤t≤T1(|ρε|H1+|uε|W1,p0∩H2+|ηε|H2+|ηεt|L2+|√ρεuεt|L2+|ρεt|L2)+∫T∗0(|√ρεuεt|2L2+|uεxt|2L2+|ηεx|2L2+|ηεt|2L2+|ηεxt|2L2)ds≤C. | (73) |
Since all of the constants are independent of
ρε→ρδin L∞(0,T∗;L2(Ω)), | (74) |
uε→uδin L∞(0,T∗;L2(Ω))∩L2(0,T∗;H10(Ω)), | (75) |
ηε→ηδin L∞(0,T∗;L2(Ω))∩L2(0,T∗;H1(Ω)), | (76) |
and there also holds
esssup0≤t≤T1(|ρδ|H1+|uδ|W1,p0∩H2+|ηδ|H2+|ηδt|L2+|√ρδuδt|L2+|ρδt|L2)+∫T∗0(|√ρδuδt|2L2+|uδxt|2L2+|ηδx|2L2+|ηδt|2L2+|ηδxt|2L2)ds≤C. | (77) |
For each small
{Lpuδ0+(P(ρδ0)+ηδ0)x+ηδ0Φx=(ρδ0)12(gδ+Φx),uδ0|∂Ω=0, | (78) |
where
We deduce that
{ρt+(ρu)x=0,(ρu)t+(ρu2)x+ρΨx−λ(|ux|p−2ux)x+(P+η)x=−ηΦx,(|Ψx|q−2Ψx)x=4πg(ρ−1|Ω|∫Ωρdx),ηt+(η(u−Φx))x=ηxx,(ρ,u,η)|t=0=(ρδ0,uδ0,ηδ0),u|∂Ω=(ηx+ηΦx)|∂Ω=0, |
where
By the proof of Lemma 2.1, there exists a subsequence
esssup0≤t≤T1(|ρ|H1+|u|W1,p0∩H2+|η|H2+|ηt|L2+|√ρut|L2+|ρt|L2)+∫T∗0(|√ρut|2L2+|uxt|2L2+|ηx|2L2+|ηt|2L2+|ηxt|2L2)ds≤C, | (79) |
where
The authors would like to thank the anonymous referees for their valuable suggestions.
[1] |
N. Balakrishnan, D. Kundu, Hybrid censoring: models, inferential results and applications, Comput. Stat. Data Anal., 57 (2013), 166–209. doi: 10.1016/j.csda.2012.03.025
![]() |
[2] | N. Balakrishnan, R. Aggarwala, Progressive Censoring: Theory, Methods Appl., Boston: Birkhäuser, 2000. |
[3] |
N. Balakrishnan, Progressive censoring methodology: An appraisal (with discussions), Test, 16 (2007), 211–296. doi: 10.1007/s11749-007-0061-y
![]() |
[4] |
D. Kundu, A. Joarder, Analysis of type-Ⅱ progressively hybrid censored data, Comput. Stat. Data Anal., 50 (2006), 2509–2528. doi: 10.1016/j.csda.2005.05.002
![]() |
[5] |
H. K. T. Ng, D. Kundu, P. S. Chan, Statistical analysis of exponential lifetimes under an adaptive Type-Ⅱ progressively censoring scheme, Naval Res. Logistics, 56 (2009), 687–698. doi: 10.1002/nav.20371
![]() |
[6] | C. T. Lin, H. K. T. Ng, P. S. Chan, Statistical inference of type-Ⅱ progressively hybrid censored data with Weibull lifetimes, Comm. Stat. Theory Methods, 56 (2009), 1710–1729. |
[7] |
F. Hemmati, S. Khorram, Statistical analysis of the log-normal distribution under type-Ⅱ progressive hybrid censoring schemes, Comm. Stat. Simul. Comput., 42 (2013), 52–75. doi: 10.1080/03610918.2011.633195
![]() |
[8] | M. A. W. Mahmoud, A. A. Soliman, A. H. Abd Ellah, R. M. El-Sagheer, Estimation of generalized Pareto under an adaptive type-Ⅱ progressive censoring, Intell. Inf. Manage., 5 (2013), 73–83. |
[9] | A. A. Ismail, Inference for a step-stress partially accelerated life test model with an adaptive Type-Ⅱ progressively hybrid censored data from Weibull distribution, J. Comput. Appl. Math., 260 (2014), 553–542. |
[10] | M. M. AL Sobhi, A. A. Soliman, Estimation for the exponentiated Weibull model with adaptive Type-Ⅱ progressive censored schemes, Appl. Math. Modell., 40 (2015), 1180–192. |
[11] |
M. Nassar, O. E. Abo-Kasem, Estimation of the inverse Weibull parameters under adaptive type-Ⅱ progressive hybrid censoring scheme, J. Comput. Appl. Math., 315 (2017), 228-239. doi: 10.1016/j.cam.2016.11.012
![]() |
[12] |
M. Nassar, O. Abo-Kasem, C. Zhang, S. Dey, Analysis of Weibull Distribution Under Adaptive Type-Ⅱ Progressive Hybrid Censoring Scheme, J. Indian Society Probab. Stat., 19 (2018), 25–65. doi: 10.1007/s41096-018-0032-5
![]() |
[13] |
I. W. Burr, Cumulative frequency functions, Ann. Math. Stat., 13 (1942), 215–232. doi: 10.1214/aoms/1177731607
![]() |
[14] |
I. G. Evans, A. S. Ragab, Bayesian inferences given a type 2 censored sample from Burr distribution, Comm. Stat. Theory Methods, 12 (1983), 1569–1580. doi: 10.1080/03610928308828551
![]() |
[15] |
A. S. Papadopoulos, The Burr distribution as a failure model from a Bayesian approach, IEEE Trans. Reliab., R-27 (1978), 369–371. doi: 10.1109/TR.1978.5220427
![]() |
[16] |
M. A. M. Ali Mousa, Z. F. Jaheen, Statistical inference for the Burr model based on progressively censored data, Comput. Math. Appl., 43 (2002), 1441–1449. doi: 10.1016/S0898-1221(02)00110-4
![]() |
[17] |
Z. F. Jaheen, H. M. Okasha, E-Bayesian estimation for the Burr type XII model based on type-2 censoring, Appl. Math. Modell., 35 (2011), 4730-4737. doi: 10.1016/j.apm.2011.03.055
![]() |
[18] |
P. Hanieh, S. Abdolreza, Estimation and prediction for a unified hybrid-censored Burr Type XII distribution, J. Stat. Comput. Simul., 86 (2016), 55–73. doi: 10.1080/00949655.2014.993985
![]() |
[19] | M. A. Montaser, Estimation for unknown parameters of the Burr Type-XII distribution based on an adaptive progressive Type-Ⅱ censoring scheme, J. Math. Stat., 12 (2017), 119–126. |
[20] |
J. Jia, Z. Yan, X. Peng, Parameters estimation of Burr-XII distribution under first failure progressively unified hybrid censoring schemes, Stat. Anal. Data Mining: ASA Data Sci. J., 11 (2018), 271-281. doi: 10.1002/sam.11391
![]() |
[21] | B. R. Arabi, A. Noori, Estimation based on progressively type-Ⅰ hybrid censored data from the Burr XII distribution, Stat. Papers., 60 (2019), 411-–453. |
[22] |
M. Han, E-Bayesian estimation and hierarchical Bayesian estimation of failure rate, Appl. Math. Modell., 33 (2009), 1915–1922. doi: 10.1016/j.apm.2008.03.019
![]() |
[23] |
M. Han, E-Bayesian estimation and its E-posterior risk of the exponential distribution parameter based on complete and type I censored samples, Comm. Stat. Theory Methods, 49 (2020), 1858–1872. doi: 10.1080/03610926.2019.1565837
![]() |
[24] |
H. M. Okasha, J. Wang, E-Bayesian estimation for the geometric model based on record statistics, Appl. Math. Modell., 40 (2016), 658–670. doi: 10.1016/j.apm.2015.05.004
![]() |
[25] | R. Azimi, F. Yaghmaei, B. Fasihi, E-Bayesian estimation based on generalized half Logistic progressive type-Ⅱ censored data, Int. J. Adv. Math. Sci., 1 (2013), 56–63. |
[26] | H. M. Okasha, E-Bayesian Estimation of System Reliability with Weibull Distribution Based on Type-2 Censoring, J. Adv. Res. Sci. Comput., 4 (2012), 33–45. |
[27] |
H. M. Okasha, E-Bayesian estimation for the Lomax distribution based on type-Ⅱ censored data, J. Egypt. Math. Soc., 22 (2014), 489–495. doi: 10.1016/j.joems.2013.12.009
![]() |
[28] | H. M. Okasha, Estimation for the Exponential Model Based on Record Statistics, J. Stat. Theory Appl., 18 (2019), 236-243. |
[29] | R. Abdalla, L. Junping, E-Bayesian estimation for Burr-X distribution based on generalized type-Ⅰ hybrid censoring scheme, Am. J. Math. Manage. Sci., 39 (2020), 41–55. |
[30] | M. Han, The structure of hierarchical prior distribution and its applications, Chin. Oper. Res. Manage. Sci., 6 (1997), 31–40. |
[31] | I. S. Gradshteyn, Tables of Integrals, Series and Products (Corrected and Enlarged Edition), Academic Press: San Diego, CA, USA., 1980. |
[32] | N. Balakrishnan, R. A. Sandhu A simple simulational algorithm for generating progressive Type-Ⅱ censored samples}, Am. Stat., 49 (1995), 229-230. |
[33] | J. F. Lawless, Statistical Models and Methods for Lifetime Data (2Eds), New York, Wiley, 2003. |
[34] |
W. J. Zimmer, J. B. Keats, F. K. Wang, The Burr XII distribution in reliability analysis, J. Qual. Technol., 30 (1998), 386–394. doi: 10.1080/00224065.1998.11979874
![]() |