Citation: Shuyun Jiao, Mingzhan Huang. An SIHR epidemic model of the COVID-19 with general population-size dependent contact rate[J]. AIMS Mathematics, 2020, 5(6): 6714-6725. doi: 10.3934/math.2020431
| [1] | World Health Organization, Available from: https://www.who.int/data#reports. |
| [2] | National Health Commission of the People's Republic of China, Available from: http://www.nhc.gov.cn/. |
| [3] | Health Commission of Hubei Province, Available from: http://wjw.hubei.gov.cn/. |
| [4] | T. Alberti, D. Faranda, On the uncertainty of real-time predictions of epidemic growths: A COVID- 19 case study for China and Italy, Commun. Nonlinear. Sci., 90 (2020), 105372. |
| [5] |
L. Bertozzia, E. Francob, G. Mohlerd, et al., The challenges of modeling and forecasting the spread of COVID-19, Proceedings of the National Academy of Sciences, 117 (2020), 16732-16738. doi: 10.1073/pnas.2006520117
|
| [6] | D. Faranda, I. Castillo, O. Hulme, et al., Asymptotic estimates of SARS-CoV-2 infection counts and their sensitivity to stochastic perturbation, Chaos, 30 (2020), 051107. |
| [7] | B. Tang, X. Wang, Q. Li, et al., Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions, J. Clin. Med., 9 (2020), 462. |
| [8] |
B. Tang, F. Xia, S. Tang, et al., The effectiveness of quarantine and isolation determine the trend of the COVID-19 epidemics in the final phase of the current outbreak in China, Int. J. Infect. Dis., 95 (2020), 288-293. doi: 10.1016/j.ijid.2020.03.018
|
| [9] |
S. He, S. Tang, L. Rong, et al., A discrete stochastic model of the COVID-19 outbreak: Forecast and control, Math. Biosci. Eng., 17 (2020), 2792-2804. doi: 10.3934/mbe.2020153
|
| [10] |
Q. Lin, S. Zhao, D. Gao, et al., A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action, Int. J. Infec. Dis., 93 (2020), 211-216. doi: 10.1016/j.ijid.2020.02.058
|
| [11] |
H. Hu, X. Yuan, L. Huang, et al., Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng., 16 (2019), 5729-5749. doi: 10.3934/mbe.2019286
|
| [12] | C. Huang, H. Zhang, J. Cao, et al., Stability and hopf bifurcation of a delayed prey-predator model with disease in the predator, Int. J. Bifurcat. Chaos, 29 (2019), 1950091. |
| [13] |
C. Huang, Z. Yang, T. Yi, et al., On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, J. Differ. Equations, 256 (2014), 2101-2114. doi: 10.1016/j.jde.2013.12.015
|
| [14] | C. Huang, J. Cao, F. Wen, et al., Stability analysis of SIR model with distributed delay on complex networks, Plos One, 11 (2016), e0158813. |
| [15] | L. Duan, Z. Xu, A note on the dynamics analysis of a diffusive cholera epidemic model with nonlinear incidence rate, Appl. Math. Lett., 106 (2020), 106356. |
| [16] | J. Zhang, J. Li, Z. Ma, Global Analysis of SIR Epidemic Models with Population Size Dependent Contact Rate, Chinese J. Eng. Math., 21 (2004), 259-267. |
| [17] | R. Anderson, Transmission dynamics and control of infectious disease agents//Population Biology of Infectious Diseases, Springer Berlin Heidelberg, 1982. |
| [18] | K. Dietz, Overall Population Patterns in the Transmission Cycle of Infectious Disease Agents//Population Biology of Infectious Diseases, Springer Berlin Heidelberg, 1982. |
| [19] | J. Heesterbeek, J. Metz, The saturating contact rate in marriage and epidemic models, J. Math. Biol., 31 (1993), 529-539. |
| [20] |
J. Zhang, Z. Ma, Global dynamics of an SEIR epidemic model with saturating contact rate, Math. Biosci., 185 (2003), 15-32. doi: 10.1016/S0025-5564(03)00087-7
|
| [21] |
P. van den Driessche, J. Watmough, Reproduction numbers and subthreshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6
|
| [22] | Least Squares Method, Available from: https://www.investopedia.com/terms/l/least-squares-method.asp. |