Citation: P. Pirmohabbati, A. H. Refahi Sheikhani, H. Saberi Najafi, A. Abdolahzadeh Ziabari. Numerical solution of full fractional Duffing equations with Cubic-Quintic-Heptic nonlinearities[J]. AIMS Mathematics, 2020, 5(2): 1621-1641. doi: 10.3934/math.2020110
[1] | Dayang Dai, Dabuxilatu Wang . A generalized Liu-type estimator for logistic partial linear regression model with multicollinearity. AIMS Mathematics, 2023, 8(5): 11851-11874. doi: 10.3934/math.2023600 |
[2] | Muhammad Nauman Akram, Muhammad Amin, Ahmed Elhassanein, Muhammad Aman Ullah . A new modified ridge-type estimator for the beta regression model: simulation and application. AIMS Mathematics, 2022, 7(1): 1035-1057. doi: 10.3934/math.2022062 |
[3] | Sihem Semmar, Omar Fetitah, Mohammed Kadi Attouch, Salah Khardani, Ibrahim M. Almanjahie . A Bernstein polynomial approach of the robust regression. AIMS Mathematics, 2024, 9(11): 32409-32441. doi: 10.3934/math.20241554 |
[4] | Yanting Xiao, Wanying Dong . Robust estimation for varying-coefficient partially linear measurement error model with auxiliary instrumental variables. AIMS Mathematics, 2023, 8(8): 18373-18391. doi: 10.3934/math.2023934 |
[5] | Gaosheng Liu, Yang Bai . Statistical inference in functional semiparametric spatial autoregressive model. AIMS Mathematics, 2021, 6(10): 10890-10906. doi: 10.3934/math.2021633 |
[6] | Juxia Xiao, Ping Yu, Zhongzhan Zhang . Weighted composite asymmetric Huber estimation for partial functional linear models. AIMS Mathematics, 2022, 7(5): 7657-7684. doi: 10.3934/math.2022430 |
[7] | Xin Liang, Xingfa Zhang, Yuan Li, Chunliang Deng . Daily nonparametric ARCH(1) model estimation using intraday high frequency data. AIMS Mathematics, 2021, 6(4): 3455-3464. doi: 10.3934/math.2021206 |
[8] | Emrah Altun, Mustafa Ç. Korkmaz, M. El-Morshedy, M. S. Eliwa . The extended gamma distribution with regression model and applications. AIMS Mathematics, 2021, 6(3): 2418-2439. doi: 10.3934/math.2021147 |
[9] | Muhammad Amin, Saima Afzal, Muhammad Nauman Akram, Abdisalam Hassan Muse, Ahlam H. Tolba, Tahani A. Abushal . Outlier detection in gamma regression using Pearson residuals: Simulation and an application. AIMS Mathematics, 2022, 7(8): 15331-15347. doi: 10.3934/math.2022840 |
[10] | Zawar Hussain, Atif Akbar, Mohammed M. A. Almazah, A. Y. Al-Rezami, Fuad S. Al-Duais . Diagnostic power of some graphical methods in geometric regression model addressing cervical cancer data. AIMS Mathematics, 2024, 9(2): 4057-4075. doi: 10.3934/math.2024198 |
The field of mathematical analysis that deals with the study of arbitrary order integrals and derivatives is known as fractional calculus. Because of its numerous applications across a wide range of fields, this field has increased in importance and recognition over the past few years. According to researchers, this field is the most effective at identifying anomalous kinetics and has numerous uses in a variety of fields. Ordinary differential equations with fractional derivatives can be used to simulate a variety of issues, including statistical, mathematical, engineering, chemical, and biological issues. Several distinct forms of fractional integrals and derivative operators (see e.g., [1,2,3,4]), including Riemann-Liouville, Caputo, Riesz, Hilfer, Hadamard, Erdélyi-Kober, Saigo, Marichev-Saigo-Maeda and others, have been thoroughly investigated by researchers. From an application perspective, we suggest the readers to see the work related to the fractional differential equations presented by [5,6,7,8]. In [9], the authors studied symmetric and antisymmetric solitons in the defocused saturable nonlinearity and the PT-symmetric potential of the fractional nonlinear Schrödinger equation. In [10], the fractional exponential function approach is used to study a time-fractional Ablowitz-Ladik model, and bright and dark discrete soliton solutions, discrete exponential solutions, and discrete peculiar wave solutions are discovered. In [11], the authors presented the rich vector exact solutions for the coupled discrete conformable fractional nonlinear Schrödinger equations by taking into account the conformable fractional derivative.
On the other hand, special functions like Gamma, Beta, Mittag-Leffler, et al. play a vital part in the foundation of fractional calculus. Moreover, the Mittag-Leffler function is regarded as the fundamental function in fractional calculus. The Prabhakar fractional operator containing a three-parameter version of the aforementioned function in the kernel. The M-L function has been extensively studied to construct solutions of fractional PDEs, such as dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation, soliton dynamics based on exact solutions of conformable fractional discrete complex cubic Ginzburg-Landau equation and Abundant fractional soliton solutions of a space-time fractional perturbed Gerdjikov-Ivanov equation by a fractional mapping method, see [12,13,14]. Strong generalizations of the univariate and bivariate Mittag-Leffler functions, which are known to be important in fractional calculus, are the multivariate Mittag-Leffler functions.
The well-known one-parameter Mittag-Leffler (M-L) function is defined by [15,16] as follows
εa(z1)=∞∑l=0zl1Γ(al+1)(a∈C;ℜ(a)>0,z1∈C), | (1.1) |
where C represents the set of complex numbers and ℜ(a) denotes the real part of the complex number.
The generalization of (1.1) with two parameters is defined by [17,18] as
εa,b(z1)=∞∑l=0zl1Γ(al+b)(a,b∈C;ℜ(a)>0,ℜ(b)>0), | (1.2) |
Later on, Agarwal [19], Humbert [20] and Humbert and Agarwal [21] studied the properties and applications of M-L functions. In [22], the generalization of (1.1) and (1.2) is defined by
εca,b(z1)=∞∑l=0(c)lΓ(al+b)zl1l!(a,b,c∈C;ℜ(a)>0,ℜ(b)>0). | (1.3) |
In [23], the following generalization of the M-L function is defined by
εc,qa,b(z1)=∞∑l=0(c)lqΓ(al+b)zl1l!(a,b,c∈C;ℜ(a)>0,ℜ(b)>0,q>0). | (1.4) |
In [24], Rahman et al. proposed the following generalized of M-L function by
εc,q,da,b,p(z1)=∞∑l=0Bp(c+lq;d−c)(d)lqB(c,d−c)Γ(al+b)zl1l!, | (1.5) |
where a,b,c,d∈C;ℜ(c)>0,ℜ(a)>0,ℜ(b)>0,q>0 and Bp(x,y)=∫10tx−1(1−t)y−1e−t−ptdt is the extension of beta function (see [25]).
Gorenflo et al. [26] and Haubold et al. [27]) studied the various properties of generalized M-L function. In [28], a new generalization of M-L function (1.3) is presented by
εca,b,p(z1)=∞∑l=0(c;p)lΓ(al+b)zl1l!(p≥0,a,b,c∈C;,ℜ(a)>0,ℜ(b)>0,), | (1.6) |
where (λ;p)l is the Pochhammer symbol defined by Srivastava et al. [29,30] as
(λ;p)μ={Γp(λ+μ)Γ(λ);(p>0,λ,μ∈C)(λ)μ;(p=0, λ,μ∈C∖{0}. | (1.7) |
The researchers examined the developments of these extension, (1.6) and (1.7) and studied their related features and applications. In [30], Srivastava et al. proposed the following generalized hypergeometric function
sFt[(δ1;p),⋯,(δs);(ζ1),⋯,(ζt);z1]=∞∑l=0(δ1;p)l⋯(δs)l(ζ1)l⋯(ζt)l zl1l!, | (1.8) |
where δj∈C for j = 1, 2, ⋯, s, ζk∈C for k=1,2,⋯,t, and ζk≠ 0, -1, -2, ⋯.
The integral representation of (μ;p)η is explained by
(μ;p)η=1Γ(μ) ∫∞0 sμ+η−1 e−s−psds, | (1.9) |
where ℜ(ρ)>0 and ℜ(μ+η)>0. In particular, the related confluent hypergeometric function 1F1 and the Gauss hypergeometric function 2F1 are given by
2F1[(δ1;p),b;λ;z1]=∞∑l=0(δ1;p)l(b)l(λ)l zl1l!, | (1.10) |
and
1F1[(δ1;p);λ;z1]=Φ[(δ1;p);λ;z1]=∞∑l=0(δ1;p)l(λ)l zl1l!. | (1.11) |
The expansion of the generalised hypergeometric function rFs, which was studied by [30], has r numerator and s denominator parameters. Researchers recently developed several extensions of special functions, together with their corresponding characteristics and applications. Using extended beta functions as its foundation, Nisar et al. [31], Bohner et al. [32] and Rahman et al. [33] developed an enlargement of fractional derivative operators.
The multivariate M-L function is defined by [34] as follows:
E(cj)(aj),b(z1,z2,…,zj)=E(c1,c2,…,cj)(a1,a2,…,aj),b(z1,z2,…zj)=∞∑m1,m2,…,mj=0(c1)m1(c2)m2…(cj)mj(z1)m1…(zj)mjΓ(a1m1+a2m2+…ajmj+b)m1!…mj!, | (1.12) |
where zi,ai,b,ci∈C; i=1,2,…,j, ℜ(ai)>0, ℜ(b)>0 and ℜ(ci)>0.
In [35,36,37,38,39], the authors have studied various properties and applications of different type of generalized M-L functions. For real (complex) valued functions, the Lebesgue measurable space is defined by
L(r,s)={h:‖h‖1=∫sr|h(x)|dx<∞}. | (1.13) |
The left and right sides fractional integral operators of the Riemann-Liouville type are defined by [3,4] as follows:
(Iλr+h)(x)=1Γ(λ)x∫rh(ϱ)(x−ϱ)1−λdϱ,(x>r), | (1.14) |
and
(Iλs−h)(x)=1Γ(λ)s∫xh(ϱ)(ϱ−x)1−λdϱ,(x<s), |
where h∈L(r,s), λ∈C and ℜ(λ)>0.
The left and right sides Riemann-Liouville fractional derivatives for the function h(x)∈L(r,s), λ∈C, ℜ(λ)>0 and n=[ℜ(λ)]+1 are defined in [3,4] by
(Dλr+h)(x)=(ddx)n(In−λr+h)(x) | (1.15) |
and
(Dλs−h)(x)=(−ddx)n(In−λs−h)(x), |
respectively. The generalized differential operator Dλ,vr+ of order 0<λ<1 and type 0<v<1 with respect to x can be found in [2,4] as
(Dλ,vr+h)=(Iv(1−λ)r+ddx(I(1−v)(1−λ)r+h))(x). | (1.16) |
In particular, if v=0, then (1.16) will lead to the operator Dλr+ defined in (1.15).
We also take into account the aforementioned well-known results.
Theorem 1.1. In [40], the following result for the fractional integral is presented by
Iλr+(ϱ−r)η−1=Γ(η)Γ(λ+η)(x−r)λ+η−1, | (1.17) |
where λ, η∈C, ℜ(λ)>0, ℜ(η)>0,
Theorem 1.2. [41] Suppose that the function h(z) has a power series expansion h(z)=∞∑k=0knzk and it is analytic in the disc |z|<R, then we have the following result
Dλz{zη−1h(z)}=Γ(η)Γ(λ+η)∞∑n=0an(η)n(λ+η)nzn. |
Lemma 1.1. (Srivastava and Tomovski [42]) Suppose that x>r, λ∈(0,1), v∈[0,1], ℜ(η)>0 and ℜ(λ)>0, then we have
Dλr+[(ϱ−r)η−1](x)=Γ(η)Γ(η−λ)(x−r)η−λ−1. | (1.18) |
The generalized multivariate M-L function (1.12) is then defined in terms of the modified Pochhammer symbol (1.7) and its different features as well as the accompanying integral operators are examined. This is driven by the aforementioned modifications of special functions.
Motivated by the above results and literature, the paper has the following structure: First, we describe and investigate a novel generalization of the multivariate M-L function using a generalized Pochhammer symbol. Secondly, we offer a few differential and fractional integral formulas for the explored multivariate M-L function. By using the new form of the multivariate M-L function, a new generalization of the fractional integral operator is introduced, and some fundamental characteristics of the operator are discussed.
We are in a position to present the generalized multivariate M-L function by utilizing the extended Pochhammer symbol in (1.7) as follows:
ε(cj)(aj),b;p(z1,z2,⋯,zj)=∞∑l1,⋯,lj=0(c1;p)l1(c2)l2⋯(cj)ljΓ(a1l1+a2l2+⋯+cjlj+b)zl11zl22⋯zljjl1!⋯lj!, | (2.1) |
where ai,b,ci∈C;ℜ(ai)>0,ℜ(b)>0,,p≥0 for i=1,2,⋯,j. The special case for a1=1 and l2=⋯=lj=0 in (2.1) can be reduced to extended confluent hypergeometric function (1.11) as follows:
εc11,b;p(z1)=1Γ(b)1F1[(c1;p);b;z1]=1Γ(b)Φ[(c1;p);b;z1]. | (2.2) |
In coming results, we demonstrate some fundamental characteristics and integral representations of the generalized multivariate M-L function.
Theorem 2.1. For the multivariate M-L function defined in (2.1), the following relation holds true:
ε(cj)(aj),b;p(z1,z2,⋯,zj)=bε(cj)(aj),b+1;p(z1,z2,⋯,zj) | (2.3) |
+[a1z1ddz1+⋯+ajzjddzj]ε(cj)(aj),b+1;p(z1,⋯,zj), |
where ai,b,ci∈C;ℜ(ai)>0,ℜ(b)>0,,p≥0 for i=1,2,⋯,j.
Proof. From (2.1), we have
bε(cj)(aj),b+1,p(z1,⋯,zj)+[a1z1ddz1+⋯+ajzjddzj]ε(cj)(aj),b+1;p(z1,⋯,zj)=b∞∑l1,⋯,lj=0(c1,p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!+[a1z1ddz1+⋯+ajzjddzj]∞∑l1,⋯,lj=0(c1,p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!=b∞∑l1,⋯,lj=0(c1,p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!+[a1z1ddz1+⋯+ajzjddzj]∞∑l1,⋯,lj=0(c1,p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zjljl1!⋯lj!=b∞∑l1,⋯,lj=0(c1,p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!+∞∑l1,⋯,lj=0(c1,p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!(a1l1+⋯+ajlj)=∞∑l1,⋯,lj=0(c1,p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!(a1l1+⋯+ajlj+b) (using Γ(z1+1)=z1Γ(z1))=∞∑l=0(c1,p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b)zl11⋯zljjl1!⋯lj!=ε(cj)(aj),b,p(z1,z2,⋯,zj), |
which is the desired result (2.3).
Theorem 2.2. For the generalized multivariate M-L function defined in (1.12), the following relations hold true:
(ddz1)m⋯(ddzj)mε(cj)(aj),b;p(z1,z2,⋯,zj)=(c1)m⋯(cj)mε(cj)+m(aj),b+(aj)m;p(z1,⋯,zj), | (2.4) |
and
(ddz1)m[zb−11ε(cj)(aj),b;p(ϖ1za11,⋯,ϖjzaj1))]=zb−m−11ε(cj)(aj),b−m;p(ϖ1za11,⋯,ϖjzaj1), | (2.5) |
where ai,b,ci∈C;ℜ(ai)>0,ℜ(b)>0,,p≥0 for i=1,2,⋯,j, and ℜ(b−m)>0 with m∈N.
Proof. Differentiating (1.12) m times with respect to z1,z2,⋯,zj respectively, we get
(ddz1)m⋯(ddzj)mε(cj)(aj),b;p(z1,⋯,zj)=(ddz1)m⋯(ddzj)m∞∑l1=l2=⋯=lj=0(c1;p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b)zl11⋯zljjl1!⋯lj!=∞∑l1=⋯=lj=m(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)l1!⋯lj! zl1−m1⋯zlj−mj(l1−m)!⋯(lj−m)! l1!⋯lj!=∞∑l1=⋯=lj=0(c1;p)l1+m⋯(cj)lj+mΓ(a1(l1+m)+⋯aj(lj+m)+b)zl11⋯zljjl1!⋯lj! (Replacing li by li+m)=∞∑l1=⋯=lj=0(c1)m⋯(cj)m (c1+m;p)l1⋯(cj+m)ljΓ(a1l1+⋯ajlj+b+(a1+⋯+aj)m)zl11⋯zljjl1!⋯lj!. |
Now using (λ;σ)μ+p=(λ)μ(λ+μ;σ)p and (λ)μ+p=(λ)μ(λ+μ)p, we get
(ddz1)m⋯(ddzj)mε(cj)(aj),b;p(z1,⋯,cj)=(c1)m⋯(cj)m∞∑l1=⋯=lj=0(c1+m;p)l1⋯(cj)ljΓ(a1l1+⋯ajlj+b+(a1+⋯+aj)m)zl1⋯zljjl1!⋯lj!=(c1)m⋯(cj)m ε(cj)+m(aj),b+(aj)m;p(z1,z2,⋯,zj), |
which is the desired result (2.4). Similarly, to prove (2.5), we have
(ddz1)m[zb−11ε(cj)(aj),b;p(ϖ1za11,⋯ϖjzajj)]=(ddz1)mzb−11∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)(ϖ1za11)l1⋯(ϖjzaj1)ljl1!⋯lj!=(ddz1)m∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)zb−1+a1l1+⋯+ajlj1l1!⋯lj!ϖl11⋯ϖljj=∞∑l1=⋯lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)ϖl11⋯ϖljjl1!⋯lj!(a1l1+⋯+ajlj+b−1)!(a1l1+⋯+ajlj+b−m−1)! za1l1+⋯+ajlj+b−m−11. |
Differentiating m times and using the relation l(l−1)!=l!, we get
(ddz1)m[zb−11ε(cj)(aj),b;p(ϖ1za11,⋯ϖjzajj)]=∞∑l1=⋯lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b−m)ϖl11⋯ϖljjza1l1+⋯+ajlj+b−1−m1l1!⋯lj!=zb−m−11∞∑l1=⋯lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b−m)(ϖ1za11)l1⋯(ϖ1zaj1)ljl1!⋯lj!=zb−m−11ε(cj)(aj),b−m;p(ϖ1za11,⋯,ϖjzaj1). |
The proof is completed.
Corollary 2.1. The generalized multivariate M-L function has the following integral representations:
∫z10tb−1ε(cj)(aj),b;p(ϖ1ta1,⋯,ϖjtaj)dt=zb1ε(cj)(aj),b+1;p(ϖ1za11,⋯,ϖjzaj1), |
where ai,b,ci,ϖi∈C;ℜ(ai)>0,ℜ(b)>0,p≥0 for i=1,2,⋯,j.
In this section, we present some fractional integration and differentiation formulas of generalized M-L function given in (2.1).
Theorem 3.1. Suppose x>r(r∈R+=[0,∞)), ai, b, ci, ϖ∈C, ℜ(ai)>0 and ℜ(ci)>0, ℜ(b)>0 and ℜ(λ)>0, then the following relations hold true:
Iλr+[(ϱ−r)b−1ε(cj)(aj),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)](x)=(x−r)λ+b−1ε(ci)(ai),b+λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj), | (3.1) |
Dλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)](x)=(x−r)b−λ−1ε(ci)(ai),b−λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj) | (3.2) |
and
Dλ,vr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)](x)=(x−r)b−λ−1ε(ci)(ai),b−λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj). | (3.3) |
Proof. Consider
Iλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)](x)=1Γ(λ)∫xr(x−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖ1(ϱ−r)aj)(x−ϱ)1−λdϱ=1Γ(λ)∞∑n=0(c1;p,v)l1⋯(cj)lnϖl1⋯ϖljΓ(a1l1+⋯+ajlj+b)l1!⋯lj!∫xr(ϱ−r)b+a1l1+⋯+ajlj−1(x−ϱ)λ−1dϱ=∞∑n=0(c1;p,v)l1⋯(cj)lnϖl1⋯ϖljΓ(a1l1+⋯+ajlj+b)l1!⋯lj!(Iλr+[(ϱ−r)b+a1l1+⋯+ajlj−1]). |
By the use of (1.17), we have
Iλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)](x)=∞∑n=0(c1;p,v)l1⋯(cj)lnϖl1⋯ϖljΓ(a1l1+⋯+ajlj+b)l1!⋯lj!(x−r)b+λ+a1l1+⋯+ajlj−1.Γ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b+λ)=(x−r)b+λ−1∞∑n=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+λ)[ϖl11(x−r)a1l1⋯ϖljj(x−r)ajlj]l1!⋯lj!=(x−r)b+λ−1ε(ci)(ai),b+λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj), |
which gives the proof of (3.1).
Next, we have
Dλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)]=(ddx)n{In−λr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)]}, |
which on using (3.1) takes the following form:
Dλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)]=(ddx)n{(x−r)b−λ+n−1ε(ci)(ai),b−λ+n;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)}. |
Applying (2.5), we get
Dλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)](x)={(x−r)η−λ−1ε(ci)(ai),b−λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)}, |
which gives the proof of (3.2).
To obtain (3.3), we have
(Dλ,vr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)])(x)=(Dλ,vr+[∞∑l1=⋯=lj=0(c1;p,v)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)ϖl1⋯ϖljl1!⋯lj!(ϱ−r)a1l1+⋯+ajlj+b−1])(x)=∞∑l1=⋯=lj=0(c1;p,v)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)ϖl1⋯ϖljl1!⋯lj!×(Dλ,vr+[(ϱ−r)a1l1+⋯+ajlj+b−1])(x). |
By applying (1.18), we get
(Dλ,vr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)])(x)=∞∑l1=⋯=lj=0(c1;p,v)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)ϖl1⋯ϖljl1!⋯lj!×Γ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b−λ)(x−r)a1l1+⋯+ajlj+b−λ−1=(x−r)b−λ−1∞∑l1=⋯=lj=0(c1;p,v)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b−λ)ϖl1(x−r)a1⋯ϖlj(x−r)ajl1!⋯lj!=(x−r)b−λ−1ε(ci)(ai),b−λ;p(ϖl1(x−r)a1,⋯,ϖlj(x−r)aj), |
which completes the required proof.
Remark 3.1. Applying Theorem 3.1 for p=0, then we obtain the result presented in [34].
In this section, we define a fractional integral involving newly defined multivariate M-L function and discuss its properties.
Definition 4.1. Let b,ai,ci,ϖi∈C, ℜ(ci)>0, ℜ(ai)>0 and ℜ(b)>0 and h∈L(r,s). Then the generalized left and right sided fractional integrals are defined by
(R(ϖi);(ci)r+;(ai),b;ph)(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)h(ϱ)dϱ,(x>r) | (4.1) |
and
(R(ϖi);(ci)s−;(ai),b;ph)(x)=∫sx(ϱ−x)b−1ε(ci)(ai),b;p(ϖ1(ϱ−x)a1,⋯,ϖj(ϱ−x)aj)h(ϱ)dϱ,(x<s), | (4.2) |
respectively.
Remark 4.1. If we consider p=0, then the operators defined in (4.1) and (4.2) will take the form defined earlier by [34]. Similarly, if we consider p=0 and j=1, then the operators defined in (4.1) and (4.2) will take the form defined by [22]. If we take j=1, then the work done in this paper will lead to the work presented by [28]. Also, if we consider one of ϖi=0, for i=1,2,⋯,j, then the operators defined in (4.1) and (4.2) will take the form of the classical operators.
Next, we prove the following properties of integral operator defined in (4.1).
Theorem 4.1. Suppose that b,ai,λ,ci,ϖi∈C, ℜ(ai)>0, ℜ(b)>0, ℜ(λ)>0, p≥0 and ℜ(ci)>0 for i=1,2,⋯,j, then the following result holds true:
(R(ϖi);(ci)r+;(ai),b;p[(ϱ−r)λ−1])(x)=(x−r)λ+b−1Γ(λ)ε(ci);p(ai),b+λ(ϖ1(x−r)a1,⋯,ϖj(x−r)aj). |
Proof. By the use of definition (4.1), we have
(R(ϖi);(ci)r+;(ai),b;ph)(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)h(ϱ)dϱ. |
Therefore, we get
(R(ϖi);(ci)r+;(ai),b;p[(ϱ−r)λ−1])(x)=∫xr(x−ϱ)b−1(ϱ−r)λ−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)dϱ=∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b))ϖl11⋯ϖljjl1!⋯lj!(∫xr(ϱ−r)λ−1(x−ϱ)λ+a1l1+⋯+ajlj−1dϱ)=∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b))ϖl11⋯ϖljjl1!⋯lj!Ia1l1+⋯+ajlj+br+[(ϱ−r)λ−1]=(x−r)b+λ−1∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b))[ϖ1(x−r)a1l1⋯ϖj(x−r)ajlj]l1!⋯lj!×Γ(λ)Γ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b+λ)=(x−r)b+λ−1Γ(λ)ε(ci)(ai),b+λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj), |
which gives the desired proof.
Theorem 4.2. Suppose that ci,ai,b,ϖi∈C, ℜ(ai)>0, ℜ(b)>0, p≥0 for i=1,2,⋯,j, then the following result holds true:
‖R(ϖi);(ci)r+;(ai),b;pΦ‖1≤K‖Φ‖1. |
Where
K:=(s−r)Re(b)∞∑l1=⋯=lj=0|(c1;p)l1⋯(cj)lj|Γ(a1l1+⋯+ajlj+b)(ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj)×|ϖl11(s−r)a1l1⋯ϖljj(s−r)ajlj|l1!⋯lj!. |
Proof. By the use of (1.13) and (4.1) and by interchanging integration and summation order, we have
‖R(ϖi);(ci)r+;(ai),b;pΦ‖1=s∫r|∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)Φ(ϱ)dϱ|dx≤∫sr[∫xϱ(x−ϱ)ℜ(b)−1|ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)|dx]|Φ(ϱ)|dϱ=∫sr[∫x−ϱ0uℜ(b)−1|ε(ci)(ai),b;p(ϖ1ua1,⋯,ϖjuaj)|du]|Φ(ϱ)|dϱ, |
by setting u=x−ϱ. After simplification, we obtain
‖R(ϖi);(ci)r+;(ai),b;pΦ‖1≤∫sr[∞∑l1=⋯=lj=0|(c1;p)l1⋯(cj)lj|Γ(a1l1+⋯+ajlj+b)|ϖa11⋯ϖljj|l1!⋯lj!×((u)ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj(ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj))s−r0]|Φ(ϱ)|dϱ. |
It follows that
‖R(ϖi);(ci)r+;(ai),b;pΦ‖1≤{(s−r)ℜ(b)∞∑l1=⋯=lj=0|(c1;p)l1⋯(cj)lj|Γ(a1l1+⋯+ajlj+b)(ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj)×|ϖl11(s−r)a1l1⋯ϖljj(s−r)ajlj|l1!⋯lj!}s∫r|Φ(ϱ)|dϱ=K||Φ||1, |
where
K=(s−r)Re(b)∞∑l1=⋯=lj=0|(c1;p)l1⋯(cj)lj|Γ(a1l1+⋯+ajlj+b)(ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj)×|ϖl11(s−r)a1l1⋯ϖljj(s−r)ajlj|l1!⋯lj!, |
which gives the desired result.
Corollary 4.1. If we take ai,b,ci,ϖi∈C, ℜ(ai)>0, ℜ(b)>0, ℜ(ci)>0 with i=1,2,⋯,j, then the following result holds true:
(R(ϖi);(ci)r+;(ai),b;p1)(x)=(x−r)bε(ci)(ai),b+1;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj). |
Proof. Consider
(R(ϖi);(ci)r+;(ai),b1)(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−r)aj)dϱ=∫xr(x−ϱ)b−1(∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljϖl11(x−ϱ)a1l1⋯ϖljj(x−ϱ)ajljΓ(a1l1+⋯+ajlj+b)l1!⋯lj!)dϱ. |
It follows that
(R(ϖi);(ci)r+;(ai),b;p1)(x)=∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljϖl11⋯ϖljjΓ(a1l1+⋯+ajlj+b)l1!⋯lj!∫xr(x−ϱ)b+a1l1+⋯+ajlj−1dϱ=(x−r)b∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljϖl11(x−r)a1l1⋯ϖljj(x−r)ajljΓ(a1l1+⋯+ajlj+b)(a1l1+⋯+ajlj+b)l1!⋯lj!=(x−r)bε(ci)(ai),b+1;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj), |
which gives the desired proof.
Theorem 4.3. The generalized fractional operator can be represented in term of Riemann–Liouville fractional integrals for ci, ai, b, ϖi∈C with ℜ(ai)>0, ℜ(b)>0, ℜ(ci)>0 for i=1,2,⋯,j, p≥0 and x>r as follows:
(R(ϖi);(ci)r+;(ai),bh)(x)=∞∑l1=⋯=lj=0Γ(c1+l1;p)(c2)l2⋯(cj)ljϖa11⋯ϖajjΓ(c1)l1!⋯lj!Ia1l1+⋯+ajlj+br+h(x). |
Proof. By utilizing (2.1) in (4.1) and then interchanging the order of summation and integration, we have
(R(ϖi);(ci)r+;(ai),bh)(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)h(ϱ)dϱ=∫xr(x−ϱ)b−1∞∑l1=⋯=lj=0Γ(c1+l1;p)(c2)l2⋯(cj)ljϖl11(x−ϱ)a1l1⋯ϖljj(x−ϱ)ajljΓ(c1)Γ(a1l1+⋯+ajlj+b)l1!⋯lj!h(ϱ)dϱ=∞∑l1=⋯=lj=0Γ(c1+l1;p)(c2)l2⋯(cj)ljϖa1l11⋯ϖajljjΓ(c1)l1!⋯lj!1Γ(a1l1+⋯+ajlj+b)×∫xr(x−ϱ)a1l1+⋯+ajlj+b−1h(ϱ)dϱ=∞∑l1=⋯=lj=0Γ(c1+l1;p)(c2)l2⋯(cj)ljϖa1l11⋯ϖajljjΓ(c1)l1!⋯lj!Ia1l1+⋯+ajlj+br+h(x), |
which gives the desired proof.
Theorem 4.4. For λ, ci, ai, b, ϖi∈C with ℜ(ai)>0, ℜ(b)>0, ℜ(ci)>0, ℜ(λ)>0, for i=1,2,⋯,j, p≥0 and x>r, then the following result holds true:
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=(R(ϖi);(ci)r+;(ai),b+λh)(x)=(R(ϖi);(ci)r+;(ai),b[Iλr+h])(x), | (4.3) |
where h∈L(r,s).
Proof. By employing (1.14) and (4.1), we have
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=1Γ(λ)∫xr[(R(ϖi);(ci)r+;(ai),b;ph)(ϱ)](x−ϱ)1−λdϱ=1Γ(λ)∫xr(x−ϱ)λ−1[∫ϱr(ϱ−u)b−1ε(ci)(ai),b;p(ϖ1(ϱ−u)a1,⋯,ϖj(ϱ−u)aj)h(u)du]dϱ. |
It follows that
(Iλr+[R(ϖi);(ci)r+;(ai),bh])(x)=∫xr[1Γ(λ)∫xu(x−ϱ)λ−1(ϱ−u)b−1ε(ci)(ai),b;p(ϖ1(ϱ−u)a1,⋯,ϖj(ϱ−u)aj)dϱ]h(u)du. |
By considering ϱ−u=θ, we get
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=∫xr[1Γ(λ)∫x−u0(x−u−θ)λ−1θb−1ε(ci)(ai),b;p(ϖ1θa1,⋯,ϖjθaj)dθ]h(u)du=∫xr[1Γ(λ)∫x−u0θb−1ε(ci)(ai),b;p(ϖ1θa1,⋯,ϖjθaj)(x−u−θ)1−λdθ]h(u)du. |
Hence, from (1.14) and applying (3.1), we obtain
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=∫xr[θλ+b−1ε(ci)(ai),b+λ;p(ϖ1θa1,⋯,ϖjθaj)]h(u)du=∫xr(x−u)λ+b−1ε(ci)(ai),b+λ(ϖ1(x−u)a1,⋯,ϖj(x−u)aj)h(u)du. |
Thus, we have
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=(R(ϖi);(ci)r+;(ai),b+λh)(x). | (4.4) |
Next, consider the right hand side of (4.3) and employing (4.1) to derive the second part, we have
(R(ϖi);(ci)r+;(ai),b;p[Iλr+h])(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)[Iλr+h](ϱ)dϱ=∫xrε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)(1Γ(λ)ϱ∫rh(u)(ϱ−u)1−λdu)dϱ. |
It follows that
(R(ϖi);(ci)r+;(ai),b[Iλr+h])(x)=x∫r1Γ(λ)[∫xu(x−ϱ)b−1(ϱ−u)λ−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)dϱ]h(u)du. |
By setting x−ϱ=θ, we get
(R(ϖi);(ci)r+;(ai),b[Iλr+h])(x)=∫xr1Γ(λ)[∫0x−uθb−1(x−θ−u)λ−1ε(ci)(ai),b;p(ϖ1θa1,⋯,ϖjθaj)(−dθ)]h(u)du=x∫r1Γ(λ)[∫x−u0θb−1(x−θ−u)λ−1ε(ci)(ai),b;p(ϖ1θa1,⋯,ϖjθaj)dθ]h(u)du. |
Further, by using (1.14) and applying (3.1), we obtain
(R(ϖi);(ci)r+;(ai),b;p[Iλr+h])(x)=(R(ϖi);(ci)r+;(ai),b+λh)(x). | (4.5) |
Thus, (4.4) and (4.5) gives the desired proof.
Nowadays, the theories are developed very rapidly. The scientists are introducing more advanced and generalized forms of the classical ones. In this present study, we introduced a generalized form of the multivariate M-L function (2.1) by employing the generalized Pochhammer symbol and its properties. By using this more extended form of M-L, we introduced a fractional integral operator and studied some of the basic properties of this operator. The special cases of the main results are if we take p=0, then the operators defined in (4.1) and (4.2) will reduce to the work done by [34]. Similarly, if we take j=1 and p=0, then the operators defined in (4.1) and (4.2) will lead to the work done by [22]. If we take j=1, then the work done in this paper will lead to the work presented by [28]. Moreover, if we consider one of ϖi=0, for i=1,2,⋯,j, then the operators defined in (4.1) and (4.2) will reduce to the classical R-L operators. We believe that our proposed operator will be more applicable in the fields of fractional integral inequalities and operator theory.
The author T. Abdeljawad would like to thank Prince Sultan University for supporting through TAS research lab. Manar A. Alqudah: Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R14), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
The authors declare no conflict of interest.
[1] | H. Aminikhah, A. R. Sheikhani, H. Rezazadeh, Stability analysis of linear distributed order system with multiple time delays,, U. P. B. Sci. Bull., Series A, 77 (2015), 207-218. |
[2] |
M. Mashoof, A. H. R. Sheikhani, H. S. Najafi, Stability analysis of distributed-order HilferPrabhakar systems based on Inertia theory, Math. Notes, 104 (2018), 74-85. doi: 10.1134/S000143461807009X
![]() |
[3] | M. Mashoof, A. H. R. Sheikhani, H. S. Najafi, Stability analysis of distributed order Hilfer-Prabhakar differential equations, Hacettepe J. Math. Stat., 47 (2018), 299-315. |
[4] | A. Ansari, A. R. sheikhani, Approximate analytical solutions of distributed order fractional Riccati differential equation, Ain Shams Eng. J., 49 (2018), 581-58. |
[5] | A. Ansari, A. R. sheikhani, New identities for the wright and the Mittag-Leffler functions using the Laplace transform, Asian-Eur. J. Math., 11 (2014), 1019-1032. |
[6] | I. Kovacic, M. J. Brennan, Nonlinear oscillators and their behavior, First Edition. John Wiley & Sons, 2011, Ltd. ISBN: 978-0-470-71549-9. |
[7] | A. Chatterjee, A brief introduction to nonlinear vibrations, Mechanical Engineering, Indian Institute of Science, Bangalore, February 2009. |
[8] | H. Aminikhah, A. R. Sheikhani, H. Rezazadeh, Stability analysis of distributed order fractional Chen system, Sci. World J., 2013, Article ID 645080, 13. |
[9] |
H. Aminikhah, A. R. Sheikhani, H. Rezazadeh, Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method, Boletim da Sociedade Paranaense de Matemtica, 34 (2016), 213-229. doi: 10.5269/bspm.v34i1.26193
![]() |
[10] |
J. Alvarez-Ramirez, G. Espinosa-Paredes, H. Puebla, Chaos control using small-amplitude damping signals, Phys. Lett., 316 (2003), 196-205. doi: 10.1016/S0375-9601(03)01147-2
![]() |
[11] |
H. Vahedi, G. B. Gharehpetian, M. Karrari, Application of Duffing oscillators for passive Islanding detection of inverter-based distributed generation units, IEEE Trans. Power Delivery, 27 (2012), 1973-1983. doi: 10.1109/TPWRD.2012.2212251
![]() |
[12] | M. Taylan, The effect of nonlinear damping and restoring in ship rolling, Jocean Eng., 27 (2000), 921-932. |
[13] |
H. Wagner, Large-Amplitude free vibrations of a beam, J. Appl. Mech., 32 (1965), 887-892 doi: 10.1115/1.3627331
![]() |
[14] |
S. Lenci, G. Menditto, A. M. Tarantino, Homoclinic and Heteroclinic Bifurcations in the non-linear dynamics of a beam resting on an elastic substrate, Int. J. Non-Linear Mech., 34 (1999), 615-632. doi: 10.1016/S0020-7462(98)00001-8
![]() |
[15] |
A. I. Maimistov, Propagation of an ultimately short electromagnetic pulsein a nonlinear medium described by the fifth-Order Duffing model, Optics and Spectroscopy, 94 (2003), 251-257. doi: 10.1134/1.1555186
![]() |
[16] | R. Meucci, S. Euzzor, E. Pugliese, et al., Anosov flows with stable and unstable differentiable distributions, Optimal Phase-Control Strategy for Damped-Driven Duffing Oscillators, 116 (2016), 044-101. |
[17] | J. F. Rhoads, S. W. Shaw, K. L. Turner, Nonlinear dynamics and its applications in Micro- and Nano resonators, J. Dyn. Syst. Meas. Control, 132 (2010), 034001. |
[18] |
R. Srebro, The Duffing oscillator: A model for the dynamics of the neuronal groupscomprising the transient evoked potential, Electroencephalogr. Clin. Neurophysiol., 96 (1995), 561-573. doi: 10.1016/0013-4694(95)00088-G
![]() |
[19] | L. Accardi, W. Freudenberg, Quantum Probability and White Noise Analysis, Proceedings Quantum Bio-Informatics, 2011. |
[20] | A. H. Nayfeh, D. T. Mook, Nonlinear Oscillations, John Wiley & Sons, 1979. |
[21] |
X. Y. Deng, B. Liu, T. Long, A new complex Duffing oscillator used in complex signal detection, Chin. Sci. Bull., 57 (2012), 2185-2191. doi: 10.1007/s11434-012-5145-8
![]() |
[22] | Y. O. El Dib, Stability analysis of a strongly displacement time delayed Duffing oscillator using multiple scales homotopy perturbation method, ournal of Applied and Computational Mechanics, 4 (2018), 260-274. |
[23] | A. H. Salas, E. Jairo, H. Castillo, Exact solutions to cubic Duffing equation for a nonlinear electrical circuit, J. Amer. Math. Soc., 7 (2014), 46-53. |
[24] | M. A. Latif, J. C. Chedjou, K. Kyamakya, The paradigm of non-linear oscillators in image processing, Transp. Inf. Group, 2009, 1-5. |
[25] | K. Tabatabaei, E. Gunerhan, Numerical solution of Duffing equation by the differential transform method, Appl. Math. Inf. Sci. Lett., 2 (2014), 1-6. |
[26] | S. Nourazar, A. Mirzabeigy, Approximate solution for nonlinear Duffing oscillator with damping effect using the modified differential transform method, Scientia Iranica B, 20 (2013), 364-368. |
[27] |
R. E. Mickens, Mathematical and numerical study of the Duffing harmonic oscillator, J. Sound Vib., 244 (2001), 563-567. doi: 10.1006/jsvi.2000.3502
![]() |
[28] |
Md. A. Razzak, A new analytical approach to investigate the strongly nonlinear oscillators, Alexandria Eng. J., 55 (2016), 1827-1834. doi: 10.1016/j.aej.2016.04.001
![]() |
[29] | M. O. Oyesanya, J. I. Nwamba, Duffing oscillator with heptic nonlinearity under single periodic forcing, Int. J. Mech. Appl., 3 (2013), 35-43. |
[30] |
S. J. Liao, A. T. Chwang, Application of homotopy analysis method in nonlinear oscillations, J. Appl. Mech., 65 (1998), 914-922. doi: 10.1115/1.2791935
![]() |
[31] |
J. H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Eng., 178 (1999), 257-262. doi: 10.1016/S0045-7825(99)00018-3
![]() |
[32] |
A. Elias-Zuniga, Exact solution of the Cubic-Quintic duffing oscillator,, Appl. Math. Model., 37 (2013), 2574-2579. doi: 10.1016/j.apm.2012.04.005
![]() |
[33] |
F. Geng, Numerical solutions of Duffing equations involving both integral and non integral forcing terms,, Comput. Math. Appl., 61 (2011), 1935-1938. doi: 10.1016/j.camwa.2010.07.053
![]() |
[34] | R. Novin, Z. S. Dastjerd, Solving Duffing equation using an improved semi-analytical method, J. Amer. Math. Soc. Commun. Adv. Comput. Sci. Appl., 2 (2015), 54-58. |
[35] | S. Durmaz, S. A. Demirbag, M. O. Kaya, High order He's energy balance method based on collocation method, Int. J. Nonlinear Sci. Numer. Simul., 11 (2010), 1-5. |
[36] |
D. D. Ganji, M. Gorji, S. Soleimani, et al., Solution of nonlinear Cubic-Quintic Duffing oscillators using hes energy balance method,, J. Zhejiang University-Sci. A, 10 (2009), 1263-1268. doi: 10.1631/jzus.A0820651
![]() |
[37] | E. Yusufoglu, Numerical solution of Duffing equation by the laplace decomposition algorithm, Appl. Math. Comput., 177 (2006), 572-580. |
[38] | J. Sunday, The Duffing oscillator: Applications and computational simulations, Asian Res. J. Math., 2 (2017), 1-13. |
[39] | J. J. Stoker, Nonlinear vibrations in mechanical and electrical systems, J. Amer. Math. Soc., 2 1950. |
[40] | M. Li, Three classes of fractional oscillators, Symmetry, 10 (2018), 40. |
[41] | H. Rezazadeh, H. Aminikhah, A. H. R. Sheikhani, Stability analysis of Hilfer fractional differential systems, Math. Commun., 21 (2016), 45-64. |
[42] |
K. S. Alghafri, H. Rezazadeh, Solitons and other solutions of (3 + 1) dimensional spacetime fractional modified KdVZakharovKuznetsov equation, Appl. Math. Nonlinear Sci., 4 (2019), 289-304. doi: 10.2478/AMNS.2019.2.00026
![]() |
[43] |
M. S. H. Chowdhuryz, Md. A. Hosen, K. Ahmad, et al., High-order approximate solutions of strongly nonlinear cubic-quintic Duffing oscillator based on the harmonic balance method, Results Phys., 7 (2017), 3962-3967. doi: 10.1016/j.rinp.2017.10.008
![]() |
[44] |
D. W. Brzezinski, Comparison of fractional order derivatives computational accuracy-right hand vs left hand definition, Appl. Math. Nonlinear Sci., 2 (2017), 237-248. doi: 10.21042/AMNS.2017.1.00020
![]() |
[45] | I. Podlubny, Fractional differential equations, Academic Press, 1990. |
[46] | A. Refahi, S. Kordrostami, Solution of the space-fractional BenjaminOno equation: An operational approach, Rendiconti del Circolo Matematico di Palermo Series 2, 66 (2017), 471-476. |
[47] |
I. K. Youssef, M. H. El Dewaik, Solving Poissons equations with fractional order using Haar wavelet, Appl. Math. Nonlinear Sci., 2 (2017), 271-284. doi: 10.21042/AMNS.2017.1.00023
![]() |
[48] | E. C. L. Oyesanya, M. O. Agbebaku, D. F. Okofu, et al., Solution to nonlinear Duffing oscillator with fractional derivatives using homotopy analysis method (HAM), Global J. Pure Appl. Math., 14 (2018), 1363-1388. |
[49] | A. Sonmezoglu, Exact solutions for some fractional differential equations, Hindawi Publishing Corporation Advances in Mathematical Physics, 2015. |
[50] |
Y. Xu, Y. Li, D. Liu, et al., Responses of Duffing oscillator with fractional damping and random phase, Nonlinear Dyn., 74 (2013), 745-753. doi: 10.1007/s11071-013-1002-9
![]() |
[51] | Y. J. Yang, S. Q. Wang, An improved homotopy Perturbation method for solving local fractional nonlinear oscillators, J. Low Freq. Noise Vib. Active Control, 0 (2019), 1-10. |
[52] | M. Merdan, A. Gokdogan, A. Yildirim, On numerical solution to fractional non-linear oscillatory equations, J. Amer. Math. Soc., 48 (2013), 1201-1213. |
[53] |
V. Marinca, N. HeriÅanu, Explicit and exact solutions to cubic Duffing and double-well Duffing equations, Math. Comput. Model., 53 (2011), 604-609. doi: 10.1016/j.mcm.2010.09.011
![]() |
[54] |
M. Mashoof, A. H. R. Sheikhani, Numerical solution of fractional differential equation by wavelets and hybrid functions, Bulletim da Sociedade Paranaense de Matemtica, 36 (2018), 231-244. doi: 10.5269/bspm.v36i2.30904
![]() |
[55] | K. Maleknejad, M. Shahrezaee, H. Khatami, Numerical solution of integral equations system of the second kind by Block-Pulse functions, Appl. Math. Comput., 66 (2005), 15-24. |
[56] |
H. S. Najafi, S. A. Edalatpanah, A. H. R. Sheikhani, Convergence analysis of modified iterative methods to solve linear systems, Mediterr. J. Math., 11 (2014), 1019-1032. doi: 10.1007/s00009-014-0412-3
![]() |
[57] | M. Mashoof, A. H. R. Sheikhani, Simulating the solution of the distributed order fractional differential equations by block-pulse wavelets, UPB Sci. Bull., Ser. A: Appl. Math. Phys., 79 (2017), 193-206. |
[58] | B. N. Datta, Numerical linear algebra and application, Brooks/Cole Publishing Company, Pacic Grove, CA, 1995 (Custom published byBrooks/Cole, 2003). |